Restoration of chiral symmetry in cold and dense Nambu – Jona-Lasinio model with tensor renormalization group

> Shinichiro Akiyama (Univ. of Tsukuba) in collaboration with Y. Kuramashi, T. Yamashita, Y. Yoshimura

> > Based on JHEP 01 (2021) 121

YITP workshop QCD phase diagram and lattice QCD (ONLINE) 2021.10.25

Tensor renormalization group approach

Procedures

1) Write down the target function X defined on lattice as a tensor contraction (tensor network)

ex. Partition function, Path integral, ...

2) Approximately perform the tensor contraction with the TRG

1) **TN representation for** X: (# of tensors in TN) = (# of lattice sites)

$$X \rightarrow \Sigma_{abcd} \dots T_{aiw} \dots T_{bjx} \dots T_{cky} \dots T_{dlz} \dots \dots$$

2) **TRG** : Block-spin trans. for T to reduce # of tensors in TN

 $\approx \ \Sigma_{a'b'c'd'} \cdots T'_{a'i'w'} \cdots T'_{b'j'x'} \cdots T'_{c'k'y'} \cdots T'_{d'l'z'} \cdots \cdots$

Advantage of TRG approach

- ✓ TRG is a deterministic numerical method based on the idea of the real-space renormalization group
 - No sign problem
 - The computational cost scales logarithmically w. r. t. the system size
 - Direct evaluation of the Grassmann integrals
 - Direct evaluation of the path integral
- ✓ Applicability to the higher-dimensional systems

TRG is a kind of tensor-network method and the application of the TRG to the higher-dimensional systems has recently made remarkable progress

For applications of TN method to lattice field theory, see Bañuls-Cichy, Rep. Prog. Phys. 83(2020)024401 (review)

^{3/11} Status of TRG in higher-dimensional systems (1/2)

D: bond dimension, *L*: linear system size

Algorithm	Cost	Applications to 3D	Applications to 4D
HOTRG Xie et al, PRB86(2012)045139	D ^{4d-1} lnL	Ising Xie+, Potts models Wang+, free Wilson fermion Sakai+, \mathbb{Z}_2 gauge theory Dittirich+, Kuramashi-Yoshimura	Ising model SA+, Staggered fermion w/strongly coupled U(N) Milde+
Anisotropic TRG (ATRG) Adachi-Okubo-Todo, PRB102(2020)054432	<i>D^{2d+1}lnL</i>	Ising model Adachi+, SU(2) gauge Kuwahara-Tsuchiya, Real ϕ^4 theory SA+, Hubbard model SA-Kuramashi	Complex ϕ^4 theory SA+, NJL model SA+, Real ϕ^4 theory SA+
Triad RG Kadoh-Nakayama, arXiv:1912.02414	D ^{d+3} lnL	Ising model Kadoh-Nakayama, O(2) model Bloch+, \mathbb{Z}_3 (extended) clock model Bloch+	-

For the lower-dimensional applications, see Meurice et al, arXiv:2010.06539 (review)

4/11 Status of TRG in higher-dimensional systems (2/2)

4D complex ϕ^4 theory at finite density

SA et al, JHEP09(2020)177

- ✓ Typical system w/ the sign problem
- \checkmark Employing the Gauss quadrature rule, the TN rep for Z is approximately obtained

TRG approach captures the Silver-Blaze phenomenon at finite density even in the regime with the vanishing APS

Expected phase diagram of the NJL model

T

✓ Effective theory of QCD

Nambu–Jona-Lasinio, PRD122(1961)345-358 Nambu–Jona-Lasinio, PRD124(1961)246-254

Chiral restoration is expected in cold & dense region

Asakawa-Yazaki, NPA504(1989)668-684

Severe sign problem
in cold & dense region

We apply the Tensor Renormalization Group (TRG) approach to investigate the 1st order chiral phase transition in cold & dense region

NJL model at finite density

✓ w/ the Kogut-Susskind fermion Single-component Grassmann variables w/o the Dirac structure Staggered sign function $\eta_{\nu}(n) = (-1)^{n_1 + \dots + n_{\nu-1}}$ with $\eta_1(n) = 1$

✓ μ : chemical potential

 \checkmark Continuous chiral symmetry for vanishing m :

 $\chi(n) \to e^{i\alpha\epsilon(n)}\chi(n), \quad \overline{\chi}(n) \to \overline{\chi}(n)e^{i\alpha\epsilon(n)}$ w/ $\alpha \in \mathbb{R}$ and $\epsilon(n) = (-1)^{n_1+n_2+n_3+n_4}$

Numerical Results

Heavy dense limit as a benchmark

with $m = 10^4$, $g_0 = 32$, D = 30

7/11

 \rightarrow This limit allows us to compare numerical results w/ exact analytical ones

cf. Powlowski-Zielinski, PRD87(2013)094509

TRG calculation well reproduces the analytical results, including the location of $\mu_c = \ln(2m) = 9.903$

Converging behavior in bond dimension

with m = 0.01, $g_0 = 32$, L = 1024

D: bond dimension (= the maximal size of tensors in TRG algorithm)

 $\delta \lesssim 10^{-4}$ has been achieved up to D=55 at $\mu pprox \mu_c$

8/11

Chiral condensate

with $g_0 = 32, D = 55$

9/11

Chiral symmetry is restored in the region with $\mu \gtrsim 3.0$ A discontinuity at $\mu \approx 3.0$ indicates the 1st order transition

10/11

Ingredients of the equation of state

with m = 0.01, $g_0 = 32$, D = 55

Current numerical results clearly show that the chiral phase transition in cold & dense region is 1st order

Summary

- This study is the first application of TRG approach to the 4d fermionic system
- We have employed the TRG to study the lattice NJL model in cold & dense region ($\frac{\mu}{\tau} \gg 1$), there the faces a serious sign problem
- We have observed the restoration of chiral symmetry in cold & dense region and current results (chiral condensate, pressure, number density) show the chiral phase transition is of first order in cold & dense regime
- Steady progress has been made toward numerical research on the QCD using the TRG approach