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Charge-𝑞 Schwinger model with topological term 
1+1d QED

supposed to be difficult in the conventional Monte Carlo approach:

topological “theta term”

・∃sign problem even in Euclidean case when 𝜃 isn’t small

・real time

Results:

・Construction of the true vacuum

・Computation of ⟨ ത𝜓𝜓⟩ & consistency check/prediction 

[cf. Tensor Network approach: 
Banuls-Cichy-Jansen-Saito ’16 , 
Funcke-Jansen-Kuhn ’19, etc… ]

・Exploration of the screening vs confinement problem 
& negative string tension behavior for some parameters

[Chakraborty-MH-Kikuchi-Izubuchi-Tomiya ’20]

[MH-Itou-Kikuchi-Nagano-Okuda ’21] [MH-Itou-Kikuchi-Tanizaki ’21]

This talk is about...



Screening versus Confinement

potential between 2 heavy charged particles

𝑉 𝑥 =
𝑞𝑝
2 𝑔2

2
𝑥 ?

Let’s consider

Classical picture:

+𝑞𝑝−𝑞𝑝

confinement

Coulomb law in 1+1d

too naive in the presence of dynamical fermions



Expectations from previous analyzes

[Iso-Murayama ’88, Gross-Klebanov-Matytsin-Smilga ’95 ]

Potential between probe charges ±𝑞𝑝 has been analytically computed 

・massless case:

・massive case:

𝑉 𝑥 =
𝑞𝑝
2 𝑔2

2𝜇
(1 − 𝑒−𝑞𝜇𝑥)

𝜇 ≡ 𝑔/ 𝜋

screening



Expectations from previous analyzes

[Iso-Murayama ’88, Gross-Klebanov-Matytsin-Smilga ’95 ]

Potential between probe charges ±𝑞𝑝 has been analytically computed 

・massless case:

・massive case:

𝑉 𝑥 =
𝑞𝑝
2 𝑔2

2𝜇
(1 − 𝑒−𝑞𝜇𝑥)

𝜇 ≡ 𝑔/ 𝜋

(m ≪ 𝑔, 𝑥 ≫ 1/𝑔 )

screening

screening

but sometimes negative slope!

Σ ≡ 𝑔𝑒𝛾/2𝜋3/2

= Const.

∝ 𝑥

for qp/q = 𝐙

for qp/q ≠ 𝒁

𝑉 𝑥 ∼ 𝑚𝑞Σ cos
𝜃 + 2𝜋𝑞𝑝

𝑞
− cos

𝜃

𝑞
𝑥

[cf. Misumi-Tanizaki-Unsal ’19 ]

confinement?



Let’s explore this aspect by quantum simulation!

That is, as changing the parameters…
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“Regularization” of Hilbert space

Hilbert space of QFT is typically ∞ dimensional

Make it finite dimensional!

・Fermion is easiest (up to doubling problem)

Putting on spatial lattice, Hilbert sp. is finite dimensional

・scalar
Hilbert sp. at each site is ∞ dimensional

・gauge field (w/ kinetic term)

no physical d.o.f. in 0+1D/1+1D (w/ open bdy. condition)

∞ dimensional Hilbert sp. in higher dimensions

(need truncation or additional regularization)



Schwinger model w/ topological term

Continuum:

Taking temporal gauge 𝐴0 = 0,

Physical states are constrained by Gauss law:

(Π: conjugate momentum of 𝐴1 )

0 = −𝜕1Π − 𝑞𝑔 ത𝜓𝛾0𝜓



Accessible region by analytic computation

・Massive limit:

・Bosonization: [Coleman ’76]

The fermion can be integrated out

ℒ =
1

8𝜋
𝜕𝜇𝜙

2
−

𝑔2

8𝜋2
𝜙2 +

𝑒𝛾𝑔

2𝜋3/2
𝑚 cos(𝜙 + 𝜃)

the theory becomes effectively pure Maxwell theory w/ 𝜃

&

exactly solvable for 𝑚 = 0

small 𝑚 regime is approximated by perturbation

&



Sign problem in path integral formalism

In Euclidean space,

In Minkowski space,

𝒪 =
∫ 𝐷𝐴𝐷𝜓𝐷 ത𝜓 𝒪 𝑒𝑖𝑆

∫ 𝐷𝐴𝐷𝜓𝐷 ത𝜓 𝑒𝑖𝑆

𝑆 = ∫ 𝑑4𝑥 −
1

4
𝐹𝜇𝜈
2 + ത𝜓 𝑖𝛾𝜇𝐷𝜇 −𝑚 𝜓 +

𝑔𝜃

4𝜋
∫ 𝐹 ∈ 𝑹

𝒪 =
∫ 𝐷𝐴𝐷𝜓𝐷 ത𝜓 𝒪 𝑒−𝑆

∫ 𝐷𝐴𝐷𝜓𝐷 ത𝜓 𝑒−𝑆

𝑆 = ∫ 𝑑4𝑥 −
1

4
𝐹𝜇𝜈
2 + ത𝜓 𝑖𝛾𝜇𝐷𝜇 −𝑚 𝜓 + 𝑖

𝑔𝜃

4𝜋
∫ 𝐹 ∈ 𝑪

highly oscillating

highly oscillating for non-small θ



Map of accessibility/difficulty

𝑚

𝜃

Pure
Maxwell

Monte Carlo

solvable

Mass
perturb.

via boson-
-ization

We can make

prediction here



Put the theory on lattice 
・Fermion (on site): [Susskind, Kogut-Susskind ’75]

𝜓(𝑥) =
𝜓𝑢
𝜓𝑑

𝜒𝑛
𝑎1/2
lattice spacing

odd site

even site

“Staggered fermion”



Put the theory on lattice 
・Fermion (on site): [Susskind, Kogut-Susskind ’75]

x x x x x x
・・・

𝜙1, 𝐿1 𝜙2, 𝐿2 𝜙𝑁−2, 𝐿𝑁−2

𝜒1 𝜒2 𝜒𝑁−2

・Gauge field (on link):

𝜓(𝑥) =
𝜓𝑢
𝜓𝑑

𝜒𝑛
𝑎1/2
lattice spacing

odd site

even site

“Staggered fermion”

𝜙𝑛 ↔ −𝑎𝑔𝐴1 𝑥 , 𝐿𝑛 ↔ −
Π 𝑥

𝑔

𝜙0, 𝐿0

𝜒𝑁−1𝜒3𝜒0 𝑎



Lattice theory w/ staggered fermion
Hamiltonian:

Commutation relation:

Gauss law:



Eliminate gauge d.o.f.
1. Take open b.c. & solve Gauss law:

2. Take the gauge 𝑈𝑛 = 1

Then,

This acts on finite dimensional Hilbert space

w/ 𝐿−1 = 0



Insertion of the probe charges
① Introduce the probe charges ±𝑞𝑝:

𝑒𝑖𝑞𝑝 ∫𝐶 𝐴 𝐶
ℓ

𝑡 = +∞

𝑡 = −∞

➁ Include it to the action & switch to Hamilton formalism

𝑒
𝑖𝑞𝑝 ∫𝑆,𝜕𝑆=𝐶 𝐹 local 𝜃-term w/ 𝜃 = 2𝜋𝑞𝑝!!

𝑥

+𝑞𝑝 −𝑞𝑝

ℓ

𝜃 = 𝜃0 𝜃 = 𝜃0𝜃 = 𝜃0 + 2𝜋𝑞𝑝

③ Compute the ground state energy (in the presence of the probes)



Going to spin system

This is satisfied by the operator:

[Jordan-Wigner’28]

Now the system is purely a spin system:

Qubit description of the Schwinger model !!

“Jordan-Wigner transformation”



Comments on choices of setup

There were many choices of setup to come here…

・Formulation of continuum theory?

・Type of lattice fermion?

・Boundary condition?

・Impose Gauss law?

・Even 𝑁 or odd 𝑁? 

・How to map fermion to spin system?



Choice of continuum theory

[cf. Fujikawa’79]

(used for the case w/ probes)

(used for the case w/o probes)

“chiral anomaly”

・Equivalent for continuum theory w/o bdy.

(generically) inequivalent for theory on lattice or w/ bdy.

・The latter doesn’t violate 𝜃-periodicity even for open b.c.



Choice of boundary conditions

Gauss law:

Open b.c. Periodic b.c.

・𝐿𝑛 = (fermion op.) ・one of 𝐿𝑛’s remains

dim ℋphys < ∞ dim ℋphys = ∞

additional truncation needed

・𝜃-periodicity is lost ・∃𝜃-periodicity 

・momentum not conserved ・momentum conserved



Even 𝑁 or odd 𝑁?

𝜓(𝑥) =
𝜓𝑢
𝜓𝑑

𝜒𝑛
𝑎1/2

odd site

even site

x x x x x x

・・・𝜒1 𝜒2 𝜒𝑁−2 𝜒𝑁−1𝜒3𝜒0

・Usually even 𝑁 is taken (p.b.c. allows only even 𝑁)

Staggered fermion:

・Open b.c. allows both but parity is different: 𝜒𝑛 → 𝑖 −1 𝑛𝜒𝑁−𝑛−1

even 𝑁 changes

𝑛 mod 2

odd 𝑁 invariant

ത𝜓𝛾5𝜓 ∼

𝑛

−1 𝑛 (𝜒𝑛
†𝜒𝑛+1 − h. c. )ത𝜓𝜓 ∼

𝑛

−1 𝑛 𝜒𝑛
†𝜒𝑛

invariant

invariantflipped

flipped

Odd 𝑁 seems more like the continuum theory?
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Adiabatic state preparation of vacuum 

Step 1: Choose an initial Hamiltonian 𝐻0 of a simple system
whose ground state |vac0⟩ is known and unique

Step 3: 

Step 2:



Adiabatic state preparation of vacuum 

Step 1: Choose an initial Hamiltonian 𝐻0 of a simple system
whose ground state |vac0⟩ is known and unique

・ 𝐻𝐴 0 = 𝐻0, 𝐻𝐴 𝑇 = 𝐻target

Step 3: 

Step 2: Introduce adiabatic Hamiltonian 𝐻𝐴 𝑡 s.t.

・
𝑑𝐻𝐴

𝑑𝑡
≪ 1 for 𝑇 ≫ 1



Adiabatic state preparation of vacuum 

If 𝐻𝐴(𝑡) has a unique ground state w/ a finite gap for ∀𝑡,
then the ground state of 𝐻target is obtained by

Step 1: Choose an initial Hamiltonian 𝐻0 of a simple system
whose ground state |vac0⟩ is known and unique

・ 𝐻𝐴 0 = 𝐻0, 𝐻𝐴 𝑇 = 𝐻target

Step 3: Use the adiabatic theorem

vac = lim
𝑇→∞

𝒯 exp −𝑖න
0

𝑇

𝑑𝑡 𝐻𝐴 𝑡 |vac0⟩

Step 2: Introduce adiabatic Hamiltonian 𝐻𝐴 𝑡 s.t.

・
𝑑𝐻𝐴

𝑑𝑡
≪ 1 for 𝑇 ≫ 1



Adiabatic state preparation in the presence of the probes

Here we choose

𝑚0 can be any positive number in principle
but it is practically chosen to have small systematic error 

𝐻0 = 𝐻 ቚ
𝑤→0, 𝜗𝑛→0, 𝑚→𝑚0

vac0 = |1010⋯ ⟩

𝐻𝐴(𝑡) = 𝐻 ቚ
𝑤→𝑤 𝑡 ,𝜗𝑛→𝜗𝑛 𝑡 , 𝑚→𝑚 𝑡

𝑤 𝑡 =
𝑡

𝑇
𝑤, 𝜗𝑛 𝑡 =

𝑡

𝑇
𝜗𝑛,  𝑚 𝑡 = 1 −

𝑡

𝑇
𝑚0 +

𝑡

𝑇
𝑚



Comments on adiabatic state preparation

Advantage:

・costly — likely requires many gates 

・guaranteed to be correct for 𝑇 ≫ 1 & 𝛿𝑡 ≪ 1
if 𝐻𝐴(𝑡) has a unique gapped vacuum

Disadvantage:

・can directly get excited states under some conditions

・doesn’t work for degenerate vacua

perhaps not so efficient in NISQ era

("systematic error") ∼
1

𝑇 gap 2



Tradeoff of symmetries in Suzuki-Trotter dec.

Suzuki-Trotter decomposition:
(𝑀 ∈ 𝒁, 𝑀 ≫ 1)

(more precisely, we actually use its improvement but I skip it)

𝑒−𝑖𝐻𝑡 = 𝑒−𝑖𝐻
𝑡
𝑀

𝑀

≃ 𝑒−𝑖𝐻1
𝑡
𝑀𝑒−𝑖𝐻2

𝑡
𝑀

𝑀

+ 𝒪(1/𝑀)

Symmetries may be broken by decomposition

𝐻eff =
1

−𝑖𝑡
log 𝑒−𝑖𝐻1

𝑡
𝑀𝑒−𝑖𝐻2

𝑡
𝑀

𝑀

Tradeoff:

・Parity friendly (& translation if p.b.c.)

𝐻 = 𝐻𝑋𝑋 + 𝐻𝑌𝑌 +𝐻𝑍𝑍 + 𝐻𝑍

・𝑈(1) friendly

𝐻 = 𝐻𝑋𝑋+𝑌𝑌
(even)

+𝐻𝑋𝑋+𝑌𝑌
(odd)

+𝐻𝑍𝑍 + 𝐻𝑍

𝑈(1)

𝑃
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Expectation value of mass op. (chiral condensation)

Instead of the local op., we analyze the average over the space: 

Once we get the vacuum, we can compute the VEV as



Chiral condens. for massless case (after continuum limit)

[Chakraborty-MH-Kikuchi-Izubuchi-Tomiya ’20]

exact result



Chiral condens. for massive case at g=1
[Chakraborty-MH-Kikuchi-Izubuchi-Tomiya ’20]

mass perturbation

Tensor Network

[Banuls-Cichy-Jansen-Saito]



Estimation of systematic errors
[Chakraborty-MH-Kikuchi-Izubuchi-Tomiya ’20]Approximation of vacuum:

Approximation of VEV:

Introduce the quantity

independent of t if

dependent on t if

This quantity describes  intrinsic ambiguities in prediction

Useful to estimate systematic errors



Estimation of systematic errors (Cont’d)

Oscillating around the correct value

Define central value & error as

&
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Expectations from previous analyzes (repeated)

[Iso-Murayama ’88, Gross-Klebanov-Matytsin-Smilga ’95 ]

Potential between probe charges ±𝑞𝑝 has been analytically computed 

・massless case:

・massive case:

𝑉 𝑥 =
𝑞𝑝
2 𝑔2

2𝜇
(1 − 𝑒−𝑞𝜇𝑥)

𝜇 ≡ 𝑔/ 𝜋

(m ≪ 𝑔, 𝑥 ≫ 1/𝑔 )

screening

screening

but sometimes negative slope!

Σ ≡ 𝑔𝑒𝛾/2𝜋3/2

= Const.

∝ 𝑥

for qp/q = 𝐙

for qp/q ≠ 𝒁

Let’s explore this aspect by quantum simulation!

𝑉 𝑥 ∼ 𝑚𝑞Σ cos
𝜃 + 2𝜋𝑞𝑝

𝑞
− cos

𝜃

𝑞
𝑥

[cf. Misumi-Tanizaki-Unsal ’19 ]

confinement?



FAQs on negative tension 

Q1. It sounds that many pair creations are favored. 
Is the theory unstable?

No. Negative tension appears only for 𝑞𝑝 ≠ 𝑞𝒁. 

So, such unstable pair creations do not occur.

Q2. It sounds 𝐸inside < 𝐸outside(= 𝐸0? ).  Strange?
[cf. MH-Itou-Kikuchi-Tanizaki ’21]

∃explanation from generalized (1-form) global sym.

The theory has something like superselection sector
decomposed by 𝑍𝑞 1-form symmetry. “universe”

Inside & outside belong to different sectors.



Results for massless, 𝜃0 = 0 & 𝑞𝑝/𝑞 ∈ 𝒁

Parameters: 𝑔 = 1, 𝑎 = 0.4, 𝑁 = 15 & 21, 𝑇 = 99, 𝑞𝑝/𝑞 = 1,𝑚 = 0

Lines: analytical results in the continuum limit (finite & ∞ vols.)

(probe distance)

[MH-Itou-Kikuchi-Nagano-Okuda ’21]



Results for massive, 𝜃0 = 0 & 𝑞𝑝/𝑞 ∈ 𝒁

Parameters: 𝑔 = 1, 𝑎 = 0.4, 𝑁 = 15 & 21, 𝑇 = 99, 𝑞𝑝/𝑞 = 1,𝑚 = 0.2

Lines: analytical results in the continuum limit (finite & ∞ vols.)

(probe distance)

[MH-Itou-Kikuchi-Nagano-Okuda ’21]



Massless vs massive for 𝜃0 = 0 & 𝑞𝑝/𝑞 ∈ 𝒁

Parameters: 𝑔 = 1, 𝑎 = 0.4, 𝑁 = 15 & 21, 𝑇 = 99, 𝑞𝑝/𝑞 = 1

Lines: analytical results in the continuum limit (finite & ∞ vols.)

Consistent w/ expected screening behavior

[MH-Itou-Kikuchi-Nagano-Okuda ’21]

𝑞𝑝 = 1,𝑚 = 0 𝑞𝑝 = 1,𝑚/𝑔 = 0.2



Results for 𝜃0 = 0 & 𝑞𝑝/𝑞 ∉ 𝒁

Parameters: 𝑔 = 1, 𝑎 = 0.4, 𝑁 = 15, 𝑇 = 99, 𝑞𝑝/𝑞 = 1/4,𝑚 = 0 & 0.2

Lines: analytical results in the continuum limit (finite & ∞ vol.)

[MH-Itou-Kikuchi-Nagano-Okuda ’21]

(probe distance)



Results for 𝜃0 = 0 & 𝑞𝑝/𝑞 ∉ 𝒁

Parameters: 𝑔 = 1, 𝑎 = 0.4, 𝑁 = 15, 𝑇 = 99, 𝑞𝑝/𝑞 = 1/4,𝑚 = 0 & 0.2

Lines: analytical results in the continuum limit (finite & ∞ vol.)

[MH-Itou-Kikuchi-Nagano-Okuda ’21]

(probe distance)

Consistent w/ expected confinement behavior

-> interesting to estimate string tension for various qp?



“String tension” for 𝜃0 = 0
Parameters: 𝑔 = 1, 𝑎 = 0.4, 𝑁 = 15, 𝑇 = 99,𝑚/𝑔 = 0.2

Classical Coulomb 

mass pert. (∞-vol.)

(~probe charge)

mass pert. (finite V) 
“string tension”

(slope for large

distance)

[MH-Itou-Kikuchi-Nagano-Okuda ’21]

𝑞𝑝/𝑞



“String tension” for 𝜃0 = 0
Parameters: 𝑔 = 1, 𝑎 = 0.4, 𝑁 = 15, 𝑇 = 99,𝑚/𝑔 = 0.2

Classical Coulomb 

mass pert. (∞-vol.)

(~probe charge)

mass pert. (finite V) 
“string tension”

(slope for large

distance)

[MH-Itou-Kikuchi-Nagano-Okuda ’21]

𝑞𝑝/𝑞
confinement by nontrivial dynamics!



Positive / negative string tension
[MH-Itou-Kikuchi-Tanizaki ’21]

Parameters: 𝑔 = 1, 𝑎 = 0.4, 𝑁 = 25, 𝑇 = 99, 𝑞𝑝/𝑞 = −1/3,𝑚 = 0.15

Sign(tension) changes as changing 𝜃-angle!!



Continuum limit of string tension
[MH-Itou-Kikuchi-Tanizaki ’21]

𝑔 = 1, (Vol. ) = 9.6/𝑔, 𝑇 = 99, 𝑞𝑝/𝑞 = −1/3,𝑚 = 0.15, 𝜃0 = 2𝜋

basically agrees with mass perturbation theory



Comparison of 𝑞𝑝/𝑞 = −1/3 & 𝑞𝑝/𝑞 = 2/3
[MH-Itou-Kikuchi-Tanizaki ’21]

Parameters: q = 3, 𝑔 = 1, 𝑎 = 0.4, 𝑁 = 25, 𝑇 = 99,𝑚 = 0.15

Similar slopes → (approximate)𝑍3 symmetry



Energy density @ negative tension regime
[MH-Itou-Kikuchi-Tanizaki ’21]

𝑔 = 1, 𝑎 = 0.4, 𝑁 = 25, 𝑇 = 99, 𝑞𝑝/𝑞 = −1/3,𝑚 = 0.15, 𝜃0 = 2𝜋

Lower energy inside the probes!!



Summary & Outlook



Summary

・Quantum computation is suitable for Hamiltonian formalism
which is free from sign problem

・We’ve constructed the vacuum of Schwinger model w/
the topological term by adiabatic state preparation

・Instead we have to deal with huge vector space.
Quantum computers in future may do this job. 

・found agreement in the chiral condensate with the exact   
result for 𝑚 = 0 & mass perturbation theory for small 𝑚

・explored the screening vs confinement problem &
negative string tension behavior [MH-Itou-Kikuchi-Nagano-Okuda ’21]

[MH-Itou-Kikuchi-Tanizaki ’21]

[Chakraborty-MH-Kikuchi-Izubuchi-Tomiya ’20]



Outlook

・Searching critical point at 𝜃 = 𝜋 [work in progress, Chakraborty-MH-Kikuchi-Izubuchi-Tomiya]

・Including quantum error correction/mitigation?

・Scattering amplitude?

・Other ways to prepare vacuum (e.g. variational method, imaginary time evolution)

[work in progress, MH-Kikuchi-Rendon]

・Other field theories (bosonic, higher dim., etc…)

・Something not efficiently simulated by MC & TN etc…

[work in progress, MH-Itou-Kikuchi-Tanizaki]

・The problems in this talk involve only ground state

→ Tensor Network is better → DMRG w/ 𝑁 = 𝒪(100)

・Real time simulation? [work in progress, Chakraborty-MH-Inotani-Itou-Kikuchi]



[MH-Itou-Kikuchi-Tanizaki ’21]

[work in progress: MH-Itou-Kikuchi-Tanizaki ]

Adiabatic state preparation:

DMRG:

Thanks!

preliminary



Appendix



Without probes



Massless case

[Hetrick-Hosotani ’88]
∃Exact result:

For massless case, 

𝜃 is absorbed by chiral rotation

Nevertheless,

it’s difficult in conventional approach because computation of 
fermion determinant becomes very heavy

Can we reproduce it?

No sign problem

𝜃 = 0 w/o loss of generality



Thermodynamic & Continuum limit

#(measurements)

Thermodynamic limit (w/ fixed 𝑎) Continuum limit (after 𝑉 → ∞)



Massive case

Result of mass perturbation theory: [Adam ’98]

∃subtlety in comparison: this quantity is UV divergent

Use a regularization scheme to have the same finite part

However,

Here we subtract free theory result before taking continuum limit:

ത𝜓 𝑥 𝜓 𝑥 ≃ −0.160𝑔 + 0.322𝑚 cos𝜃 + 𝒪(𝑚2)



𝜃 dependence at 𝑚 = 0.1 & 𝑔 = 1

⟨ ത𝜓𝜓⟩

mass perturbation



With probes



Results for 𝜃0 ≠ 0

Parameters: 𝑔 = 1, 𝑎 = 0.4, 𝑁 = 15, 𝑇 = 99, 𝑞𝑝/𝑞 = 1,𝑚/𝑔 = 0.2

(difficult to explore by the conventional Monte Carlo approach)

[MH-Itou-Kikuchi-Nagano-Okuda ’21]

mass pert. (∞-vol.)

mass pert. (finite V) 



Comment on theta angle periodicity

Absence of the periodicity: 𝜃0 ∼ 𝜃0 + 2𝜋 ?

This is expected because we’re taking open b.c.

To get the periodicity back, we need to take ∞-vol. limit
[detailed study: work in progress, MH-Itou-Kikuchi-Tanizaki]



Comment: density plots of energy gap

smaller gap for larger ℓ

[MH-Itou-Kikuchi-Nagano-Okuda ’21]

Parameters: 𝑔 = 1, 𝑎 = 0.4, 𝑁 = 15, 𝑞𝑝/𝑞 = 1,𝑚/𝑔 = 0.15

larger systematic error for larger ℓ

(known as “Tuna slice plot” inside the collaboration)



𝑁-dependence of 𝑉 w/ fixed physical volume
[MH-Itou-Kikuchi-Tanizaki ’21]



Adiabatic scheduling
[MH-Itou-Kikuchi-Tanizaki ’21]


