The phase diagram of QCD at low temperature with the complex Langevin method

<u>F. Attanasio^a, B. Jäger^b and F.P.G. Ziegler^{b,c}</u> ^aInstitute for Theoretical Physics, Heidelberg University

^bCP3-Origins and D-IAS, Department of Mathematics and Computer Science, University of Southern Denmark ^cSchool of Physics and Astronomy, The University of Edinburgh

Motivation

Physics challenge

- QCD phase diagram at finite chemical potential μ and low temperatures T largely unkown
- subject to experimental efforts at LHC, RHIC, FAIR & NICA
- QCD equation of state relevant for understanding neutron stars.

Sign Problem as a Computational Challenge

• $\mu > 0$ renders the Euclidean action complex making sampling with standard phase reweighting exponentially hard. This worsens as T is decreased and as μ is increased.

Observables

Polyakov loop and density

$$P(\vec{x}) = \operatorname{tr} \left(\prod_{x_0=0}^{N_{\tau}-1} U_0(\vec{x}, x_0) \right) , \quad \langle n \rangle = \frac{1}{\Omega} \frac{\partial \log(Z)}{\partial \mu}$$

Results

Density and Silver blaze phenomenon

• can be circumvented by the **complex Langevin (CL) method** [1]

Lattice QCD at finite density

Partition function

$$Z = \int_{\mathrm{SU}(3)^{4\Omega}} \mathrm{d}U \exp(-S_G[U]) \det D(U,\mu) ,$$

Wilson Dirac operator

$$D_{x,y} = (4+m)\delta_{x,y} + \frac{1}{2}\sum_{\nu}\Gamma_{\nu} e^{\mu\delta_{0,\nu}} U_{x,\nu}\delta_{x+\hat{\nu},y} + \Gamma_{-\nu} e^{-\mu\delta_{0,\nu}} U_{x-\hat{\nu},\nu}^{\dagger}\delta_{x-\hat{\nu},y}$$

CL simulation

- Since $det(D(U, \mu)) \in c$ perform holomorphic extension of the integration manifold SU(3) to the complexified gauge group SL(3, c), in particular for the gauge field $U_{x,\mu}^{\dagger} \rightarrow U_{x,\mu}^{-1}$.
- Perform Euler-Maruyama update scheme

Density and pressure

 $U_{x,\nu}^{n+1} = \exp[-it^a(-D_{x,\nu,a}S[U] + \eta_{x,\nu,a})]U_{x,\nu}^n$

where $\langle \eta_{x,\nu,a} \rangle = 0$, $\langle \eta_{x,\nu,a} \eta_{y,\rho,b} \rangle = 2\delta_{x,y}\delta_{\nu,\rho}\delta_{a,b}, a = 0, \dots, N_c^2 - 1$.

Lattice setup

- $N_f = 2$ mass-degenerate quarks
- $N_t \in \{4, ..., 32\}, L/a = 24, a \approx 0.08$ fm
- Wilson plaquette action, Wilson-Dirac fermions (tree-level)
- $\beta = 5.8$, $\kappa = 0.1544$, see [2]
- $m_{\pi} \approx 480 \text{ MeV}$
- $T \in [100, 800]$ MeV, $\mu \in [0, 6500]$ MeV

Stabilizing the CL simulation

Since SL(3, c) is **non-compact** stabilizing methods need to be applied during the CL simulation to avoid run-away trajectories and to ensure correct results:

- Adaptive step size
- gauge cooling [3] \rightarrow minimize unitarity norm

Polyakov loop

Unitarity norm and solver performance

$$F[U] = \frac{1}{\Omega N_c} \sum_{x,\nu} \operatorname{tr}[U_{x,\nu}^{\dagger} U_{x,\nu} + (U_{x,\nu}^{\dagger} U_{x,\nu})^{-1} - 2\mathbb{1}]$$

• **Dynamic Stabilization** [4] \rightarrow extension of the drift term

 $K_{x,\nu,a} \to K_{x,\nu,a} + i\alpha_{DS}M_{x,a}$

where
$$M_{x,a} = ib_{x,a} \left(\sum_{c} b_{x,c}b_{x,c}\right)^3$$
, $b_{x,a} = \operatorname{tr} \left(\lambda^a \sum_{\nu} U_{x,\nu} U_{x,\nu}^{\dagger}\right)$

0	1000	2000	3000	4000	5000	6000
$N_t = 4$		$N_t = 16$ $N_t = 24$	μ [Me	$N_t =$	= 32 -	

Perspectives

• further investigate CL systematics [5,6], see talk by B. Jäger

finite size scalings and phase transitions

[1] Aarts and Stamatescu, JHEP **09** (2008) 018 [2] Del Debbio, Giusti, Lüscher, Petronzio and Tantalo, JHEP 02 (2006) 011 [3] Seiler, Sexty and Stamatescu, Phys.Lett.B 723 (2013) 213-216 [4] Attanásio, Jäger, Eur.Phys.J.C 79 (2019) 1, 16 5] Scherzer, Seiler, Sexty and Stamatescu, Phys.Rev.D 101 (2020) 1, 014501 [6] Nagata, Nishimura and Shimasaki, Phys.Rev.D 94 (2016) 11, 114515

QCD phase diagram workshop, October 25 - 29 2021, Kyoto, Japan

pyfelipe@thphys.uni-heidelberg.de, felix.ziegler@ed.ac.uk