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Quantum computing and real time dynamics of physical system 4

What can quantum computers do?

| ۧ𝜙 =ෑ

𝑘

𝑈𝑘 | ۧ𝜙in

Unitary transformation & measurement

| ۧ𝜙 = 

𝑠1,𝑠2…𝑠𝑁

𝛼𝑠1,𝑠2…𝑠𝑁| ۧ𝑠1, 𝑠2…𝑠𝑁

𝑠𝑖 = 0 or 1

Real time dynamics of quantum systems

| ۧ𝜓 𝑡 = න
0

𝑡

𝑑𝑇 𝑒−𝑖𝐻𝑇 | ۧ𝜓(𝑡 = 0)

| ۧ𝜓 𝑡 = 𝑀Δ𝑡 =ෑ

𝑘=1

𝑀

𝑒−𝑖𝐻kΔ𝑡 | ۧ𝜓(𝑡 = 0)

How to map physical system ۧ|𝜓 𝑡 to N-qubit system ۧ|𝜙 ? 

𝑂 = 𝜙 𝑂(𝑠1, 𝑠2…𝑠𝑁) 𝜙Observable: 𝑂 𝑡 = 𝜓(𝑡) 𝑂 𝜓(𝑡)



Mass 

perturbation

(1+1) D Schwinger model with topological 𝜃 term 5

topological 𝜃 term 
Difficulty

𝜃

𝑚

Monte Carlo

Solvable

Phase diagram

Maxwell theory

Quantum 

computing?

Coleman 1976, Ikeda, Kharzeev, Kikuchi (2021), etc

topological 𝜃 term 



Real time dynamics of Schwinger model w/o 𝜃 term 6

Muschik et al 2017 New J. Phys. 19 103020

✓ Real time dynamics of Schwinger model w/o topological 𝜃 term was investigated 

by quantum digital simulation. 

✓ Initial state was simply taken to be vacuum state.

𝑎: lattice constant𝑤 = 1/(2𝑎)



(1+1) D Schwinger model with topological 𝜃 term 7

topological 𝜃 term 

✓ We study real-time dynamics of the (1+1)-D Schwinger model by 

quantum digital simulation.

✓ From the time dependence of physical quantities, we obtain the information 

of excited states.

✓ Can we see the phase transition from real time dynamics?

Motivation
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Schwinger model with open boundary condition 9

𝐻 =

𝜓: (spinless) Dirac fermion

𝑚: fermion mass𝑔: coupling constant

𝜃: topological theta term

Π: canonical momentum conjugate

𝐴1: vector potential

Mapping the Hamiltonian into spin system for quantum digital simulation



Mapping into spin system (= N-qubit system) 10

𝐻 =

② Staggered fermion

particle

① Discretization

𝜓 𝑥 → 𝜓𝑛 = 𝜓 𝑎𝑛
Π 𝑥 → 𝐿𝑛 = Π 𝑎𝑛 /𝑔

𝐴1 𝑥 → 𝑈𝑛 = 𝑒−𝑖𝑎𝐴1(𝑎𝑛) antiparticle

③ Gauss law with open boundary condition

(eliminate (bosonic) gauge field 𝐿𝑛 and 𝑈𝑛)

[Susskind, Kogut-Susskind ’75]



Mapping into spin system (= N-qubit system) 11

④ JW transformation 𝑋𝑛, 𝑌𝑛, 𝑍𝑛: spin operator
[Jordan-Wigner’28]



Quantum digital simulation for real-time dynamics 12

𝑡𝑡 = 0

𝐻0 𝐻

Real time evolutionInitial state

: ground state of 𝐻0

(i) Preparation of an initial state

(ii) Discretizing in time direction

(iii) measurement

✓ particle number density

✓ vacuum persistent amplitudeHamiltonian variational 

algorithm

| ۧGS𝑉



Hamiltonian variational algorithm 13

: Neel state (vacuum state)

Variational parameters：

Determine the variational parameters to minimize

(i) Preparation of an initial state by Hamiltonian variational algorithm

Advantages

✓ The depth of quantum circuit becomes shallow.

✓ We keep the information of initial state in 

classical register.

Disadvantage

✓ Hamiltonian variational algorithm takes longer 

time than adiabatic state preparation.

✓ We don’t know how to choose “good” variational 

function and initial condition.

| ۧ𝜓V

𝐸V = 𝜓V 𝐻0 𝜓V

D. Wecker, M. B. Hastings, M. Troyer 2015



Real-time evolution 14

(ii) Discretization in time (2nd order Suzuki-Trotter decomposition)

≃



measurement 15

✓particle number density

Information of excited states might be

obtained from the real time dynamics

of particle number density.

Expanding the initial state in terms of 

the energy eigenstate of H

Fourier transformation



Parameters

𝑎: lattice constant

𝑔: coupling constant

𝜃: topological term

𝑚: fermion mass

16

Hamiltonian variational argorithm

𝑝: number of steps 

in time direction

Real-time evolution

𝑑𝑡: step width of time
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Prepare initial state by Hamiltonian variational algorithm 18

𝑁 = 4 𝑁 = 8

𝑎 = 0.2,𝑀 = 0.1, 𝑔 = 1.0

𝑎 = 0.2,𝑀 = 0.2, 𝑔 = 1.0

𝑎 = 0.2,𝑀 = 0.1, 𝑔 = 0.0

𝑎 = 0.2,𝑀 = 0.2, 𝑔 = 0.0

𝑎 = 0.2,𝑀 = 0.1, 𝑔 = 1.0

𝑎 = 0.2,𝑀 = 0.2, 𝑔 = 1.0

✓ Number of variational parameters ＝3𝑝
✓ To accurately calculate the initial state with larger N, one needs to take larger p (number of 

variational parameters.)

✓ Accuracy of initial state also depends on other parameters (M and g).

number of steps in time direction number of steps in time direction

𝐸
V
−
𝐸
e
x
a
c
t
/𝐸

e
x
a
c
t

𝐸
V
−
𝐸
e
x
a
c
t
/𝐸

e
x
a
c
t

preliminary preliminary



Real time evolution (w/o theta-term) 19

𝑎 = 0.2,𝑀 = 0.1, 𝑔 = 1𝑎 = 0.2,𝑀 = 0.1, 𝑔 = 0

✓ particle number density

Initial state Real-time evolution

𝑁 = 4, 𝜃 = 0

✓ vacuum persistent amplitude

preliminary

preliminary



Real time evolution (w/o theta-term) 20𝑁 = 4, 𝜃 = 0

𝑎 = 0.2,𝑀 = 0.1

✓ Frequency of 𝜈(𝑡) depends on 𝑔
of target Hamiltonian 𝐻.

✓ Amplitude of 𝜈 𝑡 increases as 

increasing 𝑔 of target Hamiltonian 

𝐻.

✓ Frequency should depend on the 

energy eigenvalue of 𝐻.

𝑔 = 0 → 4𝑔 = 0 → 2𝑔 = 0 → 1

preliminary



Particle number density: Fourier transformation 21

Initial state:𝑎 = 0.2,𝑀 = 0.1, 𝑔 = 0

Real-time evolution:𝑎 = 0.2,𝑀 = 0.1, 𝑔 = 1

step width of time: 𝑑𝑡 = 0.05

Number of steps: 𝑀Time = 300

✓ To get high resolution of 𝜔, one needs 

long-time simulation.

✓ 𝜔 = 𝐸1 − 𝐸0, 𝐸4 − 𝐸0 ?

→compare with the exact diagonalization

𝐸1 − 𝐸0 𝐸4 − 𝐸0

𝑁 = 4, 𝜃 = 0

Simulation time : 𝑡max/(2a) = 37.5

preliminary



Exact diagonalization: initial state 22

✓ Initial state consists of ground 

state, 1st , 3rd , and 4th excited 

states of 𝐻.

✓ Why is not the 2nd excited state 

included in initial state?

𝑁 = 4, 𝜃 = 0Initial state:𝑎 = 0.2,𝑀 = 0.1, 𝑔 = 0

Real-time evolution:𝑎 = 0.2,𝑀 = 0.1, 𝑔 = 1

preliminary



| ۧ𝜙𝑖 = σ𝑠0,𝑠1,𝑠2,𝑠3 𝛼𝑠0,𝑠1,𝑠2,𝑠3
𝑖

| ۧ𝑠3𝑠2𝑠1𝑠0

Exact diagonalization: state vector 23

| ۧ𝜙2 ≃
1

2
| ۧ1001 − | ۧ0110

𝛼
𝑠 0
,𝑠
1
,𝑠
2
,𝑠
3

𝑖

𝛼0110
𝑖

≃ 𝛼1001
𝑖

in other states

| ۧ0110

| ۧ1001

𝑁 = 4, 𝜃 = 0

occupied unoccupied

1st excited

2nd excited

3rd excited

unoccupied occupied

2nd excited state : CP odd

Other states : CP even

Initial state:𝑎 = 0.2,𝑀 = 0.1, 𝑔 = 0

Real-time evolution:𝑎 = 0.2,𝑀 = 0.1, 𝑔 = 1

initial

ground

| ۧ1100 | ۧ1010 | ۧ1001 | ۧ0110 | ۧ0101 | ۧ0011

preliminary



Exact diagonalization: 𝜂𝑖𝑗 24

𝑖 ≠ 𝑗,  𝑖, 𝑗 ≤ 4

𝑁 = 4, 𝜃 = 0

| ۧ𝜙0 | ۧ𝜙4

| ۧ𝜙0 | ۧ𝜙1

( | ۧ𝜙0 | ۧ𝜙3 )

Contributions from

are dominant.

Initial state:𝑎 = 0.2,𝑀 = 0.1, 𝑔 = 0

Real-time evolution:𝑎 = 0.2,𝑀 = 0.1, 𝑔 = 1

preliminary



𝐸1 − 𝐸0 𝐸4 − 𝐸0

Exact diagonalization: 𝜂𝑖𝑗 25

✓ 𝜔 = 𝐸1 − 𝐸0, 𝐸4 − 𝐸0
✓ We can not see a peak structure 

corresponding to 𝜔 = 𝐸3 − 𝐸0 in 

𝜈(𝜔).

𝐸3 − 𝐸0

𝑁 = 4, 𝜃 = 0Initial state:𝑎 = 0.2,𝑀 = 0.1, 𝑔 = 0

Real-time evolution:𝑎 = 0.2,𝑀 = 0.1, 𝑔 = 1

preliminary



Comparison between quantum simulation and exact result 26

𝑁 = 4, 𝜃 = 0Initial state:𝑎 = 0.2,𝑀 = 0.1, 𝑔 = 0

Real-time evolution:𝑎 = 0.2,𝑀 = 0.1, 𝑔 = 1

preliminary



g dependence of 𝜈(𝑡): Fourier component 27

𝑔 = 0 → 4

𝑔 = 0 → 2
𝑔 = 0 → 1

𝑎 = 0.2,𝑀 = 0.1, 𝑁 = 4, 𝜃 = 0

✓ position of peaks depend on 

g of target Hamiltonian.

preliminary



g dependence of 𝜈(𝑡): 𝜂𝑖𝑗 28

𝑔 = 0 → 4𝑔 = 0 → 2𝑔 = 0 → 1

𝑎 = 0.2,𝑀 = 0.1, 𝑁 = 4, 𝜃 = 0

| ۧ𝜙0 | ۧ𝜙1

| ۧ𝜙0 | ۧ𝜙4

| ۧ𝜙0 | ۧ𝜙1

| ۧ𝜙0 | ۧ𝜙4

( | ۧ𝜙0 | ۧ𝜙3 )

| ۧ𝜙0 | ۧ𝜙1

| ۧ𝜙0 | ۧ𝜙3

( | ۧ𝜙1 | ۧ𝜙3 )

preliminary preliminary preliminary



“Chiral quench” (𝜃 = 0 → finite) 29

𝜃 = 0 → 3𝜋/2
𝜃 = 0 → 𝜋
𝜃 = 0 → 𝜋/2

𝜃 = 0 → 2𝜋

𝜃 = 0 → 3𝜋/2
𝜃 = 0 → 𝜋
𝜃 = 0 → 𝜋/2

𝜃 = 0 → 2𝜋

✓ 𝜈(𝑡) ✓ 𝜈(𝜔)

✓ Frequency of 𝜈(𝑡) does not strongly depend on 𝜃.

𝑎 = 0.2,𝑀 = 0.1, 𝑔 = 1,𝑁 = 4

preliminary preliminary



“Chiral quench” (𝜃 = 0 → finite) 30

𝜃 = 0 → 3𝜋/2
𝜃 = 0 → 𝜋
𝜃 = 0 → 𝜋/2

𝜃 = 0 → 2𝜋

𝜃 = 0 → 3𝜋/2
𝜃 = 0 → 𝜋
𝜃 = 0 → 𝜋/2

𝜃 = 0 → 2𝜋

✓ Energy difference (= frequency of 𝜈(𝑡)) is not strongly affected by changing 𝜃
✓ (Because of light mass or finite size effects?)

𝑎 = 0.2,𝑀 = 0.1, 𝑔 = 1,𝑁 = 4

preliminary preliminary
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Conclusion & Future works 32

✓ We investigate real time dynamics of particle number density 𝜈(𝑡) in (1+1)-D 

Schwinger model with topological 𝜃 term.

✓ From the time dependence of 𝜈(𝑡) , we can extract information of excited states.

✓ It depends on the choice of initial state and target Hamiltonian which states 

dominantly contribute to the dynamics of 𝜈(𝑡).

✓ We calculate 𝜈(𝑡) with “chiral quench” (𝜃 = 0 → finite).  

So far, any signs of phase transition are not seen... 

✓ What is the best choice of initial state for getting information of excitation 

spectrum?

✓ Can we see the phase transition from the real-time dynamics?

✓ Other quantities, large volume system, etc… 

Future works
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