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• Yang-Mills theory has first-order phase 
transition. Conventional wisdom: low-
temperature phase confining and the high 
temperature phase deconfined.
• Principal reason for belief that high temperature 

phase is deconfined: analysis based on the 
Polyakov loop.

• Paper explores possibility that Polyakov loop has been
misinterpreted and that the high temperature phase is 
also confining.



Philosophical Issues 
• At best,  Polyakov loop and its 

correlators show that quarks (or 
other d.o.f carrying fundamental 
color charges) are deconfined.
• Yang-Mills  has no d.o.f. carrying 

fundamental color charges.  The real 
issue of confinement involves the 
gluons!

• Related philosophical issue: order 
parameters based on PL do not 
apply to QCD.
• Lack of free quarks in nature—

described by QCD—led to postulation of 
confinement in the first place

This talk will largely ignore these issues and focus on 
the technical issues associated with the Polyakov loop.



Technical issue are
serious

Recent work on quantum computing 
has acted refocus attention on 
• Hamiltonian formulations of gauge 

theories.
• Real time dynamics
This forces one to confront technical 
issues with Polyakov loop observables



• Polyakov loop is strange 
beast–neither fish nor fowl.

• Only defined in gauge invariant way in context of  
Euclidean space functional (with periodic boundary 
conditions imposing finite temperatures).

• Meaning in Minkowski space—space where physical events 
occur is—at  best—obscure.

• Does not correspond to a gauge-invariant quantum 
mechanical operator.
• Meaning in Hamiltonian treatments with a Hilbert space 

is—at best—obscure.
• Meaning for systems for systems that are out of thermal 

equilibrium is—at best—obscure.



• The expectation value of the Polyakov loop and 
the string tension obtained from its correlator  
are ill-defined as gauge-invariant objects 

• except in the context of thermally 
equilibrated systems computed in a 
particular way  (via functional integrals in 
Euclidean space  with periodic boundary  
conditions).
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where T indicates a time-ordered exponential and the .
Note that in this formulation, — is simply a parameter
used to define L in Eq.(5); it is not necessarily an inverse
temperature. However, for an arbitrary choice of —, this
operator given is not gauge invariant. Thus as a general
matter, L(x̨; —) is not a legitimate quantum mechanical
operator acting on the physical Hilbert space and thus is
not associated with any physical observable in pure gauge
theory.

Of course, L(x̨; —) is invariant in Euclidean space for all
gauge transformations that satisfy Eq. (3) which not co-
incidentally preserves the periodicity condition of Eq. (2)

and thus yields the correct thermal expectation values
for observables associated with gauge invariant operators.
One may interpret Eq. (2) in terms of a space-time de-
fined on a generalized cylinder. The topology of such a
cylinder implies that only class of continuous gauge trans-
formations on the cylinder are ones that satisfy Eq. (3).
Thus the topology of the cylinder along with a temporal
periodicity of — implies that L(x̨; —) is gauge invariant.

However, it should be stressed that L(x̨; —) cannot be
defined in a gauge-invariant way without a knowledge
that the system is in the thermal equilibrium with tem-
perature 1/— and then only in the context of Euclidean
space functional integrals interpreted as existing on a
cylinder. One can refer to L(x̨; —) as a gauge invariant
“object” in that specific context, although it is not a gauge
invariant operator in pure gauge theory. That distinction
is important in what follows.

Consider the correlator of two Polyakov loops—or more
precisely a Polyakov loop and the complex conjugate of
a Polyakov loop. It is given as a functional integral in
Euclidean space by
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This quantity is normally evaluated in lattice studies
using the boundary conditions of Eq. (3) with the theory
interpreted as existing on a cylinder.

There is a standard interpretation—which goes back
more than four decades[? ]—that this correlator repre-
sents the exponential of ≠— times the free energy of two
static color sources, one in the fundamental representation
and the other in the anti-fundamental (or an arbitrarily
heavy quark and antiquark) placed at x̨1 and x̨2. With
this interpretation, there is a natural definition of a string
tension:
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where the subscript PL indicates that this string tension
is defined via a correlator of Polaykov loops. Note this
should be independent of x̨ due to translational invariance.

A central question is whether this interpretation is
correct.

IV. BOUNDARY CONDITIONS, GAUGE
INVARIANCE AND THE POLYAKOV LOOP

‡(T )P has traditionally been computed from the cor-
relator of Polyakov loops using the boundary condition
of Eq. (3), which can be interpreted as enforcing the

topology of a cylinder. It is this topology that allows
one to consider the Polyakov loop as a gauge-invaraint
object, despite not corresponding to a gauge-invariant
operator. It is also this topology that distinguishes center
transformations from ordinary gauge transformations.

However as seen in Sec. II, Eq. (3) is not the most gen-
eral boundary condition for functional integrals consistent
with the thermal physics; Eq. (4) is. If one uses Eq. (3)
in the computation of the expectation value any gauge-
invariant operator, one gets the same answer—these only
depend on gauge invariant combinations of fields. How-
ever, the Polyakov loop is not a gauge-invariant operator.
This raises the obvious issue of whether one should trust
results based on Eq. (3) and the topology of the cylinder
as correctly giving the thermal physics.

If one use the boundary conditions in Eq. (4), it is easy
to see that both the expectation value of the Polyakov
loop and its correlator are both zero at any temperature
when computed via a functional integral. This is shown
in Appendix B In fact, this is precisely what one would
expect: generically any purely gauge-variant operator
vanishes when computed in a non-gauge fixed functional
integral at any temperature and the operator associated
with the Polyakov loop is purely gauge-variant.

As noted in the introduction there was something of a
paradox when one considers the correlator of Polyakov
loops. Both the Hamiltonian formulation in any gauge–
including the temporal gauge of A0 = 0 and a non-gauge-

The Polyakov loop

Treat as an operator with b a parameter (not necessarily connected to 
temp).  NOT gauge invariant under general  gauge transformations.
Invariant under special gauge transformations satisfying

which preserves the periodic boundary 
condition on the gauge fields                                             (and ensures correct 
thermal expectation values for gauge-invariant operators at T=1/b).
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II. FUNCTIONAL INTEGRALS AND GAUGE
INVARIANCE AT NON-ZERO TEMPERATURE

As preliminary it is necessary to clarify some features
of how these functional integral methods work for gauge
theories at non-zero temperatures.

Functional integrals describe bosonic field theories at
non-zero temperatures by imposing imposing periodic
boundary conditions in Euclidean time on the fields with
the periodicity fixed by — = 1/T . Thus a boson field „

satisfies the boundary condition „(x̨, · + —) = „(x̨, · + —).
One can either think of the space as having Euclidean
time as going to infinity but with the fields repeating and
calculations restricted to a single period or one can view
the space-time as being compactified to a generalized
cylinder with the spatial directions extending to infin-
ity and temporal direction wrapping around with fields
given as single-valued functions on the cylinder. These
two viewpoints are typically equivalent in the sense that
whether you treat the problem as being on a cylinder or as
being in flat space-time but with periodic fields calculated
quantities will be the same.

However, when one turns to gauge theories such as
Yang-Mills theory things are more subtle. The fields in
such theories contain redundant information—only gauge-
invariant combinations of the fields are physically relevant.
In Hamiltonian formulations the redundant information
gives rise to a need for gauge fixing and a need to impose
the Gauss law constraint explicitly. The Gauss law con-
straint means that there is a distinction between a physical
subspace (which satisfies the Gauss law constraint) and
the full subspace of theory; this is discussed in Appendix
??. Typically functional integral techniques when imple-
mented numerically in lattice versions of the field theory
are done by summing over all fields (approximated using
sampling methods) without gauge fixing. The value of
a gauge-invariant quantity Q(A) where A represents the
gluon field is given as a functional integral by
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where the functional integral are subject to the appropri-
ate thermal boundary conditions. Such an approach in-
volve summing over both physical and unphysical degrees
of freedom. However if one computes correlators of gauge-

invariant operators, only the physical degrees of freedom
contribute; the inclusion of the unphysical degrees of free-
dom simply means that the physical degrees of freedom
of summed over multiple times—and this cancels out via
the normalization. Purely gauge-variant quantities—ones
that have no gauge-invariant component—vanish under
this summation.

There is a subtlety in the boundary conditions at finite
temperature. One can of course impose periodic boundary
conditions for the gluon fields—as is done conventionally:

Aµ(x̨, · + —) = Aµ(x̨, ·) . (2)
This boundary condition allows for the correct evaluated
of all correlation functions of gauge-invariant operators
for systems in thermal equilibrium and hence correctly
captures the thermal physics. If this boundary condition
is imposed, then one can view the system as either living
on a cylinder or as existing throughout an unbounded
space-time but with the field constrained to repeated pe-
riodically in time (with physical observers computed on a
single period)—just as with non-gauge theories. Correla-
tion functions of gauge-invariant operators for systems are
computable using either viewpoint and the same results
will be obtained.

If one views the system as a cylinder and insists that
all gauge transformations are continuous functions on the
cylinder, then a gauge transformation �(x̨, ·) must also
be periodic:

�(x̨, · + —) = �(x̨, · + —) . (3)

However, the condition that the gluons field needs to
be periodic as given in Eq. (2) can be viewed as overly
restrictive since the gluon field contains both physical
and unphysical degrees of freedom. To ensure that one
has the correct thermal physics, it is su�cient for the
physical degrees of freedom to be periodic in Euclidean
time with a period of — = 1/T , regardless of the be-
havior of the unphysical degrees of freedom. If the un-
physical degrees of freedom—the ones a�ected by gauge
transformations—were made nonperiodic without a�ect-
ing gauge-invariant quantities, then no physical observ-
able based on a gauge-invariant operator would be altered.
Thus the most general boundary condition that preserves
the thermal physics is one in which the system is for-
mulated on infinite Euclidean space-time and the gluon
fields are periodic in Euclidean time, up to an arbitrary
(non-periodic) gauge transformation:

�(x̨, · + —)Aµ(x̨, · + —)�†(x̨, · + —) ≠
i

g
(ˆµ�(x̨, · + —)) �†(x̨, · + —) = Aµ(x̨, ·) . (4)

By construction, imposing this class of boundary condition
ensures gauge invariance over any continuous class of
gauge transformations defined throughout the entirety of

space-time.

Thus, if one wishes to sum over all gauge configuration
consistent with the thermal physics of gauge invariant
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space-time.

Thus, if one wishes to sum over all gauge configuration
consistent with the thermal physics of gauge invariant

PL—although not a gauge-invariant operator—might be regarded 
as a gauge-invariant “object”—but  only in the context of 
functional integrals for thermal systems implemented in the 
conventional way with these boundary conditions.



A paradox

• Many quantum computing applications use a Hamiltonian 
formalism in the A0=0 gauge.

Such treatments are supposed to be capable of computing all 
physical observables—at least in principle.

In any treatment with A0=0,  L= 1 by construction, 
regardless of temperature.

• But functional integral treatment—which are also supposed 
to be capable of computing all physical observables—gives  
<L>=0 in low-T phase.

• Usual technical explanation: In functional integral, the 
Polyakov loop defined on topologically nontrivial space–a 
generalized cylinder where time wraps around; prevents  A0= 0 from be implementable over all Euclidean times by any 
continuous gauge transformation. 



A paradox

• But  paradox remains: Functional integrals and the 
Hamiltonian treatment in the temporal gauge are supposed 
to be capable of describing any physical observable.

• Another way to see the paradox: From perspective of 
Hamiltonian approach, the topology associated with the 
Polyakov loop does not appear to exist: How  can it emerge 
when the physics is re-expressed as Euclidean space 
functional integral? 

• Yet another way to see the paradox: From perspective of 
Hamiltonian approach, center transformations have no 
meaning. How can can center symmetry emerge when the 
physics is re-expressed as Euclidean space functional 
integral? 



Talk explores three heretical 
views about the Polyakov 
loop, and what it tells us 
about the high temperature 
phase of Yang-Mills Theory

• Polyakov loop is not gauge invariant in functional integrals using 
most general boundary conditions consistent with finite 
temperatures.
• With most general b.c., no topology and no Z(Nc) center symmetry 

breaking.

• No connection between Polyakov loop observables and the free 
energy of systems with static color charges.  

• No reliable evidence that the high-temperature phase of Yang-
Mills deconfines fundamental color charges—high T phase could 
be confining.



FUNCTIONAL INTEGRALS AND GAUGE 
INVARIANCE AT NON-ZERO TEMPERATURE 

• Functional integrals for bosonic field theories at 
non-zero temperatures impose periodic b.c.s in on 
the fields with the periodicity fixed by b = 1/T:

𝝓 𝒙, 𝝉 + 𝜷 = 𝝓 𝒙, 𝝉
• Two equivalent viewpoints: 
• Space-time is unbounded but field values repeat with 

periodicity b.
• Space-time has topology of cylinder with circumference 

of b in the temporal direction.
• The topology of the cylinder plays no role.



space

space
Euclidean 

time

Euclidean 
time

……

b/p

Same result if you calculate on cylinder or on one period of 
unbounded space with periodic fields: topology of cylinder
irrelevant.  

b



• More subtle with a gauge theory.  One can impose 
periodic boundary condition on gluon 
fields: 𝑨𝝁 𝒙, 𝝉 + 𝜷 = 𝑨𝝁 𝒙, 𝝉

Non-gauge theory can be viewed as either periodic in 
full space-time or on a cylinder.
• If you view a gauge theory as being on a cylinder and 

require gauge transformations to be nonsingular on 
cylinder then  𝜴 𝒙, 𝝉 + 𝜷 = 𝜴 𝒙, 𝝉

• Makes L gauge invariant.
• Topology of the cylinder is needed for this to make 

sense.

• Means  center transformations not allowable gauge 
transformations.
• The spontaneous breaking of center symmetry is 

only possible if one takes this view.



• Subtlety: the gluon field contains both physical information 
and unphysical information (associated with gauge 
redundancy).  

• The physical information associated with the gauge field—all 
gauge-invariant combinations of the fields—clearly needs  to 
be periodic.

• A priori, no need for periodicity of unphysical d.o.f. !
• Most general b.c. consistent with thermal physics only need 

ensure gauge invariant combos of gauge fields are periodic.

• Start with a periodic gauge field defined on an infinite 
space-time, make an arbitrary aperiodic gauge 
transformation W on the full space-time on the fields:  only 
gauge-variant quantities would be affected, these become 
aperiodic.



space

space

space
Euclidean 

time

Euclidean 
time

Euclidean 
time

……

……

GI

NGI

GI

NGI

GI

NGI

GI

NGI

GI

NGI

GI

NGI

GI

NGI

b

b/p

• Upper cartoon: typical gauge configuration consistent with periodic boundary 
conditions. Fully equivalent to the gauge fields on cylinder. 

• Lower cartoon: typical gauge configuration consistent with the more general 
b.c. The GI part is same as top, NGI differs and differs on each segment.

Functional integral evaluated over one period with  bc. 

has same expectation value for all gauge-invariant operators as with periodic b.c.
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where the functional integral are subject to the appropri-
ate thermal boundary conditions. Such an approach in-
volve summing over both physical and unphysical degrees
of freedom. However if one computes correlators of gauge-

invariant operators, only the physical degrees of freedom
contribute; the inclusion of the unphysical degrees of free-
dom simply means that the physical degrees of freedom
of summed over multiple times—and this cancels out via
the normalization. Purely gauge-variant quantities—ones
that have no gauge-invariant component—vanish under
this summation.

There is a subtlety in the boundary conditions at finite
temperature. One can of course impose periodic boundary
conditions for the gluon fields—as is done conventionally:

Aµ(x̨, · + —) = Aµ(x̨, ·) . (2)
This boundary condition allows for the correct evaluated
of all correlation functions of gauge-invariant operators
for systems in thermal equilibrium and hence correctly
captures the thermal physics. If this boundary condition
is imposed, then one can view the system as either living
on a cylinder or as existing throughout an unbounded
space-time but with the field constrained to repeated pe-
riodically in time (with physical observers computed on a
single period)—just as with non-gauge theories. Correla-
tion functions of gauge-invariant operators for systems are
computable using either viewpoint and the same results
will be obtained.

If one views the system as a cylinder and insists that
all gauge transformations are continuous functions on the
cylinder, then a gauge transformation �(x̨, ·) must also
be periodic:

�(x̨, · + —) = �(x̨, · + —) . (3)

However, the condition that the gluons field needs to
be periodic as given in Eq. (2) can be viewed as overly
restrictive since the gluon field contains both physical
and unphysical degrees of freedom. To ensure that one
has the correct thermal physics, it is su�cient for the
physical degrees of freedom to be periodic in Euclidean
time with a period of — = 1/T , regardless of the be-
havior of the unphysical degrees of freedom. If the un-
physical degrees of freedom—the ones a�ected by gauge
transformations—were made nonperiodic without a�ect-
ing gauge-invariant quantities, then no physical observ-
able based on a gauge-invariant operator would be altered.
Thus the most general boundary condition that preserves
the thermal physics is one in which the system is for-
mulated on infinite Euclidean space-time and the gluon
fields are periodic in Euclidean time, up to an arbitrary
(non-periodic) gauge transformation:

Aµ(x̨, ·) = �(x̨, · + —)Aµ(x̨, · + —)�†(x̨, · + —) ≠
i

g
(ˆµ�(x̨, · + —)) �†(x̨, · + —) . (4)

By construction, imposing this class of boundary condition
ensures gauge invariance over any continuous class of
gauge transformations defined throughout the entirety of

space-time.

Thus, if one wishes to sum over all gauge configuration
consistent with the thermal physics of gauge invariant



• Functional integrals with more general b.c. has same 
results for thermal expectation values of any gauge-
invariant operators as with simple periodic b.c.

But with  more general b.c.…
• Space-time does not have the topology of cylinder.
• The Polyakov loop (and its correlators) are not 

gauge-invariant.
• Expectation values of these will yield zero—as 

with any purely gauge-variant quantity.
• Center transformations become ordinary gauge 

transformations and thus center symmetry cannot 
break.



Two ways to impose boundary 
conditions.

Equivalent for all expectation values of gauge-invariant 
operators but different for Polyakov loop and related beasts.

Which b.c. is appropriate for these? 
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space-time but with the field constrained to repeated pe-
riodically in time (with physical observers computed on a
single period)—just as with non-gauge theories. Correla-
tion functions of gauge-invariant operators for systems are
computable using either viewpoint and the same results
will be obtained.

If one views the system as a cylinder and insists that
all gauge transformations are continuous functions on the
cylinder, then a gauge transformation �(x̨, ·) must also
be periodic:
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However, the condition that the gluons field needs to
be periodic as given in Eq. (2) can be viewed as overly
restrictive since the gluon field contains both physical
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has the correct thermal physics, it is su�cient for the
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Thus the most general boundary condition that preserves
the thermal physics is one in which the system is for-
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II. FUNCTIONAL INTEGRALS AND GAUGE
INVARIANCE AT NON-ZERO TEMPERATURE

As preliminary it is necessary to clarify some features
of how these functional integral methods work for gauge
theories at non-zero temperatures.

Functional integrals describe bosonic field theories at
non-zero temperatures by imposing imposing periodic
boundary conditions in Euclidean time on the fields with
the periodicity fixed by — = 1/T . Thus a boson field „

satisfies the boundary condition „(x̨, · + —) = „(x̨, · + —).
One can either think of the space as having Euclidean
time as going to infinity but with the fields repeating and
calculations restricted to a single period or one can view
the space-time as being compactified to a generalized
cylinder with the spatial directions extending to infin-
ity and temporal direction wrapping around with fields
given as single-valued functions on the cylinder. These
two viewpoints are typically equivalent in the sense that
whether you treat the problem as being on a cylinder or as
being in flat space-time but with periodic fields calculated
quantities will be the same.

However, when one turns to gauge theories such as
Yang-Mills theory things are more subtle. The fields in
such theories contain redundant information—only gauge-
invariant combinations of the fields are physically relevant.
In Hamiltonian formulations the redundant information
gives rise to a need for gauge fixing and a need to impose
the Gauss law constraint explicitly. The Gauss law con-
straint means that there is a distinction between a physical
subspace (which satisfies the Gauss law constraint) and
the full subspace of theory; this is discussed in Appendix
??. Typically functional integral techniques when imple-
mented numerically in lattice versions of the field theory
are done by summing over all fields (approximated using
sampling methods) without gauge fixing. The value of
a gauge-invariant quantity Q(A) where A represents the
gluon field is given as a functional integral by
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AsStandard periodic b.c.
Most general b.c. consistent 
with  correct thermal 
expectation values



Heretical view:

The more general b.c. is the appropriate one!!!

• The Polyakov loops behaves like any other 
mathematical object that does not correspond to 
a gauge invariant operator—it vanishes in the 
functional integral.  The PL is NOT physical!



• The paradox associated with the difference between 
Polyakov observables in Hamiltonian treatments in 
temporal gauge and the functional integral treatments is 
resolved.
• Explains the lack of topology in Hamiltonian 

treatment—it is not there in functional treatment 
either.

• Explains lack of center symmetry in Hamiltonian 
treatment —it is not there in functional treatment 
either.

• Explains why Polyakov loop has no meaning in 
Minkowski space—it also has no meaning in Euclidean.



Center Symmetry and 
Confinement

The Irish poet, William Butler Yeats might have seemed to have 
been prescient about confinement.  In 1920 he described the 
Yang Mills phase transition in his apocalyptic poem Second 
Coming: 

20

“Things fall apart, 
the centre cannot hold”

Yeats won the Nobel Prize in 1923 for his work 
but, inexplicably, it was in literature rather than 
physics.

But perhaps the Nobel committee was correct, and the committee 
realized that Yeats was using the wrong boundary conditions!

i.e. deconfinement 
in Yang Mills



• If the correlator of the Polyakov loop is unphysical 
so is the string tension obtained from it and one 
can conclude nothing about confinement from 
vanishing string tension.

• A puzzle: In context of functional integrals with 
periodic b.c., string tension acts as order 
parameter that cleanly distinguish between the 
low temperature phase (non-vanishing string 
tension) and high temperature phase (vanishing 
string tension).  How is this possible if the 
Polyakov loop is unphysical?



Resolution:  All physical observables (which are based on gauge 
invariant operators)  can be computed with either b.c. ; same 
phase transition.
If one use the conventional periodic ones, the order parameters 
based on the Polyakov loop are correlated with the phase, even 
though the order parameters have no direct physical meaning 
themselves.
They act like shadows on the wall of Plato’s cave.  They tell us 
something real about the phases without being real themselves.

Signature of high
temperature
phase from
Polyakov loop

Physically being 
in the  high
temperature 
phase



• There is a potential flaw with this explanation.   
• Standard argument: CL*L (correlator of PL) related to 

free energies of a system  with color charges in the 
fundamental and anti-fundamental (infinitely massive 
quarks) added to system and separated by some 
distance.

• This is physical quantity and expressed via gauge 
invariant operators.

• Allows for the computation of a string tension which 
vanishes in the high temp phase indicating 
deconfinement.
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gauge transformations defined throughout the entirety of
space-time—although the expectation value of physical
quantities are obtained by integrating over a single period.
With these boundary conditions, the gluon fields can no
longer be viewed as being defined on a cylinder.

Thus, if one wishes to sum over all gauge configuration
consistent with the thermal physics of gauge invariant
operators, the correct boundary conditions to use is Eq. (4)
rather than Eq. (2). The distinction between these two is
illustrated in Fig, 1.

Of course, in practice Eq. (4) is never used in numerical
evaluations of lattice gauge theories—invariably, Eq. (2 is
used instead. The principal reason for this is practical: if
one is computing the expectation value of gauge-invariant
operators, it makes no di�erence whether one uses the
boundary condition of Eq. (4) or Eq. (4); one gets the
same result. If one uses Eq. (4) in place of Eq. (2 one
simply repeats the same physical configuration multiple
times in a gauge-transformed guise. The e�ect of this
repetition is canceled by the denominator of Eq. (1). Since
it is clearly simpler to impose Eq. (2) and the answer is
the same for the expectation value of physical observables
associated with physical quantities, it is pointless to use
the boundary conditions of Eq. (4).

However, there is an important di�erence between im-
posing these two boundary conditions if one is looking at
proposed observables that are not based gauge-invariant
operators, but are nevertheless gauge-invariant quantities
when using the boundary conditions of Eq. (2) and gauge
transformations constrained to be continuous and single
valued on the cylinder (Eq. (Eq:gtcyl) ). This is signifi-
cant since the Polyakov loop and its correlators are such
quantities.

Moreover, if one uses Eq. (4) center transformations
become ordinary gauge transformations and center sym-
metry just a subset of gauge symmetry. Thus with Eq. (4)
it is meaningless to consider the breaking of center symme-
try as this symmetry, like gauge symmetry generally just
reflects redundent degrees of freedom and is not physical.

III. THE POLYAKOV LOOP AND ITS
CORRELATOR

A. The Polyakov loop

The key objects studied in this paper are the Polyakov
loop and its correlators; the issue is how these quantities
are connected to confinement and deconfinement of arbi-
trarily heavy quarks when these are added to the system.
First a comment about nomenclature. Strictly speaking
the Polyakov loop is a matrix valued object, which will be

referred to in this paper as the Polyakov loop matrix and
denote . The principle object of concern here is the trace
of the Polyakov matrix. For simplicity of expression, this
paper refers to this trace as the Polyakov loop (without a
modifier) rather than as the trace of the Polyakov loop
matrix; it will be denoted L. The untraced version is
referred to as the Polyakov loop matrix and denoted Ωæ

L .
Consider a somewhat a definition of the Polyakov loop

as a quantum mechanical operator in pure gauge theory
so that one can use it either a functional integral approach
based on the action or on a Hamiltonian approach based
on a Hilbert space. In Euclidean space it is given as

L(x̨; —) © Tr
Ë
Ωæ
L (x̨; —)

È

Ωæ
L (x̨; —) ©

C
T

A
exp

A
i

⁄
·0+—

0·0

d·gA0(x̨, ·)
BBD (5)

where T indicates a time-ordered exponential and the .
Note that in this formulation, — is simply a parameter
used to define L in Eq.(5); it is not necessarily an inverse
temperature. However, for an arbitrary choice of —, this
operator given is not gauge invariant. Thus as a general
matter, L(x̨; —) is not a legitimate quantum mechanical
operator acting on the physical Hilbert space and thus is
not associated with any physical observable in pure gauge
theory.

Of course, L(x̨; —) is invariant in Euclidean space for all
gauge transformations that satisfy Eq. (3) which not co-
incidentally preserves the periodicity condition of Eq. (2)
and thus yields the correct thermal expectation values
for observables associated with gauge invariant operators.
One may interpret Eq. (2) in terms of a space-time de-
fined on a generalized cylinder. The topology of such a
cylinder implies that only class of continuous gauge trans-
formations on the cylinder are ones that satisfy Eq. (3).
Thus the topology of the cylinder along with a temporal
periodicity of — implies that L(x̨; —) is gauge invariant.

However, it should be stressed that L(x̨; —) cannot be
defined in a gauge-invariant way without a knowledge
that the system is in the thermal equilibrium with tem-
perature 1/— and then only in the context of Euclidean
space functional integrals interpreted as existing on a
cylinder. One can refer to L(x̨; —) as a gauge invariant
“object” in that specific context, although it is not a gauge
invariant operator in pure gauge theory. That distinction
is important.

Consider the correlator of two Polyakov loops—or more
precisely a Polyakov loop and the complex conjugate of
a Polyakov loop. It is given as a functional integral in
Euclidean space by
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Correlator of a Polyakov loop and its conjugate
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CLúL(x̨i, x̨j ; T ) =
ÿ

c,cÕ

e
Sj;cÕ(—)Si;c(—)S†

j;c0S
†
j;cÕ(0)P0

f

T

= Trphys
Ë
exp(≠—H)Sj;cÕ(—)Si;c(—)S†
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(11)

where repeated color indices are summed and the second
form is written in terms of a Hamiltonian formulation;
the trace is over the physical states in the Hilbert space
and P0 is a projector onto states with no color sources
(i.e. pure Yang-Mills):

P0 ©

ŒŸ

n=1

Q

an ≠

ÿ

j,c

S
†
j,c

Sj,c

R

b . (12)

The next step uses the fact that in Euclidean space an
operator O(· + —) = exp(—H)O(·) exp(—H). Inserting
this into the trace form of Eq. (11) yields

CLúL(x̨i, x̨j ; T ) = Trphys
Ë
Sj;cÕ(0)Si;c(0) exp(≠—H)S†

j;c0S
†
j;cÕ(0)P0

È

=
ÿ

kœphys
ÈÂk|Sj;cÕ(0)Si;c(0) exp(≠—H)S†

j;c0S
†
j;cÕ(0)P0|„kÍ

(13a)

where repeated color indices are summed. The cyclic property of the trace allows this to be rewritten as

CLúL(x̨i, x̨j ; T ) = Trphys
Ë
exp(≠—H)S†

j;c(0)S†
j;cÕ(0)P0Sj;cÕ(0)Si;c(0)

È
= Trphys [exp(≠—H)Pij ] (13b)

where Pij given by

Pij = S
†
j;c(0)S†

j;cÕ(0)P0Sj;cÕ(0)Si;c(0) . (13c)

Equation (13b) appears to be easy to interpret4. Note
that Pij is a projector on to states with a color charge in
the fundamental at x̨i and one in the anti-fundamental
at x̨j and no other color charges. Moreover, it is clearly
gauge invariant. Thus the last form of Eq. (13b) is of the
form of Eq. (Eq:Zconst) in the appendix, which means
that CLúL(x̨i, x̨j ; T ) is the partition function for a system
constrianted to have a color charge in the fundamental
at x̨i and the anti-fundamental at x̨j ; thus that the free
energy to place these charge, F12 is given by

CLúL(x̨i, x̨j ; T ) = exp(≠—Fij) (14)

4 The step of using the cyclic property of the trace to rewrite
Eq. (13a) as Eq. (13b) is often done implicitly as in ref. ****.
One implicitly assumes that summing over all states of the
form S†

j;c0S
†
j;cÕ (0)P0|ÂÍphys is equivalent to summing over phys-

ical states with a fundamental color source at x̨i and an anti-
fundmental color color source at x̨j . It this assumption were
correct, one could explicitly use the cyclic property of the trace
to obtain a form where that unambiguously occurs. However
it is worth taking that step as one can subsequently probe the
legitimacy of using the cyclic property of the trace in this context.

If one repeats this procedure with di�erent choices for x̨i

and x̨j one can map out the free energy as a function of
separation and Eq. (7) for the string tension follows.

If this derivation is correct then CLúL(x̨i, x̨j ; T ) is a
partition function for states with fixed color charges and
the partition function is is physical and hence gauge
invariant. This appears to imply that CLúL(x̨i, x̨j ; T ) is
also physical and hence gauge invariant which in turn
means that either it is identically zero or the the boundary
condition must be that of Eq. (2) and not Eq. (4); only
the former has CLúL(x̨i, x̨j ; T ) gauge invariant. Moreover,
Tr [exp(≠—H)Pij ] is not identically zero since there are
allowable states in the physical Hilbert space with the
appropriate color charges at x̨i and x̨j . Thus, it appears
as though the only viable choice of boundary condition
is Eq. (2). However, this conclusion is dependent on the
derivation of Eq. (13b) and that derivation is flawed.

VI. BREAKDOWN OF THE STANDARD
INTERPRETATION

There are two flaws in the analysis of the previous
section.

The first concerns the starting point of that analy-
sis, Eq. (11). The first form of Eq. (11) is obtained by
integrating out the color sources to relate the expecta-
tion value of

q
c,cÕ Sj;cÕ(—)Si;c(—)S†

j;c0S
†
j;cÕ(0)P0 to CLúL.

However that step is legitimate only to the extent that one

Standard interpretation
Free energy is  physical 
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FIG. 1. The figure at the top represents in cartoon-like fashion a gauge configuration consistent with the boundary conditions of
Eq. (2). The initials “GI” stands for “gauge invariant” and refers all combinations of the fields in the interval of length of — in the
Euclidean time direction that are invariant under arbitrary gauge transformations; “NGI” stands for ‘not gauge invariant” and
refers all combinations of the fields that are not gauge invariant. Both the gauge-invariant and non-gauge invariant combinations
are repeated with a periodicity of —; this is indicated by a repeated representation of ”GI” and ”NGI” in the same font in each
region of length —. The gauge fields in this case can be represented as being on a cylinder as indicated in the middle. The
figure at the bottom represents a typical gauge configuration consistent with the boundary Eq. (4). While the set of values
of gauge-invariant combinations of fields is the same in each region of length — in Euclidean time is the same as indicated by
“GI” in the same font, the set of field combinations that are not gauge-invariant is not repeated—as indicated by the di�ering
fonts. Unlike the set of fields in the top figures, these fields cannot be represented as a single-valued functions on a cylinder.
Expectation vales of gauge-invariant operators will be the same if calculated using either set of boundary conditions since these
only depend on gauge-invariant combinations of fields

This quantity is normally evaluated in lattice studies
using the boundary conditions of Eq. (3) with the theory
interpreted as existing on a cylinder.

There is a standard interpretation—which goes back
more than four decades[? ]—that this correlator repre-
sents the exponential of ≠— times the free energy of two
static color sources, one in the fundamental representation
and the other in the anti-fundamental (or an arbitrarily
heavy quark and antiquark) placed at x̨1 and x̨2. With
this interpretation, there is a natural definition of a string
tension:

‡(T )PL = lim
|R|æŒ

log
1

CLúL(x̨ + R̨, x̨; T )
2

|R|
(7)

where the subscript PL indicates that this string tension
is defined via a correlator of Polaykov loops. Note this
should be independent of x̨ due to translational invariance.

A central question is whether this interpretation is
correct.

IV. BOUNDARY CONDITIONS, GAUGE
INVARIANCE AND THE POLYAKOV LOOP

‡(T )P has traditionally been computed from the cor-
relator of Polyakov loops using the boundary condition

of Eq. (3), which can be interpreted as enforcing the
topology of a cylinder. It is this topology that allows
one to consider the Polyakov loop as a gauge-invaraint
object, despite not corresponding to a gauge-invariant
operator. It is also this topology that distinguishes center
transformations from ordinary gauge transformations.

However as seen in Sec. II, Eq. (3) is not the most gen-
eral boundary condition for functional integrals consistent
with the thermal physics; Eq. (4) is. If one uses Eq. (3)
in the computation of the expectation value any gauge-
invariant operator, one gets the same answer—these only
depend on gauge invariant combinations of fields. How-
ever, the Polyakov loop is not a gauge-invariant operator.
This raises the obvious issue of whether one should trust
results based on Eq. (3) and the topology of the cylinder
as correctly giving the thermal physics.

If one use the boundary conditions in Eq. (4), it is easy
to see that both the expectation value of the Polyakov
loop and its correlator are both zero at any temperature
when computed via a functional integral. This is shown
in Appendix B In fact, this is precisely what one would
expect: generically any purely gauge-variant operator
vanishes when computed in a non-gauge fixed functional
integral at any temperature and the operator associated
with the Polyakov loop is purely gauge-variant.

As noted in the introduction there was something of a

String tension computed from PL appears to be physical
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gauge transformations defined throughout the entirety of
space-time—although the expectation value of physical
quantities are obtained by integrating over a single period.
With these boundary conditions, the gluon fields can no
longer be viewed as being defined on a cylinder.

Thus, if one wishes to sum over all gauge configuration
consistent with the thermal physics of gauge invariant
operators, the correct boundary conditions to use is Eq. (4)
rather than Eq. (2). The distinction between these two is
illustrated in Fig. 1.

Of course, in practice Eq. (4) is never used in numerical
evaluations of lattice gauge theories—invariably, Eq. (2 is
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one is computing the expectation value of gauge-invariant
operators, it makes no di�erence whether one uses the
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paradox when one considers the correlator of Polyakov
loops. Both the Hamiltonian formulation in any gauge–
including the temporal gauge of A0 = 0 and a non-gauge-
fixed functional integral formulation of Yang-Mills theory
are supposed to be capable of yielding all physical results.
But in the A0 = 0 gauge with a Hamiltonian treatment the
Polyakov loop is necessarily unity and the string derived
from its correlator is necessarily zero at any temperature,
which di�ers from the low temperature results of lattice
simulations based on functional integrals in which the
string tension is non-zero.

There is potentially a very simple resolution to this
paradox: if the appropriate boundary conditions to use
are those of Eq. (4) rather than Eq. (3), then the paradox
vanishes. With those boundary conditions, the Polyakov
loop and its correlator are both purely gauge-variant
quantities and are not directly connected to physical
observables. Their expectation values are not physical and
their value as calculated in the context of a Hamiltonian
theory in a particular gauge is not supposed to match its
value when calculated in a di�erent approach.

This resolution is rather radical. Since its introduction
in the late 1970s[0], it has always been assumed that
the Polyakov loop is gauge invariant since the boundary
condition of Eq. (2) have always been assumed to be
appropriate and with it the restriction on gauge transfor-
mations given by Eq. (3). However, as noted above, while
Eq. (2) is perfectly valid for the computation of the expec-
tation value of gauge-invariant operators, the Polyakov
loop is not associated with any gauge-invariant opera-
tor and it seems more natural to use the most general
boundary condition consistent with the thermal physics of
Eq. (4) rather than the restricted version of Eq. (2). The
fact that there is no known way to represent the physics
of the Polyakov loop in Minkowski space nor is there any
known way to represent this physics in a situation out of
thermal equilibrium is consistent with the Polyakov loop
and its correlator having no direct physical meaning and
support the use of the more general boundary condition.

There is a potential problem with this resolution. Since
Polyakov’s initial paper[? ] the correlator of Polyakov
loops has been interpreted as giving the free energy of
two separated color charges one in the fundamental and
one in the anti-fundamental [0] or what is generally taken
to be equivalent, a heavy quark and antiquark in the
limit that the mass goes to infinity [0]. The free energy
is a physical quantity and thus gauge invariaint, and the
distance between static color charges can be expressed in
gauge invariant terms. This seems to imply that if this
standard interpretation is correct, then the correlator of
Polyakov loops must be gauge invariant, which in turn
would suggest that the boundary conditions of Eq. (3) is
the appropriate one and not the more general boundary

conditions of Eq. (4).
However, as discussed in the following sections, the are

good reasons to believe that this standard interpretation
is not valid.

V. THE STANDARD INTERPRETATION

It is useful to repeat the steps that leads to the standard
interpretation in order to focus on where the argument can
break down. This will be done following the argument
of ref. [0] which is somewhat more transparent than
in Polyakov’s initial paper. This argument has become
standard and is reproduced in textbooks[0] The notation
here will di�er somewhat from ref. [0] in order to illustrate
the physics more simply. Finally, while ref. [0] is based
on a lattice treatment in which arbitrarily heavy quarks
are placed on lattice sites (with the heavy quark limit
implicitly taken prior to the continuum limit), in the
discussion here, static color sources will be added or
removed at pre-fixed discrete points in space and time
which allows one to consider either a lattice theory (in
which case it is completely equivalent to what was done
in ref. [0] ) or a continuum theory for the gluons3.

Consider the standard Yang-Mills Lagrangian with an
additional non-propagating fields S that is defined only
at some discrete set of points in space-time; a typical
one of these points will be denoted x̨i: S

†
i;c creates a

fundamental color charge of color c at the point x̨i. The
field S is fermionic
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Õ

{Si;c, SiÕ;cÕ} =
Ó

S
†
i;c, S

†
iÕ;cÕ

Ô
= 0 .
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i;c, which

is defined by
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The Lagrangian for the theory with these added color
charges is simple:

L = LYM +
ÿ

j,c

S
†
j;c(t) iˆ0 Sj;c(t)+

ÿ

j,a,c

A
a

0(x̨, t)”3(x̨ ≠ x̨j) S
†
j;c(t)⁄

a

2 Sj;c(t)
(10)

The constraint on physical states as given in Eq. (A1) is
implicit.

If one uses functional integral methods in Euclidean
space and integrates out the fields for the color sources it
is straightforward to see that:

3 The placement of color charges only at some set of discrete points
is natural in lattice treatments. However, it is valid to do this

even when the gluon fields are treated continuously. The virtue
of doing this is that simplifies some normalizations

Is a fermionic operator that places color charge c at 
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one of these points will be denoted x̨i: S

†
i;c creates a

fundamental color charge of color c at the point x̨i. The
field S is fermionic

Ó
Si;c, S

†
iÕ;cÕ

Ô
= ”i,iÕ”c, c

Õ

{Si;c, SiÕ;cÕ} =
Ó

S
†
i;c, S

†
iÕ;cÕ

Ô
= 0 .

(8)

Anti-fundamental color sources are by created S
†
i;c, which

is defined by

S
†
i;c ©

‘abcS
†
i;aS

†
i;b

2 . (9)

The Lagrangian for the theory with these added color
charges is simple:

L = LYM +
ÿ

j,c

S
†
j;c(t) iˆ0 Sj;c(t)+

ÿ

j,a,c

A
a

0(x̨, t)”3(x̨ ≠ x̨j) S
†
j;c(t)⁄

a

2 Sj;c(t)
(10)

The constraint on physical states as given in Eq. (A1) is
implicit.

If one uses functional integral methods in Euclidean
space and integrates out the fields for the color sources it
is straightforward to see that:

3 The placement of color charges only at some set of discrete points
is natural in lattice treatments. However, it is valid to do this

even when the gluon fields are treated continuously. The virtue
of doing this is that simplifies some normalizations

These propagate in time but not space.

Using standard functional integral methods:
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CLúL(x̨i, x̨j ; T ) =
e

Sj;cÕ(—)Si;c(—)S†
jx̨j ;c(0)S†

i;cÕ(0)P0
f

T

= Trphys
Ë
exp(≠—H)Sj;cÕ(—)Si;c(—)S†

i;c(0)S†
j;cÕ(0)P0

È

=
ÿ

kœphys
ÈÂk| exp(≠—H)Sj;cÕ(—)Si;c(—)S†

i;c(0)S†
j;cÕ(0)P0|ÂkÍ

(11)

where repeated color indices are summed and the second
form is written in terms of a Hamiltonian formulation;
the trace is over the physical states in the Hilbert space
and P0 is a projector onto states with no color sources
(i.e. pure Yang-Mills):

P0 ©

ŒŸ

n=1

Q

an ≠

ÿ

j

S
†
j,c

Sj,c

R

b . (12)

The next step uses the fact that in Euclidean space an
operator O(· + —) = exp(—H)O(·) exp(≠—H). Inserting
this into the trace form of Eq. (11) yields

CLúL(x̨i, x̨j ; T ) = Trphys
Ë
Sj;cÕ(0)Si;c(0) exp(≠—H)S†

i;c(0)S†
j;cÕ(0)P0

È

=
ÿ

kœphys
ÈÂk|Sj;cÕ(0)Si;c(0) exp(≠—H)S†

i;c(0)S†
j;cÕ(0)P0|„kÍ

(13a)

where repeated color indices are summed. The cyclic property of the trace allows this to be rewritten as

CLúL(x̨i, x̨j ; T ) = Trphys
Ë
exp(≠—H)S†

i;c(0)S†
j;cÕ(0)P0Sj;cÕ(0)Si;c(0)

È
= Trphys [exp(≠—H)Pij ] (13b)

where Pij given by

Pij = S
†
i;c(0)S†

i;cÕ(0)P0Si;cÕ(0)Si;c(0) . (13c)

Equation (13b) appears to be easy to interpret4. Note
that Pij is a projector on to states with a color charge in
the fundamental at x̨i and one in the anti-fundamental
at x̨j and no other color charges. Moreover, it is clearly
gauge invariant. Thus the last form of Eq. (13b) is of the
form of Eq. (Eq:Zconst) in the appendix, which means
that CLúL(x̨i, x̨j ; T ) is the partition function for a system
constrianted to have a color charge in the fundamental
at x̨i and the anti-fundamental at x̨j ; thus that the free
energy to place these charge, F12 is given by

CLúL(x̨i, x̨j ; T ) = exp(≠—Fij) (14)
If one repeats this procedure with di�erent choices for x̨i

and x̨j one can map out the free energy as a function of
separation and Eq. (7) for the string tension follows.

4 The step of using the cyclic property of the trace to rewrite
Eq. (13a) as Eq. (13b) is often done implicitly as in ref. ****.
One implicitly assumes that summing over all states of the
form S†

j;c0S
†
j;cÕ (0)P0|ÂÍphys is equivalent to summing over phys-

ical states with a fundamental color source at x̨i and an anti-
fundmental color color source at x̨j . It this assumption were
correct, one could explicitly use the cyclic property of the trace
to obtain a form where that unambiguously occurs. However
it is worth taking that step as one can subsequently probe the
legitimacy of using the cyclic property of the trace in this context.

If this derivation is correct then CLúL(x̨i, x̨j ; T ) is a
partition function for states with fixed color charges and
the partition function is is physical and hence gauge
invariant. This appears to imply that CLúL(x̨i, x̨j ; T ) is
also physical and hence gauge invariant which in turn
means that either it is identically zero or the the boundary
condition must be that of Eq. (2) and not Eq. (4); only
the former has CLúL(x̨i, x̨j ; T ) gauge invariant. Moreover,
Tr [exp(≠—H)Pij ] is not identically zero since there are
allowable states in the physical Hilbert space with the
appropriate color charges at x̨i and x̨j . Thus, it appears
as though the only viable choice of boundary condition
is Eq. (2). However, this conclusion is dependent on the
derivation of Eq. (13b) and that derivation is flawed.

VI. BREAKDOWN OF THE STANDARD
INTERPRETATION

There are two flaws in the analysis of the previous
section.

The first concerns the starting point of that analysis,
Eq. (11). The first form of Eq. (11) is obtained by in-
tegrating out the color sources to relate the expectation
value of Sj;cÕ(—)Si;c(—)S†

i;c0S
†
j;cÕ(0)P0 to CLúL. How-

ever that step is legitimate only to the extent that one
is computing the expectation value of a gauge-invariant
object. However Sj;cÕ(—)Si;c(—)S†

i;c0S
†
j;cÕ(0) is not gauge

invariant as an operator, nor are the Polyakov loop op-
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Q
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R
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the fundamental at x̨i and one in the anti-fundamental
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invariant. This appears to imply that CLúL(x̨i, x̨j ; T ) is
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ical states with a fundamental color source at x̨i and an anti-
fundmental color color source at x̨j . It this assumption were
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to obtain a form where that unambiguously occurs. However
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If one repeats this procedure with di�erent choices for x̨i

and x̨j one can map out the free energy as a function of
separation and Eq. (7) for the string tension follows.

If this derivation is correct then CLúL(x̨i, x̨j ; T ) is a
partition function for states with fixed color charges and
the partition function is is physical and hence gauge
invariant. This appears to imply that CLúL(x̨i, x̨j ; T ) is
also physical and hence gauge invariant which in turn
means that either it is identically zero or the the boundary
condition must be that of Eq. (2) and not Eq. (4); only
the former has CLúL(x̨i, x̨j ; T ) gauge invariant. Moreover,
Tr [exp(≠—H)Pij ] is not identically zero since there are
allowable states in the physical Hilbert space with the
appropriate color charges at x̨i and x̨j . Thus, it appears
as though the only viable choice of boundary condition
is Eq. (2). However, this conclusion is dependent on the
derivation of Eq. (13b) and that derivation is flawed.

VI. BREAKDOWN OF THE STANDARD
INTERPRETATION

There are two flaws in the analysis of the previous
section.

The first concerns the starting point of that analy-
sis, Eq. (11). The first form of Eq. (11) is obtained by
integrating out the color sources to relate the expecta-
tion value of

q
c,cÕ Sj;cÕ(—)Si;c(—)S†

j;c0S
†
j;cÕ(0)P0 to CLúL.

However that step is legitimate only to the extent that one

Projector onto states with no 
fundamental color charges,  i.e. pure 
Y.M. states 

Trphys indicates trace over the physical states only—that is states 
satisfying the color Gauss law.

gauge invariant

Pij projects on to states with a 
fundamental color charge at       and 
an anti-fundamental charge at
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paradox when one considers the correlator of Polyakov
loops. Both the Hamiltonian formulation in any gauge–
including the temporal gauge of A0 = 0 and a non-gauge-
fixed functional integral formulation of Yang-Mills theory
are supposed to be capable of yielding all physical results.
But in the A0 = 0 gauge with a Hamiltonian treatment the
Polyakov loop is necessarily unity and the string derived
from its correlator is necessarily zero at any temperature,
which di�ers from the low temperature results of lattice
simulations based on functional integrals in which the
string tension is non-zero.

There is potentially a very simple resolution to this
paradox: if the appropriate boundary conditions to use
are those of Eq. (4) rather than Eq. (3), then the paradox
vanishes. With those boundary conditions, the Polyakov
loop and its correlator are both purely gauge-variant
quantities and are not directly connected to physical
observables. Their expectation values are not physical and
their value as calculated in the context of a Hamiltonian
theory in a particular gauge is not supposed to match its
value when calculated in a di�erent approach.

This resolution is rather radical. Since its introduction
in the late 1970s[0], it has always been assumed that
the Polyakov loop is gauge invariant since the boundary
condition of Eq. (2) have always been assumed to be
appropriate and with it the restriction on gauge transfor-
mations given by Eq. (3). However, as noted above, while
Eq. (2) is perfectly valid for the computation of the expec-
tation value of gauge-invariant operators, the Polyakov
loop is not associated with any gauge-invariant opera-
tor and it seems more natural to use the most general
boundary condition consistent with the thermal physics of
Eq. (4) rather than the restricted version of Eq. (2). The
fact that there is no known way to represent the physics
of the Polyakov loop in Minkowski space nor is there any
known way to represent this physics in a situation out of
thermal equilibrium is consistent with the Polyakov loop
and its correlator having no direct physical meaning and
support the use of the more general boundary condition.

There is a potential problem with this resolution. Since
Polyakov’s initial paper[? ] the correlator of Polyakov
loops has been interpreted as giving the free energy of
two separated color charges one in the fundamental and
one in the anti-fundamental [0] or what is generally taken
to be equivalent, a heavy quark and antiquark in the
limit that the mass goes to infinity [0]. The free energy
is a physical quantity and thus gauge invariaint, and the
distance between static color charges can be expressed in
gauge invariant terms. This seems to imply that if this
standard interpretation is correct, then the correlator of
Polyakov loops must be gauge invariant, which in turn
would suggest that the boundary conditions of Eq. (3) is
the appropriate one and not the more general boundary

conditions of Eq. (4).
However, as discussed in the following sections, the are

good reasons to believe that this standard interpretation
is not valid.

V. THE STANDARD INTERPRETATION

It is useful to repeat the steps that leads to the standard
interpretation in order to focus on where the argument can
break down. This will be done following the argument
of ref. [0] which is somewhat more transparent than
in Polyakov’s initial paper. This argument has become
standard and is reproduced in textbooks[0] The notation
here will di�er somewhat from ref. [0] in order to illustrate
the physics more simply. Finally, while ref. [0] is based
on a lattice treatment in which arbitrarily heavy quarks
are placed on lattice sites (with the heavy quark limit
implicitly taken prior to the continuum limit), in the
discussion here, static color sources will be added or
removed at pre-fixed discrete points in space and time
which allows one to consider either a lattice theory (in
which case it is completely equivalent to what was done
in ref. [0] ) or a continuum theory for the gluons3.

Consider the standard Yang-Mills Lagrangian with an
additional non-propagating fields S that is defined only
at some discrete set of points in space-time; a typical
one of these points will be denoted x̨i: S

†
i;c creates a

fundamental color charge of color c at the point x̨i. The
field S is fermionic

Ó
Si;c, S

†
iÕ;cÕ

Ô
= ”i,iÕ”c, c

Õ

{Si;c, SiÕ;cÕ} =
Ó

S
†
i;c, S

†
iÕ;cÕ

Ô
= 0 .

(8)

Anti-fundamental color sources are by created S
†
i;c, which

is defined by

S
†
i;c ©

‘abcS
†
i;aS

†
i;b

2 . (9)

The Lagrangian for the theory with these added color
charges is simple:

L = LYM +
ÿ

j,c

S
†
j;c(t) iˆ0 Sj;c(t)+

ÿ

j,a,c

A
a

0(x̨, t)”3(x̨ ≠ x̨j) S
†
j;c(t)⁄

a

2 Sj;c(t)
(10)

The constraint on physical states as given in Eq. (A1) is
implicit.

If one uses functional integral methods in Euclidean
space and integrates out the fields for the color sources it
is straightforward to see that:

3 The placement of color charges only at some set of discrete points
is natural in lattice treatments. However, it is valid to do this

even when the gluon fields are treated continuously. The virtue
of doing this is that simplifies some normalizations
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CLúL(x̨i, x̨j ; T ) =
ÿ

c,cÕ

e
Sj;cÕ(—)Si;c(—)S†

j;c0S
†
j;cÕ(0)P0

f

T

= Trphys
Ë
exp(≠—H)Sj;cÕ(—)Si;c(—)S†

j;c0S
†
j;cÕ(0)P0

È

=
ÿ

kœphys
ÈÂk| exp(≠—H)Sj;cÕ(—)Si;c(—)S†

j;c0S
†
j;cÕ(0)P0|ÂkÍ

(11)

where repeated color indices are summed and the second
form is written in terms of a Hamiltonian formulation;
the trace is over the physical states in the Hilbert space
and P0 is a projector onto states with no color sources
(i.e. pure Yang-Mills):

P0 ©

ŒŸ

n=1

Q

an ≠

ÿ

j,c

S
†
j,c

Sj,c

R

b . (12)

The next step uses the fact that in Euclidean space an
operator O(· + —) = exp(—H)O(·) exp(—H). Inserting
this into the trace form of Eq. (11) yields

CLúL(x̨i, x̨j ; T ) = Trphys
Ë
Sj;cÕ(0)Si;c(0) exp(≠—H)S†

j;c0S
†
j;cÕ(0)P0

È

=
ÿ

kœphys
ÈÂk|Sj;cÕ(0)Si;c(0) exp(≠—H)S†

j;c0S
†
j;cÕ(0)P0|„kÍ

(13a)

where repeated color indices are summed. The cyclic property of the trace allows this to be rewritten as

CLúL(x̨i, x̨j ; T ) = Trphys
Ë
exp(≠—H)S†

j;c(0)S†
j;cÕ(0)P0Sj;cÕ(0)Si;c(0)

È
= Trphys [exp(≠—H)Pij ] (13b)

where Pij given by

Pij = S
†
j;c(0)S†

j;cÕ(0)P0Sj;cÕ(0)Si;c(0) . (13c)

Equation (13b) appears to be easy to interpret4. Note
that Pij is a projector on to states with a color charge in
the fundamental at x̨i and one in the anti-fundamental
at x̨j and no other color charges. Moreover, it is clearly
gauge invariant. Thus the last form of Eq. (13b) is of the
form of Eq. (Eq:Zconst) in the appendix, which means
that CLúL(x̨i, x̨j ; T ) is the partition function for a system
constrianted to have a color charge in the fundamental
at x̨i and the anti-fundamental at x̨j ; thus that the free
energy to place these charge, F12 is given by

CLúL(x̨i, x̨j ; T ) = exp(≠—Fij) (14)

4 The step of using the cyclic property of the trace to rewrite
Eq. (13a) as Eq. (13b) is often done implicitly as in ref. ****.
One implicitly assumes that summing over all states of the
form S†

j;c0S
†
j;cÕ (0)P0|ÂÍphys is equivalent to summing over phys-

ical states with a fundamental color source at x̨i and an anti-
fundmental color color source at x̨j . It this assumption were
correct, one could explicitly use the cyclic property of the trace
to obtain a form where that unambiguously occurs. However
it is worth taking that step as one can subsequently probe the
legitimacy of using the cyclic property of the trace in this context.

If one repeats this procedure with di�erent choices for x̨i

and x̨j one can map out the free energy as a function of
separation and Eq. (7) for the string tension follows.

If this derivation is correct then CLúL(x̨i, x̨j ; T ) is a
partition function for states with fixed color charges and
the partition function is is physical and hence gauge
invariant. This appears to imply that CLúL(x̨i, x̨j ; T ) is
also physical and hence gauge invariant which in turn
means that either it is identically zero or the the boundary
condition must be that of Eq. (2) and not Eq. (4); only
the former has CLúL(x̨i, x̨j ; T ) gauge invariant. Moreover,
Tr [exp(≠—H)Pij ] is not identically zero since there are
allowable states in the physical Hilbert space with the
appropriate color charges at x̨i and x̨j . Thus, it appears
as though the only viable choice of boundary condition
is Eq. (2). However, this conclusion is dependent on the
derivation of Eq. (13b) and that derivation is flawed.

VI. BREAKDOWN OF THE STANDARD
INTERPRETATION

There are two flaws in the analysis of the previous
section.

The first concerns the starting point of that analy-
sis, Eq. (11). The first form of Eq. (11) is obtained by
integrating out the color sources to relate the expecta-
tion value of

q
c,cÕ Sj;cÕ(—)Si;c(—)S†

j;c0S
†
j;cÕ(0)P0 to CLúL.

However that step is legitimate only to the extent that one
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ÿ
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ÈÂk| exp(≠—H)Sj;cÕ(—)Si;c(—)S†
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j;cÕ(0)P0|ÂkÍ

(11)

where repeated color indices are summed and the second
form is written in terms of a Hamiltonian formulation;
the trace is over the physical states in the Hilbert space
and P0 is a projector onto states with no color sources
(i.e. pure Yang-Mills):

P0 ©

ŒŸ

n=1

Q

an ≠

ÿ

j

S
†
j,c

Sj,c

R

b . (12)

The next step uses the fact that in Euclidean space an
operator O(· + —) = exp(—H)O(·) exp(≠—H). Inserting
this into the trace form of Eq. (11) yields

CLúL(x̨i, x̨j ; T ) = Trphys
Ë
Sj;cÕ(0)Si;c(0) exp(≠—H)S†

j;c(0)S†
j;cÕ(0)P0

È

=
ÿ
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ÈÂk|Sj;cÕ(0)Si;c(0) exp(≠—H)S†

i;c(0)S†
j;cÕ(0)P0|„kÍ

(13a)

where repeated color indices are summed. The cyclic property of the trace allows this to be rewritten as

CLúL(x̨i, x̨j ; T ) = Trphys
Ë
exp(≠—H)S†

j;c(0)S†
i;cÕ(0)P0Sj;cÕ(0)Si;c(0)

È
= Trphys [exp(≠—H)Pij ] (13b)

where Pij given by

Pij = S
†
i;c(0)S†

j;cÕ(0)P0Sj;cÕ(0)Si;c(0) . (13c)

Equation (13b) appears to be easy to interpret4. Note
that Pij is a projector on to states with a color charge in
the fundamental at x̨i and one in the anti-fundamental
at x̨j and no other color charges. Moreover, it is clearly
gauge invariant. Thus the last form of Eq. (13b) is of the
form of Eq. (Eq:Zconst) in the appendix, which means
that CLúL(x̨i, x̨j ; T ) is the partition function for a system
constrianted to have a color charge in the fundamental
at x̨i and the anti-fundamental at x̨j ; thus that the free
energy to place these charge, F12 is given by

CLúL(x̨i, x̨j ; T ) = exp(≠—Fij) (14)
If one repeats this procedure with di�erent choices for x̨i

and x̨j one can map out the free energy as a function of
separation and Eq. (7) for the string tension follows.

4 The step of using the cyclic property of the trace to rewrite
Eq. (13a) as Eq. (13b) is often done implicitly as in ref. ****.
One implicitly assumes that summing over all states of the
form S†

j;c0S
†
j;cÕ (0)P0|ÂÍphys is equivalent to summing over phys-

ical states with a fundamental color source at x̨i and an anti-
fundmental color color source at x̨j . It this assumption were
correct, one could explicitly use the cyclic property of the trace
to obtain a form where that unambiguously occurs. However
it is worth taking that step as one can subsequently probe the
legitimacy of using the cyclic property of the trace in this context.

If this derivation is correct then CLúL(x̨i, x̨j ; T ) is a
partition function for states with fixed color charges and
the partition function is is physical and hence gauge
invariant. This appears to imply that CLúL(x̨i, x̨j ; T ) is
also physical and hence gauge invariant which in turn
means that either it is identically zero or the the boundary
condition must be that of Eq. (2) and not Eq. (4); only
the former has CLúL(x̨i, x̨j ; T ) gauge invariant. Moreover,
Tr [exp(≠—H)Pij ] is not identically zero since there are
allowable states in the physical Hilbert space with the
appropriate color charges at x̨i and x̨j . Thus, it appears
as though the only viable choice of boundary condition
is Eq. (2). However, this conclusion is dependent on the
derivation of Eq. (13b) and that derivation is flawed.

VI. BREAKDOWN OF THE STANDARD
INTERPRETATION

There are two flaws in the analysis of the previous
section.

The first concerns the starting point of that analysis,
Eq. (11). The first form of Eq. (11) is obtained by in-
tegrating out the color sources to relate the expectation
value of Sj;cÕ(—)Si;c(—)S†

i;c0S
†
j;cÕ(0)P0 to CLúL. How-

ever that step is legitimate only to the extent that one
is computing the expectation value of a gauge-invariant
object. However Sj;cÕ(—)Si;c(—)S†

i;c0S
†
j;cÕ(0) is not gauge

invariant as an operator, nor are the Polyakov loop op-

Insert standard Euclidean time evolution for operators 

8

CLúL(x̨i, x̨j ; T ) =
ÿ

c,cÕ

e
Sj;cÕ(—)Si;c(—)S†

j;c(0)S†
j;cÕ(0)P0

f

T

= Trphys
Ë
exp(≠—H)Sj;cÕ(—)Si;c(—)S†

j;c(0)S†
j;cÕ(0)P0

È

=
ÿ

kœphys
ÈÂk| exp(≠—H)Sj;cÕ(—)Si;c(—)S†

j;c(0)S†
j;cÕ(0)P0|ÂkÍ

(11)

where repeated color indices are summed and the second
form is written in terms of a Hamiltonian formulation;
the trace is over the physical states in the Hilbert space
and P0 is a projector onto states with no color sources
(i.e. pure Yang-Mills):

P0 ©

ŒŸ

n=1

Q

an ≠

ÿ

j,c

S
†
j,c

Sj,c

R

b . (12)

The next step uses the fact that in Euclidean space an
operator O(· + —) = exp(—H)O(·) exp(≠—H). Inserting
this into the trace form of Eq. (11) yields

CLúL(x̨i, x̨j ; T ) = Trphys
Ë
Sj;cÕ(0)Si;c(0) exp(≠—H)S†

j;c(0)S†
j;cÕ(0)P0

È

=
ÿ

kœphys
ÈÂk|Sj;cÕ(0)Si;c(0) exp(≠—H)S†

j;c(0)S†
j;cÕ(0)P0|„kÍ

(13a)

where repeated color indices are summed. The cyclic property of the trace allows this to be rewritten as

CLúL(x̨i, x̨j ; T ) = Trphys
Ë
exp(≠—H)S†

j;c(0)S†
j;cÕ(0)P0Sj;cÕ(0)Si;c(0)

È
= Trphys [exp(≠—H)Pij ] (13b)

where Pij given by

Pij = S
†
j;c(0)S†

j;cÕ(0)P0Sj;cÕ(0)Si;c(0) . (13c)

Equation (13b) appears to be easy to interpret4. Note
that Pij is a projector on to states with a color charge in
the fundamental at x̨i and one in the anti-fundamental
at x̨j and no other color charges. Moreover, it is clearly
gauge invariant. Thus the last form of Eq. (13b) is of the
form of Eq. (Eq:Zconst) in the appendix, which means
that CLúL(x̨i, x̨j ; T ) is the partition function for a system
constrianted to have a color charge in the fundamental
at x̨i and the anti-fundamental at x̨j ; thus that the free
energy to place these charge, F12 is given by

CLúL(x̨i, x̨j ; T ) = exp(≠—Fij) (14)

4 The step of using the cyclic property of the trace to rewrite
Eq. (13a) as Eq. (13b) is often done implicitly as in ref. ****.
One implicitly assumes that summing over all states of the
form S†

j;c0S
†
j;cÕ (0)P0|ÂÍphys is equivalent to summing over phys-

ical states with a fundamental color source at x̨i and an anti-
fundmental color color source at x̨j . It this assumption were
correct, one could explicitly use the cyclic property of the trace
to obtain a form where that unambiguously occurs. However
it is worth taking that step as one can subsequently probe the
legitimacy of using the cyclic property of the trace in this context.

If one repeats this procedure with di�erent choices for x̨i

and x̨j one can map out the free energy as a function of
separation and Eq. (7) for the string tension follows.

If this derivation is correct then CLúL(x̨i, x̨j ; T ) is a
partition function for states with fixed color charges and
the partition function is is physical and hence gauge
invariant. This appears to imply that CLúL(x̨i, x̨j ; T ) is
also physical and hence gauge invariant which in turn
means that either it is identically zero or the the boundary
condition must be that of Eq. (2) and not Eq. (4); only
the former has CLúL(x̨i, x̨j ; T ) gauge invariant. Moreover,
Tr [exp(≠—H)Pij ] is not identically zero since there are
allowable states in the physical Hilbert space with the
appropriate color charges at x̨i and x̨j . Thus, it appears
as though the only viable choice of boundary condition
is Eq. (2). However, this conclusion is dependent on the
derivation of Eq. (13b) and that derivation is flawed.

VI. BREAKDOWN OF THE STANDARD
INTERPRETATION

There are two flaws in the analysis of the previous
section.

The first concerns the starting point of that analy-
sis, Eq. (11). The first form of Eq. (11) is obtained by
integrating out the color sources to relate the expecta-
tion value of

q
c,cÕ Sj;cÕ(—)Si;c(—)S†

j;c0S
†
j;cÕ(0)P0 to CLúL.

However that step is legitimate only to the extent that one

Use cyclic property of trace to rewrite as 
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CLúL(x̨i, x̨j ; T ) =
ÿ

c,cÕ

e
Sj;cÕ(—)Si;c(—)S†

j;c0S
†
j;cÕ(0)P0

f

T

= Trphys
Ë
exp(≠—H)Sj;cÕ(—)Si;c(—)S†

j;c0S
†
j;cÕ(0)P0

È

=
ÿ

kœphys
ÈÂk| exp(≠—H)Sj;cÕ(—)Si;c(—)S†

j;c0S
†
j;cÕ(0)P0|ÂkÍ

(11)

where repeated color indices are summed and the second
form is written in terms of a Hamiltonian formulation;
the trace is over the physical states in the Hilbert space
and P0 is a projector onto states with no color sources
(i.e. pure Yang-Mills):

P0 ©

ŒŸ

n=1

Q

an ≠

ÿ

j,c

S
†
j,c

Sj,c

R

b . (12)

The next step uses the fact that in Euclidean space an
operator O(· + —) = exp(—H)O(·) exp(—H). Inserting
this into the trace form of Eq. (11) yields

CLúL(x̨i, x̨j ; T ) = Trphys
Ë
Sj;cÕ(0)Si;c(0) exp(≠—H)S†

j;c0S
†
j;cÕ(0)P0

È

=
ÿ

kœphys
ÈÂk|Sj;cÕ(0)Si;c(0) exp(≠—H)S†

j;c0S
†
j;cÕ(0)P0|„kÍ

(13a)

where repeated color indices are summed. The cyclic property of the trace allows this to be rewritten as

CLúL(x̨i, x̨j ; T ) = Trphys
Ë
exp(≠—H)S†

j;c(0)S†
j;cÕ(0)P0Sj;cÕ(0)Si;c(0)

È
= Trphys [exp(≠—H)Pij ] (13b)

where Pij given by

Pij = S
†
j;c(0)S†

j;cÕ(0)P0Sj;cÕ(0)Si;c(0) . (13c)

Equation (13b) appears to be easy to interpret4. Note
that Pij is a projector on to states with a color charge in
the fundamental at x̨i and one in the anti-fundamental
at x̨j and no other color charges. Moreover, it is clearly
gauge invariant. Thus the last form of Eq. (13b) is of the
form of Eq. (Eq:Zconst) in the appendix, which means
that CLúL(x̨i, x̨j ; T ) is the partition function for a system
constrianted to have a color charge in the fundamental
at x̨i and the anti-fundamental at x̨j ; thus that the free
energy to place these charge, F12 is given by

CLúL(x̨i, x̨j ; T ) = exp(≠—Fij) (14)

4 The step of using the cyclic property of the trace to rewrite
Eq. (13a) as Eq. (13b) is often done implicitly as in ref. ****.
One implicitly assumes that summing over all states of the
form S†

j;c0S
†
j;cÕ (0)P0|ÂÍphys is equivalent to summing over phys-

ical states with a fundamental color source at x̨i and an anti-
fundmental color color source at x̨j . It this assumption were
correct, one could explicitly use the cyclic property of the trace
to obtain a form where that unambiguously occurs. However
it is worth taking that step as one can subsequently probe the
legitimacy of using the cyclic property of the trace in this context.

If one repeats this procedure with di�erent choices for x̨i

and x̨j one can map out the free energy as a function of
separation and Eq. (7) for the string tension follows.

If this derivation is correct then CLúL(x̨i, x̨j ; T ) is a
partition function for states with fixed color charges and
the partition function is is physical and hence gauge
invariant. This appears to imply that CLúL(x̨i, x̨j ; T ) is
also physical and hence gauge invariant which in turn
means that either it is identically zero or the the boundary
condition must be that of Eq. (2) and not Eq. (4); only
the former has CLúL(x̨i, x̨j ; T ) gauge invariant. Moreover,
Tr [exp(≠—H)Pij ] is not identically zero since there are
allowable states in the physical Hilbert space with the
appropriate color charges at x̨i and x̨j . Thus, it appears
as though the only viable choice of boundary condition
is Eq. (2). However, this conclusion is dependent on the
derivation of Eq. (13b) and that derivation is flawed.

VI. BREAKDOWN OF THE STANDARD
INTERPRETATION

There are two flaws in the analysis of the previous
section.

The first concerns the starting point of that analy-
sis, Eq. (11). The first form of Eq. (11) is obtained by
integrating out the color sources to relate the expecta-
tion value of

q
c,cÕ Sj;cÕ(—)Si;c(—)S†

j;c0S
†
j;cÕ(0)P0 to CLúL.

However that step is legitimate only to the extent that one
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where repeated color indices are summed and the second
form is written in terms of a Hamiltonian formulation;
the trace is over the physical states in the Hilbert space
and P0 is a projector onto states with no color sources
(i.e. pure Yang-Mills):
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The next step uses the fact that in Euclidean space an
operator O(· + —) = exp(—H)O(·) exp(≠—H). Inserting
this into the trace form of Eq. (11) yields
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where repeated color indices are summed. The cyclic property of the trace allows this to be rewritten as
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Equation (13b) appears to be easy to interpret4. Note
that Pij is a projector on to states with a color charge in
the fundamental at x̨i and one in the anti-fundamental
at x̨j and no other color charges. Moreover, it is clearly
gauge invariant. Thus the last form of Eq. (13b) is of the
form of Eq. (Eq:Zconst) in the appendix, which means
that CLúL(x̨i, x̨j ; T ) is the partition function for a system
constrianted to have a color charge in the fundamental
at x̨i and the anti-fundamental at x̨j ; thus that the free
energy to place these charge, F12 is given by

CLúL(x̨i, x̨j ; T ) = exp(≠—Fij) (14)
If one repeats this procedure with di�erent choices for x̨i

and x̨j one can map out the free energy as a function of
separation and Eq. (7) for the string tension follows.

4 The step of using the cyclic property of the trace to rewrite
Eq. (13a) as Eq. (13b) is often done implicitly as in ref. ****.
One implicitly assumes that summing over all states of the
form S†

j;c0S
†
j;cÕ (0)P0|ÂÍphys is equivalent to summing over phys-

ical states with a fundamental color source at x̨i and an anti-
fundmental color color source at x̨j . It this assumption were
correct, one could explicitly use the cyclic property of the trace
to obtain a form where that unambiguously occurs. However
it is worth taking that step as one can subsequently probe the
legitimacy of using the cyclic property of the trace in this context.

If this derivation is correct then CLúL(x̨i, x̨j ; T ) is a
partition function for states with fixed color charges and
the partition function is is physical and hence gauge
invariant. This appears to imply that CLúL(x̨i, x̨j ; T ) is
also physical and hence gauge invariant which in turn
means that either it is identically zero or the the boundary
condition must be that of Eq. (2) and not Eq. (4); only
the former has CLúL(x̨i, x̨j ; T ) gauge invariant. Moreover,
Tr [exp(≠—H)Pij ] is not identically zero since there are
allowable states in the physical Hilbert space with the
appropriate color charges at x̨i and x̨j . Thus, it appears
as though the only viable choice of boundary condition
is Eq. (2). However, this conclusion is dependent on the
derivation of Eq. (13b) and that derivation is flawed.

VI. BREAKDOWN OF THE STANDARD
INTERPRETATION

There are two flaws in the analysis of the previous
section.

The first concerns the starting point of that analysis,
Eq. (11). The first form of Eq. (11) is obtained by in-
tegrating out the color sources to relate the expectation
value of Sj;cÕ(—)Si;c(—)S†

i;c0S
†
j;cÕ(0)P0 to CLúL. How-

ever that step is legitimate only to the extent that one
is computing the expectation value of a gauge-invariant
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†
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where repeated color indices are summed and the second
form is written in terms of a Hamiltonian formulation;
the trace is over the physical states in the Hilbert space
and P0 is a projector onto states with no color sources
(i.e. pure Yang-Mills):
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The next step uses the fact that in Euclidean space an
operator O(· + —) = exp(—H)O(·) exp(≠—H). Inserting
this into the trace form of Eq. (11) yields

CLúL(x̨i, x̨j ; T ) = Trphys
Ë
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where repeated color indices are summed. The cyclic property of the trace allows this to be rewritten as
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= Trphys [exp(≠—H)Pij ] (13b)

where Pij given by

Pij = S
†
i;c(0)S†

i;cÕ(0)P0Si;cÕ(0)Si;c(0) . (13c)

Equation (13b) appears to be easy to interpret4. Note
that Pij is a projector on to states with a color charge in
the fundamental at x̨i and one in the anti-fundamental
at x̨j and no other color charges. Moreover, it is clearly
gauge invariant. Thus the last form of Eq. (13b) is of the
form of Eq. (Eq:Zconst) in the appendix, which means
that CLúL(x̨i, x̨j ; T ) is the partition function for a system
constrianted to have a color charge in the fundamental
at x̨i and the anti-fundamental at x̨j ; thus that the free
energy to place these charge, F12 is given by

CLúL(x̨i, x̨j ; T ) = exp(≠—Fij) (14)
If one repeats this procedure with di�erent choices for x̨i

and x̨j one can map out the free energy as a function of
separation and Eq. (7) for the string tension follows.

4 The step of using the cyclic property of the trace to rewrite
Eq. (13a) as Eq. (13b) is often done implicitly as in ref. ****.
One implicitly assumes that summing over all states of the
form S†

j;c0S
†
j;cÕ (0)P0|ÂÍphys is equivalent to summing over phys-

ical states with a fundamental color source at x̨i and an anti-
fundmental color color source at x̨j . It this assumption were
correct, one could explicitly use the cyclic property of the trace
to obtain a form where that unambiguously occurs. However
it is worth taking that step as one can subsequently probe the
legitimacy of using the cyclic property of the trace in this context.

If this derivation is correct then CLúL(x̨i, x̨j ; T ) is a
partition function for states with fixed color charges and
the partition function is is physical and hence gauge
invariant. This appears to imply that CLúL(x̨i, x̨j ; T ) is
also physical and hence gauge invariant which in turn
means that either it is identically zero or the the boundary
condition must be that of Eq. (2) and not Eq. (4); only
the former has CLúL(x̨i, x̨j ; T ) gauge invariant. Moreover,
Tr [exp(≠—H)Pij ] is not identically zero since there are
allowable states in the physical Hilbert space with the
appropriate color charges at x̨i and x̨j . Thus, it appears
as though the only viable choice of boundary condition
is Eq. (2). However, this conclusion is dependent on the
derivation of Eq. (13b) and that derivation is flawed.

VI. BREAKDOWN OF THE STANDARD
INTERPRETATION

There are two flaws in the analysis of the previous
section.

The first concerns the starting point of that analysis,
Eq. (11). The first form of Eq. (11) is obtained by in-
tegrating out the color sources to relate the expectation
value of Sj;cÕ(—)Si;c(—)S†

i;c0S
†
j;cÕ(0)P0 to CLúL. How-

ever that step is legitimate only to the extent that one
is computing the expectation value of a gauge-invariant
object. However Sj;cÕ(—)Si;c(—)S†

i;c0S
†
j;cÕ(0) is not gauge

invariant as an operator, nor are the Polyakov loop op-
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and x̨j one can map out the free energy as a function of
separation and Eq. (7) for the string tension follows.

If this derivation is correct then CLúL(x̨i, x̨j ; T ) is a
partition function for states with fixed color charges and
the partition function is is physical and hence gauge
invariant. This appears to imply that CLúL(x̨i, x̨j ; T ) is
also physical and hence gauge invariant which in turn
means that either it is identically zero or the the boundary
condition must be that of Eq. (2) and not Eq. (4); only
the former has CLúL(x̨i, x̨j ; T ) gauge invariant. Moreover,
Tr [exp(≠—H)Pij ] is not identically zero since there are
allowable states in the physical Hilbert space with the
appropriate color charges at x̨i and x̨j . Thus, it appears
as though the only viable choice of boundary condition
is Eq. (2). However, this conclusion is dependent on the
derivation of Eq. (13b) and that derivation is flawed.
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INTERPRETATION
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separation and Eq. (7) for the string tension follows.
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partition function for states with fixed color charges and
the partition function is is physical and hence gauge
invariant. This appears to imply that CLúL(x̨i, x̨j ; T ) is
also physical and hence gauge invariant which in turn
means that either it is identically zero or the the boundary
condition must be that of Eq. (2) and not Eq. (4); only
the former has CLúL(x̨i, x̨j ; T ) gauge invariant. Moreover,
Tr [exp(≠—H)Pij ] is not identically zero since there are
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appropriate color charges at x̨i and x̨j . Thus, it appears
as though the only viable choice of boundary condition
is Eq. (2). However, this conclusion is dependent on the
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sis, Eq. (11). The first form of Eq. (11) is obtained by
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Trphys[ e-bH PC ] =ZC	(b )	=	exp(-bFC)
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and x̨j one can map out the free energy as a function of
separation and Eq. (7) for the string tension follows.

If this derivation is correct then CLúL(x̨i, x̨j ; T ) is a
partition function for states with fixed color charges and
the partition function is is physical and hence gauge
invariant. This appears to imply that CLúL(x̨i, x̨j ; T ) is
also physical and hence gauge invariant which in turn
means that either it is identically zero or the the boundary
condition must be that of Eq. (2) and not Eq. (4); only
the former has CLúL(x̨i, x̨j ; T ) gauge invariant. Moreover,
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allowable states in the physical Hilbert space with the
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However that step is legitimate only to the extent that one

As advertised 

This is physical and nonzero and apparently 
justifies the use of the conventional periodic b.c.
and not the more general aperiodic ones.



But…

• The preceding analysis is flawed in two ways:
1. The analysis uses circular reasoning.  The first 

step implicitly starts with the standard  periodic 
b.c. rather than the more general one to 
conclude that only the standard  periodic b.c. is 
consistent.

2. The analysis starting from the standard periodic 
b.c. makes use of an illegitimate mathematical 
step. 



Argument depends on circular reasoning

Starting point of the analysis:

Calculate  correlator of PL and operators 
making and annihilating charge at t=0
and b using standard functional integral 
methods.

Valid only if the correlator of the Polyakov loop and the correlator 
of the creation and annihilation operator of the color charges are 
gauge invariant.

Neither are gauge invariant operators.  Might be regarded as gauge 
invariant “objects”, but only if the periodic b.c. imposed at the 
outset
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Argument depends on circular reasoning
Only by assuming implicitly periodic b.c., does one 
conclude that the free energy is physical (gauge 
invariant), which implies CL*L is too, requires the 
use the periodic b.c.

Had one imposed the more general b.c. at the beginning 
one would have seen that 

holds only in a trivial way yielding no new information since 8
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(i.e. pure Yang-Mills):
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The next step uses the fact that in Euclidean space an
operator O(· + —) = exp(—H)O(·) exp(—H). Inserting
this into the trace form of Eq. (11) yields

CLúL(x̨i, x̨j ; T ) = Trphys
Ë
Sj;cÕ(0)Si;c(0) exp(≠—H)S†

j;c0S
†
j;cÕ(0)P0

È

=
ÿ
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ÈÂk|Sj;cÕ(0)Si;c(0) exp(≠—H)S†
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†
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(13a)

where repeated color indices are summed. The cyclic property of the trace allows this to be rewritten as

CLúL(x̨i, x̨j ; T ) = Trphys
Ë
exp(≠—H)S†

j;c(0)S†
j;cÕ(0)P0Sj;cÕ(0)Si;c(0)

È
= Trphys [exp(≠—H)Pij ] (13b)

where Pij given by

Pij = S
†
j;c(0)S†

j;cÕ(0)P0Sj;cÕ(0)Si;c(0) . (13c)

Equation (13b) appears to be easy to interpret4. Note
that Pij is a projector on to states with a color charge in
the fundamental at x̨i and one in the anti-fundamental
at x̨j and no other color charges. Moreover, it is clearly
gauge invariant. Thus the last form of Eq. (13b) is of the
form of Eq. (Eq:Zconst) in the appendix, which means
that CLúL(x̨i, x̨j ; T ) is the partition function for a system
constrianted to have a color charge in the fundamental
at x̨i and the anti-fundamental at x̨j ; thus that the free
energy to place these charge, F12 is given by

CLúL(x̨i, x̨j ; T ) = exp(≠—Fij) (14)

4 The step of using the cyclic property of the trace to rewrite
Eq. (13a) as Eq. (13b) is often done implicitly as in ref. ****.
One implicitly assumes that summing over all states of the
form S†

j;c0S
†
j;cÕ (0)P0|ÂÍphys is equivalent to summing over phys-

ical states with a fundamental color source at x̨i and an anti-
fundmental color color source at x̨j . It this assumption were
correct, one could explicitly use the cyclic property of the trace
to obtain a form where that unambiguously occurs. However
it is worth taking that step as one can subsequently probe the
legitimacy of using the cyclic property of the trace in this context.

If one repeats this procedure with di�erent choices for x̨i

and x̨j one can map out the free energy as a function of
separation and Eq. (7) for the string tension follows.

If this derivation is correct then CLúL(x̨i, x̨j ; T ) is a
partition function for states with fixed color charges and
the partition function is is physical and hence gauge
invariant. This appears to imply that CLúL(x̨i, x̨j ; T ) is
also physical and hence gauge invariant which in turn
means that either it is identically zero or the the boundary
condition must be that of Eq. (2) and not Eq. (4); only
the former has CLúL(x̨i, x̨j ; T ) gauge invariant. Moreover,
Tr [exp(≠—H)Pij ] is not identically zero since there are
allowable states in the physical Hilbert space with the
appropriate color charges at x̨i and x̨j . Thus, it appears
as though the only viable choice of boundary condition
is Eq. (2). However, this conclusion is dependent on the
derivation of Eq. (13b) and that derivation is flawed.

VI. BREAKDOWN OF THE STANDARD
INTERPRETATION

There are two flaws in the analysis of the previous
section.

The first concerns the starting point of that analy-
sis, Eq. (11). The first form of Eq. (11) is obtained by
integrating out the color sources to relate the expecta-
tion value of

q
c,cÕ Sj;cÕ(—)Si;c(—)S†

j;c0S
†
j;cÕ(0)P0 to CLúL.

However that step is legitimate only to the extent that one

=0

and 0=0 .

Had one imposed the more general b.c. one would 
see no contradictions. 

=0
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partition function for states with fixed color charges and
the partition function is is physical and hence gauge
invariant. This appears to imply that CLúL(x̨i, x̨j ; T ) is
also physical and hence gauge invariant which in turn
means that either it is identically zero or the the boundary
condition must be that of Eq. (2) and not Eq. (4); only
the former has CLúL(x̨i, x̨j ; T ) gauge invariant. Moreover,
Tr [exp(≠—H)Pij ] is not identically zero since there are
allowable states in the physical Hilbert space with the
appropriate color charges at x̨i and x̨j . Thus, it appears
as though the only viable choice of boundary condition
is Eq. (2). However, this conclusion is dependent on the
derivation of Eq. (13b) and that derivation is flawed.

VI. BREAKDOWN OF THE STANDARD
INTERPRETATION

There are two flaws in the analysis of the previous
section.

The first concerns the starting point of that analysis,
Eq. (11). The first form of Eq. (11) is obtained by in-
tegrating out the color sources to relate the expectation
value of Sj;cÕ(—)Si;c(—)S†

i;c0S
†
j;cÕ(0)P0 to CLúL. How-

ever that step is legitimate only to the extent that one
is computing the expectation value of a gauge-invariant
object. However Sj;cÕ(—)Si;c(—)S†

i;c0S
†
j;cÕ(0) is not gauge

invariant as an operator, nor are the Polyakov loop op-
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Argument depends on circular reasoning

Ironic to use circular reason to deduce 
properties of a loop!!
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Assume that conventional periodic b.c. holds.

Cannot deduce the free energy form directly from this.                          
And                          are not gauge invariant and acting on physical 
states they may produce states outside the physical space.
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Equation (13b) appears to be easy to interpret4. Note
that Pij is a projector on to states with a color charge in
the fundamental at x̨i and one in the anti-fundamental
at x̨j and no other color charges. Moreover, it is clearly
gauge invariant. Thus the last form of Eq. (13b) is of the
form of Eq. (Eq:Zconst) in the appendix, which means
that CLúL(x̨i, x̨j ; T ) is the partition function for a system
constrianted to have a color charge in the fundamental
at x̨i and the anti-fundamental at x̨j ; thus that the free
energy to place these charge, F12 is given by

CLúL(x̨i, x̨j ; T ) = exp(≠—Fij) (14)

4 The step of using the cyclic property of the trace to rewrite
Eq. (13a) as Eq. (13b) is often done implicitly as in ref. ****.
One implicitly assumes that summing over all states of the
form S†

j;c0S
†
j;cÕ (0)P0|ÂÍphys is equivalent to summing over phys-

ical states with a fundamental color source at x̨i and an anti-
fundmental color color source at x̨j . It this assumption were
correct, one could explicitly use the cyclic property of the trace
to obtain a form where that unambiguously occurs. However
it is worth taking that step as one can subsequently probe the
legitimacy of using the cyclic property of the trace in this context.

If one repeats this procedure with di�erent choices for x̨i

and x̨j one can map out the free energy as a function of
separation and Eq. (7) for the string tension follows.

If this derivation is correct then CLúL(x̨i, x̨j ; T ) is a
partition function for states with fixed color charges and
the partition function is is physical and hence gauge
invariant. This appears to imply that CLúL(x̨i, x̨j ; T ) is
also physical and hence gauge invariant which in turn
means that either it is identically zero or the the boundary
condition must be that of Eq. (2) and not Eq. (4); only
the former has CLúL(x̨i, x̨j ; T ) gauge invariant. Moreover,
Tr [exp(≠—H)Pij ] is not identically zero since there are
allowable states in the physical Hilbert space with the
appropriate color charges at x̨i and x̨j . Thus, it appears
as though the only viable choice of boundary condition
is Eq. (2). However, this conclusion is dependent on the
derivation of Eq. (13b) and that derivation is flawed.

VI. BREAKDOWN OF THE STANDARD
INTERPRETATION

There are two flaws in the analysis of the previous
section.

The first concerns the starting point of that analy-
sis, Eq. (11). The first form of Eq. (11) is obtained by
integrating out the color sources to relate the expecta-
tion value of

q
c,cÕ Sj;cÕ(—)Si;c(—)S†

j;c0S
†
j;cÕ(0)P0 to CLúL.

However that step is legitimate only to the extent that one
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where repeated color indices are summed. The cyclic property of the trace allows this to be rewritten as
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Ë
exp(≠—H)S†
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È
= Trphys [exp(≠—H)Pij ] (13b)

where Pij given by

Pij = S
†
j;c(0)S†

j;cÕ(0)P0Sj;cÕ(0)Si;c(0) . (13c)

Equation (13b) appears to be easy to interpret4. Note
that Pij is a projector on to states with a color charge in
the fundamental at x̨i and one in the anti-fundamental
at x̨j and no other color charges. Moreover, it is clearly
gauge invariant. Thus the last form of Eq. (13b) is of the
form of Eq. (Eq:Zconst) in the appendix, which means
that CLúL(x̨i, x̨j ; T ) is the partition function for a system
constrianted to have a color charge in the fundamental
at x̨i and the anti-fundamental at x̨j ; thus that the free
energy to place these charge, F12 is given by

CLúL(x̨i, x̨j ; T ) = exp(≠—Fij) (14)

4 The step of using the cyclic property of the trace to rewrite
Eq. (13a) as Eq. (13b) is often done implicitly as in ref. ****.
One implicitly assumes that summing over all states of the
form S†

j;c0S
†
j;cÕ (0)P0|ÂÍphys is equivalent to summing over phys-

ical states with a fundamental color source at x̨i and an anti-
fundmental color color source at x̨j . It this assumption were
correct, one could explicitly use the cyclic property of the trace
to obtain a form where that unambiguously occurs. However
it is worth taking that step as one can subsequently probe the
legitimacy of using the cyclic property of the trace in this context.

If one repeats this procedure with di�erent choices for x̨i

and x̨j one can map out the free energy as a function of
separation and Eq. (7) for the string tension follows.

If this derivation is correct then CLúL(x̨i, x̨j ; T ) is a
partition function for states with fixed color charges and
the partition function is is physical and hence gauge
invariant. This appears to imply that CLúL(x̨i, x̨j ; T ) is
also physical and hence gauge invariant which in turn
means that either it is identically zero or the the boundary
condition must be that of Eq. (2) and not Eq. (4); only
the former has CLúL(x̨i, x̨j ; T ) gauge invariant. Moreover,
Tr [exp(≠—H)Pij ] is not identically zero since there are
allowable states in the physical Hilbert space with the
appropriate color charges at x̨i and x̨j . Thus, it appears
as though the only viable choice of boundary condition
is Eq. (2). However, this conclusion is dependent on the
derivation of Eq. (13b) and that derivation is flawed.

VI. BREAKDOWN OF THE STANDARD
INTERPRETATION

There are two flaws in the analysis of the previous
section.

The first concerns the starting point of that analy-
sis, Eq. (11). The first form of Eq. (11) is obtained by
integrating out the color sources to relate the expecta-
tion value of

q
c,cÕ Sj;cÕ(—)Si;c(—)S†

j;c0S
†
j;cÕ(0)P0 to CLúL.

However that step is legitimate only to the extent that one
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P0 ©

ŒŸ

n=1

Q

an ≠

ÿ

j

S
†
j,c

Sj,c

R

b . (12)

The next step uses the fact that in Euclidean space an
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Equation (13b) appears to be easy to interpret4. Note
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the fundamental at x̨i and one in the anti-fundamental
at x̨j and no other color charges. Moreover, it is clearly
gauge invariant. Thus the last form of Eq. (13b) is of the
form of Eq. (Eq:Zconst) in the appendix, which means
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at x̨i and the anti-fundamental at x̨j ; thus that the free
energy to place these charge, F12 is given by

CLúL(x̨i, x̨j ; T ) = exp(≠—Fij) (14)
If one repeats this procedure with di�erent choices for x̨i

and x̨j one can map out the free energy as a function of
separation and Eq. (7) for the string tension follows.
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One implicitly assumes that summing over all states of the
form S†
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†
j;cÕ (0)P0|ÂÍphys is equivalent to summing over phys-

ical states with a fundamental color source at x̨i and an anti-
fundmental color color source at x̨j . It this assumption were
correct, one could explicitly use the cyclic property of the trace
to obtain a form where that unambiguously occurs. However
it is worth taking that step as one can subsequently probe the
legitimacy of using the cyclic property of the trace in this context.

If this derivation is correct then CLúL(x̨i, x̨j ; T ) is a
partition function for states with fixed color charges and
the partition function is is physical and hence gauge
invariant. This appears to imply that CLúL(x̨i, x̨j ; T ) is
also physical and hence gauge invariant which in turn
means that either it is identically zero or the the boundary
condition must be that of Eq. (2) and not Eq. (4); only
the former has CLúL(x̨i, x̨j ; T ) gauge invariant. Moreover,
Tr [exp(≠—H)Pij ] is not identically zero since there are
allowable states in the physical Hilbert space with the
appropriate color charges at x̨i and x̨j . Thus, it appears
as though the only viable choice of boundary condition
is Eq. (2). However, this conclusion is dependent on the
derivation of Eq. (13b) and that derivation is flawed.

VI. BREAKDOWN OF THE STANDARD
INTERPRETATION

There are two flaws in the analysis of the previous
section.

The first concerns the starting point of that analysis,
Eq. (11). The first form of Eq. (11) is obtained by in-
tegrating out the color sources to relate the expectation
value of Sj;cÕ(—)Si;c(—)S†

i;c0S
†
j;cÕ(0)P0 to CLúL. How-

ever that step is legitimate only to the extent that one
is computing the expectation value of a gauge-invariant
object. However Sj;cÕ(—)Si;c(—)S†

i;c0S
†
j;cÕ(0) is not gauge

invariant as an operator, nor are the Polyakov loop op-
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Equation (13b) appears to be easy to interpret4. Note
that Pij is a projector on to states with a color charge in
the fundamental at x̨i and one in the anti-fundamental
at x̨j and no other color charges. Moreover, it is clearly
gauge invariant. Thus the last form of Eq. (13b) is of the
form of Eq. (Eq:Zconst) in the appendix, which means
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constrianted to have a color charge in the fundamental
at x̨i and the anti-fundamental at x̨j ; thus that the free
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partition function for states with fixed color charges and
the partition function is is physical and hence gauge
invariant. This appears to imply that CLúL(x̨i, x̨j ; T ) is
also physical and hence gauge invariant which in turn
means that either it is identically zero or the the boundary
condition must be that of Eq. (2) and not Eq. (4); only
the former has CLúL(x̨i, x̨j ; T ) gauge invariant. Moreover,
Tr [exp(≠—H)Pij ] is not identically zero since there are
allowable states in the physical Hilbert space with the
appropriate color charges at x̨i and x̨j . Thus, it appears
as though the only viable choice of boundary condition
is Eq. (2). However, this conclusion is dependent on the
derivation of Eq. (13b) and that derivation is flawed.

VI. BREAKDOWN OF THE STANDARD
INTERPRETATION

There are two flaws in the analysis of the previous
section.

The first concerns the starting point of that analysis,
Eq. (11). The first form of Eq. (11) is obtained by in-
tegrating out the color sources to relate the expectation
value of Sj;cÕ(—)Si;c(—)S†
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where repeated color indices are summed. The cyclic property of the trace allows this to be rewritten as
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where Pij given by

Pij = S
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i;cÕ(0)P0Si;cÕ(0)Si;c(0) . (13c)

Equation (13b) appears to be easy to interpret4. Note
that Pij is a projector on to states with a color charge in
the fundamental at x̨i and one in the anti-fundamental
at x̨j and no other color charges. Moreover, it is clearly
gauge invariant. Thus the last form of Eq. (13b) is of the
form of Eq. (Eq:Zconst) in the appendix, which means
that CLúL(x̨i, x̨j ; T ) is the partition function for a system
constrianted to have a color charge in the fundamental
at x̨i and the anti-fundamental at x̨j ; thus that the free
energy to place these charge, F12 is given by

CLúL(x̨i, x̨j ; T ) = exp(≠—Fij) (14)
If one repeats this procedure with di�erent choices for x̨i

and x̨j one can map out the free energy as a function of
separation and Eq. (7) for the string tension follows.

4 The step of using the cyclic property of the trace to rewrite
Eq. (13a) as Eq. (13b) is often done implicitly as in ref. ****.
One implicitly assumes that summing over all states of the
form S†

j;c0S
†
j;cÕ (0)P0|ÂÍphys is equivalent to summing over phys-

ical states with a fundamental color source at x̨i and an anti-
fundmental color color source at x̨j . It this assumption were
correct, one could explicitly use the cyclic property of the trace
to obtain a form where that unambiguously occurs. However
it is worth taking that step as one can subsequently probe the
legitimacy of using the cyclic property of the trace in this context.

If this derivation is correct then CLúL(x̨i, x̨j ; T ) is a
partition function for states with fixed color charges and
the partition function is is physical and hence gauge
invariant. This appears to imply that CLúL(x̨i, x̨j ; T ) is
also physical and hence gauge invariant which in turn
means that either it is identically zero or the the boundary
condition must be that of Eq. (2) and not Eq. (4); only
the former has CLúL(x̨i, x̨j ; T ) gauge invariant. Moreover,
Tr [exp(≠—H)Pij ] is not identically zero since there are
allowable states in the physical Hilbert space with the
appropriate color charges at x̨i and x̨j . Thus, it appears
as though the only viable choice of boundary condition
is Eq. (2). However, this conclusion is dependent on the
derivation of Eq. (13b) and that derivation is flawed.

VI. BREAKDOWN OF THE STANDARD
INTERPRETATION

There are two flaws in the analysis of the previous
section.

The first concerns the starting point of that analysis,
Eq. (11). The first form of Eq. (11) is obtained by in-
tegrating out the color sources to relate the expectation
value of Sj;cÕ(—)Si;c(—)S†

i;c0S
†
j;cÕ(0)P0 to CLúL. How-

ever that step is legitimate only to the extent that one
is computing the expectation value of a gauge-invariant
object. However Sj;cÕ(—)Si;c(—)S†

i;c0S
†
j;cÕ(0) is not gauge

invariant as an operator, nor are the Polyakov loop op-



The color charge operators add color 
charges without affecting color E-field, 
acting on a state that satisfies color 
Gauss law, yields one that does not—
i.e. the state is unphysical 

But…Cyclic property of trace only valid for operators that 
map from a Hilbert space onto itself.  The space here is the 
physical Hilbert space—states that satisfy the Gauss Law 
constraint.
The operator                              could take one outside this space 
and invalidates step.  Check this:
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where repeated color indices are summed and the second
form is written in terms of a Hamiltonian formulation;
the trace is over the physical states in the Hilbert space
and P0 is a projector onto states with no color sources
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The next step uses the fact that in Euclidean space an
operator O(· + —) = exp(—H)O(·) exp(—H). Inserting
this into the trace form of Eq. (11) yields
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Equation (13b) appears to be easy to interpret4. Note
that Pij is a projector on to states with a color charge in
the fundamental at x̨i and one in the anti-fundamental
at x̨j and no other color charges. Moreover, it is clearly
gauge invariant. Thus the last form of Eq. (13b) is of the
form of Eq. (Eq:Zconst) in the appendix, which means
that CLúL(x̨i, x̨j ; T ) is the partition function for a system
constrianted to have a color charge in the fundamental
at x̨i and the anti-fundamental at x̨j ; thus that the free
energy to place these charge, F12 is given by

CLúL(x̨i, x̨j ; T ) = exp(≠—Fij) (14)

4 The step of using the cyclic property of the trace to rewrite
Eq. (13a) as Eq. (13b) is often done implicitly as in ref. ****.
One implicitly assumes that summing over all states of the
form S†

j;c0S
†
j;cÕ (0)P0|ÂÍphys is equivalent to summing over phys-

ical states with a fundamental color source at x̨i and an anti-
fundmental color color source at x̨j . It this assumption were
correct, one could explicitly use the cyclic property of the trace
to obtain a form where that unambiguously occurs. However
it is worth taking that step as one can subsequently probe the
legitimacy of using the cyclic property of the trace in this context.

If one repeats this procedure with di�erent choices for x̨i

and x̨j one can map out the free energy as a function of
separation and Eq. (7) for the string tension follows.

If this derivation is correct then CLúL(x̨i, x̨j ; T ) is a
partition function for states with fixed color charges and
the partition function is is physical and hence gauge
invariant. This appears to imply that CLúL(x̨i, x̨j ; T ) is
also physical and hence gauge invariant which in turn
means that either it is identically zero or the the boundary
condition must be that of Eq. (2) and not Eq. (4); only
the former has CLúL(x̨i, x̨j ; T ) gauge invariant. Moreover,
Tr [exp(≠—H)Pij ] is not identically zero since there are
allowable states in the physical Hilbert space with the
appropriate color charges at x̨i and x̨j . Thus, it appears
as though the only viable choice of boundary condition
is Eq. (2). However, this conclusion is dependent on the
derivation of Eq. (13b) and that derivation is flawed.

VI. BREAKDOWN OF THE STANDARD
INTERPRETATION

There are two flaws in the analysis of the previous
section.

The first concerns the starting point of that analy-
sis, Eq. (11). The first form of Eq. (11) is obtained by
integrating out the color sources to relate the expecta-
tion value of

q
c,cÕ Sj;cÕ(—)Si;c(—)S†

j;c0S
†
j;cÕ(0)P0 to CLúL.
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at x̨j and no other color charges. Moreover, it is clearly
gauge invariant. Thus the last form of Eq. (13b) is of the
form of Eq. (Eq:Zconst) in the appendix, which means
that CLúL(x̨i, x̨j ; T ) is the partition function for a system
constrianted to have a color charge in the fundamental
at x̨i and the anti-fundamental at x̨j ; thus that the free
energy to place these charge, F12 is given by

CLúL(x̨i, x̨j ; T ) = exp(≠—Fij) (14)
If one repeats this procedure with di�erent choices for x̨i

and x̨j one can map out the free energy as a function of
separation and Eq. (7) for the string tension follows.

4 The step of using the cyclic property of the trace to rewrite
Eq. (13a) as Eq. (13b) is often done implicitly as in ref. ****.
One implicitly assumes that summing over all states of the
form S†

j;c0S
†
j;cÕ (0)P0|ÂÍphys is equivalent to summing over phys-

ical states with a fundamental color source at x̨i and an anti-
fundmental color color source at x̨j . It this assumption were
correct, one could explicitly use the cyclic property of the trace
to obtain a form where that unambiguously occurs. However
it is worth taking that step as one can subsequently probe the
legitimacy of using the cyclic property of the trace in this context.

If this derivation is correct then CLúL(x̨i, x̨j ; T ) is a
partition function for states with fixed color charges and
the partition function is is physical and hence gauge
invariant. This appears to imply that CLúL(x̨i, x̨j ; T ) is
also physical and hence gauge invariant which in turn
means that either it is identically zero or the the boundary
condition must be that of Eq. (2) and not Eq. (4); only
the former has CLúL(x̨i, x̨j ; T ) gauge invariant. Moreover,
Tr [exp(≠—H)Pij ] is not identically zero since there are
allowable states in the physical Hilbert space with the
appropriate color charges at x̨i and x̨j . Thus, it appears
as though the only viable choice of boundary condition
is Eq. (2). However, this conclusion is dependent on the
derivation of Eq. (13b) and that derivation is flawed.

VI. BREAKDOWN OF THE STANDARD
INTERPRETATION

There are two flaws in the analysis of the previous
section.

The first concerns the starting point of that analysis,
Eq. (11). The first form of Eq. (11) is obtained by in-
tegrating out the color sources to relate the expectation
value of Sj;cÕ(—)Si;c(—)S†

i;c0S
†
j;cÕ(0)P0 to CLúL. How-

ever that step is legitimate only to the extent that one
is computing the expectation value of a gauge-invariant
object. However Sj;cÕ(—)Si;c(—)S†

i;c0S
†
j;cÕ(0) is not gauge

invariant as an operator, nor are the Polyakov loop op-



A simple calculation, taking into account physical space yields:

Heretical View:
There is no connection 
between Polyakov loop 
observables and the free 
energy of systems with static 
color charges.  
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erators used in defining CLúL. They might be consid-
ered gauge invariant objects rendering the steps that
follow meaningful, but only if one assumes at the outset
that the simple periodic boundary conditions of Eq. (2)
holds rather than the more general form of Eq. (4) for
finite temperature systems. This suggests that the con-
clusion at the end of Sec. V—that only Eq. (2) is
consistent—is entirely dependent on circular reasoning.
Only if one starts by assuming that Eq. (2) is valid rather
than Eq. (4) does one concludes that Eq. (2) is valid
while Eq. (4) is not. Had one assume from the outset
that Eq. (4) one could have concluded that both CLúL

and Trphys
Ë
exp(≠—H)Sj;cÕ(—)Si;c(—)S†

j;c0S
†
j;cÕ(0)P0

È
are

zero and Eq. (11) would be trivial true since 0=0; further
analysis would yield no additional physical information.

There is another serious flaw. Suppose one accepted
at the from the beginning that the boundary condition
of Eq. (2) held, one still cannot reach Eq. (13b) and
justify the free energy interpretation without making an
illegitimate step.

This can by seen by focusing on the connection Eq. (13a)
and Eq. (13b); strictly, it is Eq. (13b and not Eq. (13a)
that allows a free energy interpretation. Equation (13b)
is obtained from Eq. (13a) via the cyclic property of the
trace. However that property only holds for matrices that
map from a vector space onto itself, or in the quantum
mechanical context from operators that map from the
Hilbert space of interest onto itself. It is important to
recall that the trace in Eq. (13a) is over the physical states
in the Hilbert space only—those states that satisfy the
color Gauss law (see Appendix A)—and not over the full
Hilbert space. It is by no means clear that the operator
that is cycled through the trace does not connect physical
and unphysical states which would invalidate the use of the
cyclic property. In fact, the operator does connect physical
states and unphysical states. Since this invalidates the
use of the cyclic property it also removes the justification
for Eq. (13b) and the free energy interpretation.

To see this rewrite Eq. (13a) by inserting a projection
operators unto the space inside the trace and take the
trace over the full space rather than the physical space:

CLúL(x̨i, x̨j ; T ) = Trfull
Ë
Sj;cÕ(0)Si;c(0) exp(≠—H)S†

i;c0S
†
j;cÕ(0)P0Pphys

È
(15a)

This is innocuous as the only states in the trace that contribute are physical. The cyclic property is clearly valid for
traces over the full space; thus

CLúL(x̨i, x̨j ; T ) = Trfull
Ë
exp(≠—H)S†

i;c(0)S†
j;cÕ(0) P0 Pphys Sj;cÕ(0)Si;c(0)

È
. (15b)

It is useful to divide the terms in the trace into physical states selected by the projector Pphys and unphysical states
selected by the projector 1 ≠ Pphys

CLúL(x̨i, x̨j ; T ) = Trfull
Ë
exp(≠—H)S†

i;c(0)S†
j;cÕ(0) P0 Pphys Sj;cÕ(0)Si;c(0)Pphys

È

+ Trfull
Ë
exp(≠—H)S†

i;c(0)S†
j;cÕ(0) P0 Pphys Si;cÕ(0)Si;c(0)(1 ≠ Pphys)

È (15c)

It is straightforward to see that,

PphysSj;cÕ(0)Si;c(0) Pphys = 0 . (16)

the first projector on the right acting on any any state
projects onto to a physical state and such states satisfy
the color Gauss law. However the operator Sj;cÕ(0)Si;c(0)
acting on that state adds color charges without alter-
ing the color electric field. Thus, all components of the
state violate the Gauss law after being acted upon by
Sj;cÕ(0)Si;c(0); the action of the projector on the left
projects this onto zero5.

5 An analogous argument is relevant to the implicit assumption
discussed in Footnote 4. The states considered there are not in
the physical subspace for the same reason that Eq. (16) holds.
This invalidates their use in a free energy calculation

Eq. (16) implies that the first term in Eq. (15c) is zero.
Thus, the correlator of the Polyakov loop is given by a
sum of unphysical states only

CLúL(x̨i, x̨j ; T ) =

Trunphys
Ë
e

≠—H
S

†
i;c(0)S†

j;cÕ(0) P0 Pphys Sj;cÕ(0)Si;c(0)
È

.

(17)

If the cyclic property of the trace were legitimate for
the physical space, then Eq. (17) would be equivalent
to Eq. (13b). Clearly their forms are radically di�er-
ent. Equation (17) is a sum over unphysical states while
Eq. (13b) is a sum over physical states. A prior, it seems
very unlikely that the two expressions are equal: it would
require a mathematical conspiracy that forced a sum
of states in the physical and unphysical sectors to be
identical. In any case, the form in Eq. (13b) must be
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very unlikely that the two expressions are equal: it would
require a mathematical conspiracy that forced a sum
of states in the physical and unphysical sectors to be
identical. In any case, the form in Eq. (13b) must be

≠

8

CLúL(x̨i, x̨j ; T ) =
e

Sj;cÕ(—)Si;c(—)S†
jx̨j ;c(0)S†

j;cÕ(0)P0
f

T

= Trphys
Ë
exp(≠—H)Sj;cÕ(—)Si;c(—)S†

j;c(0)S†
j;cÕ(0)P0

È

=
ÿ

kœphys
ÈÂk| exp(≠—H)Sj;cÕ(—)Si;c(—)S†

i;c(0)S†
j;cÕ(0)P0|ÂkÍ

(11)

where repeated color indices are summed and the second
form is written in terms of a Hamiltonian formulation;
the trace is over the physical states in the Hilbert space
and P0 is a projector onto states with no color sources
(i.e. pure Yang-Mills):

P0 ©

ŒŸ

n=1

Q

an ≠

ÿ

j

S
†
j,c

Sj,c

R

b . (12)

The next step uses the fact that in Euclidean space an
operator O(· + —) = exp(—H)O(·) exp(≠—H). Inserting
this into the trace form of Eq. (11) yields

CLúL(x̨i, x̨j ; T ) = Trphys
Ë
Sj;cÕ(0)Si;c(0) exp(≠—H)S†

i;c(0)S†
j;cÕ(0)P0

È

=
ÿ

kœphys
ÈÂk|Si;cÕ(0)Si;c(0) exp(≠—H)S†

i;c(0)S†
j;cÕ(0)P0|„kÍ

(13a)

where repeated color indices are summed. The cyclic property of the trace allows this to be rewritten as

CLúL(x̨i, x̨j ; T ) = Trphys
Ë
exp(≠—H)S†

i;c(0)S†
i;cÕ(0)P0Sj;cÕ(0)Si;c(0)

È
= Trphys [exp(≠—H)Pij ] (13b)

where Pij given by

Pij = S
†
i;c(0)S†

j;cÕ(0)P0Si;cÕ(0)Si;c(0) . (13c)

Equation (13b) appears to be easy to interpret4. Note
that Pij is a projector on to states with a color charge in
the fundamental at x̨i and one in the anti-fundamental
at x̨j and no other color charges. Moreover, it is clearly
gauge invariant. Thus the last form of Eq. (13b) is of the
form of Eq. (Eq:Zconst) in the appendix, which means
that CLúL(x̨i, x̨j ; T ) is the partition function for a system
constrianted to have a color charge in the fundamental
at x̨i and the anti-fundamental at x̨j ; thus that the free
energy to place these charge, F12 is given by

CLúL(x̨i, x̨j ; T ) = exp(≠—Fij) (14)
If one repeats this procedure with di�erent choices for x̨i

and x̨j one can map out the free energy as a function of
separation and Eq. (7) for the string tension follows.

4 The step of using the cyclic property of the trace to rewrite
Eq. (13a) as Eq. (13b) is often done implicitly as in ref. ****.
One implicitly assumes that summing over all states of the
form S†

j;c0S
†
j;cÕ (0)P0|ÂÍphys is equivalent to summing over phys-

ical states with a fundamental color source at x̨i and an anti-
fundmental color color source at x̨j . It this assumption were
correct, one could explicitly use the cyclic property of the trace
to obtain a form where that unambiguously occurs. However
it is worth taking that step as one can subsequently probe the
legitimacy of using the cyclic property of the trace in this context.

If this derivation is correct then CLúL(x̨i, x̨j ; T ) is a
partition function for states with fixed color charges and
the partition function is is physical and hence gauge
invariant. This appears to imply that CLúL(x̨i, x̨j ; T ) is
also physical and hence gauge invariant which in turn
means that either it is identically zero or the the boundary
condition must be that of Eq. (2) and not Eq. (4); only
the former has CLúL(x̨i, x̨j ; T ) gauge invariant. Moreover,
Tr [exp(≠—H)Pij ] is not identically zero since there are
allowable states in the physical Hilbert space with the
appropriate color charges at x̨i and x̨j . Thus, it appears
as though the only viable choice of boundary condition
is Eq. (2). However, this conclusion is dependent on the
derivation of Eq. (13b) and that derivation is flawed.

VI. BREAKDOWN OF THE STANDARD
INTERPRETATION

There are two flaws in the analysis of the previous
section.

The first concerns the starting point of that analysis,
Eq. (11). The first form of Eq. (11) is obtained by in-
tegrating out the color sources to relate the expectation
value of Sj;cÕ(—)Si;c(—)S†

i;c0S
†
j;cÕ(0)P0 to CLúL. How-

ever that step is legitimate only to the extent that one
is computing the expectation value of a gauge-invariant
object. However Sj;cÕ(—)Si;c(—)S†

i;c0S
†
j;cÕ(0) is not gauge

invariant as an operator, nor are the Polyakov loop op-

Where Pphys projects onto states satisfying Gauss law and Trunphys sums 
over eigenstates of (1- Pphys) with eigenvalue unity.

Result starting from conventional periodic b.c. has only unphysical 
states contributing and no connection to free energy of physical 
states with static color charges!!



• Starting with the assumption that the standard period 
boundary conditions are valid
• one obtains the result that all of the contributions to 

CL*L only comes from unphysical states—ones that do 
not satisfy the color Gauss law when evaluated in a 
Hamiltonian picture.  

• This suggests that the correlator of Polyakov loops is 
without  direct physical content

Provides additional argument that the appropriate boundary 
conditions are the more general ones and not the usual periodic 
ones. 

The first two heretical propositions have been discussed: 1. 
Polyakov  loop is not gauge invariant in functional integrals using 
most general thermal  boundary conditions. 2. No connection 
between Polyakov loop observables and the free energy.



• First two heretical ideas imply the third.
• The third heresy: No reliable evidence that the 

high-temperature phase of Yang-Mills deconfines 
fundamental color charges.
• The evidence that fundamental color charges are

deconfined at high temperatures come from studies of 
observables related to the Polyakov loop.

Raises the possibility that
fundamental color charges 
are confined in both high 
temp and low temp phases.



Back up slides



• Whether or not fundamental color charges are 
deconfined in the high temperature phase might 
be answered by lattice studies without recourse to 
the Polyakov loop.  

• One “simply” adds in explicit heavy quarks, takes the 
appropriate limits in the correct order and then 
calculates the observables that act as signatures of 
deconfinement.

• However, apart from possible technical challenges, 
there are some subtle issues of principle as to what 
observables one should use and in what order 
various limits should be taken.  Theses issues are 
currently being explored.



Derivation of CL*L
Cyclic property of trace only valid for operators that map from 
a Hilbert space onto itself.  The space here is the physical 
Hilbert space—states that satisfy the Gauss Law constraint.
The operator                              could take one outside this space 
(and in fact does) and this invalidates step.
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where repeated color indices are summed and the second
form is written in terms of a Hamiltonian formulation;
the trace is over the physical states in the Hilbert space
and P0 is a projector onto states with no color sources
(i.e. pure Yang-Mills):
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If this derivation is correct then CLúL(x̨i, x̨j ; T ) is a
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the partition function is is physical and hence gauge
invariant. This appears to imply that CLúL(x̨i, x̨j ; T ) is
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means that either it is identically zero or the the boundary
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the former has CLúL(x̨i, x̨j ; T ) gauge invariant. Moreover,
Tr [exp(≠—H)Pij ] is not identically zero since there are
allowable states in the physical Hilbert space with the
appropriate color charges at x̨i and x̨j . Thus, it appears
as though the only viable choice of boundary condition
is Eq. (2). However, this conclusion is dependent on the
derivation of Eq. (13b) and that derivation is flawed.

VI. BREAKDOWN OF THE STANDARD
INTERPRETATION

There are two flaws in the analysis of the previous
section.

The first concerns the starting point of that analy-
sis, Eq. (11). The first form of Eq. (11) is obtained by
integrating out the color sources to relate the expecta-
tion value of

q
c,cÕ Sj;cÕ(—)Si;c(—)S†

j;c0S
†
j;cÕ(0)P0 to CLúL.

However that step is legitimate only to the extent that one

• Check: Rewrite  initial expression as  trace over  full 
Hilbert space, with  projector onto the physical space.  
In full space, cyclic property valid  
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(13a)

where repeated color indices are summed. The cyclic property of the trace allows this to be rewritten as

CLúL(x̨i, x̨j ; T ) = Trphys
Ë
exp(≠—H)S†

j;c(0)S†
j;cÕ(0)P0Sj;cÕ(0)Si;c(0)

È
= Trphys [exp(≠—H)Pij ] (13b)

where Pij given by

Pij = S
†
j;c(0)S†

j;cÕ(0)P0Sj;cÕ(0)Si;c(0) . (13c)

Equation (13b) appears to be easy to interpret4. Note
that Pij is a projector on to states with a color charge in
the fundamental at x̨i and one in the anti-fundamental
at x̨j and no other color charges. Moreover, it is clearly
gauge invariant. Thus the last form of Eq. (13b) is of the
form of Eq. (Eq:Zconst) in the appendix, which means
that CLúL(x̨i, x̨j ; T ) is the partition function for a system
constrianted to have a color charge in the fundamental
at x̨i and the anti-fundamental at x̨j ; thus that the free
energy to place these charge, F12 is given by

CLúL(x̨i, x̨j ; T ) = exp(≠—Fij) (14)

4 The step of using the cyclic property of the trace to rewrite
Eq. (13a) as Eq. (13b) is often done implicitly as in ref. ****.
One implicitly assumes that summing over all states of the
form S†

j;c0S
†
j;cÕ (0)P0|ÂÍphys is equivalent to summing over phys-

ical states with a fundamental color source at x̨i and an anti-
fundmental color color source at x̨j . It this assumption were
correct, one could explicitly use the cyclic property of the trace
to obtain a form where that unambiguously occurs. However
it is worth taking that step as one can subsequently probe the
legitimacy of using the cyclic property of the trace in this context.

If one repeats this procedure with di�erent choices for x̨i

and x̨j one can map out the free energy as a function of
separation and Eq. (7) for the string tension follows.

If this derivation is correct then CLúL(x̨i, x̨j ; T ) is a
partition function for states with fixed color charges and
the partition function is is physical and hence gauge
invariant. This appears to imply that CLúL(x̨i, x̨j ; T ) is
also physical and hence gauge invariant which in turn
means that either it is identically zero or the the boundary
condition must be that of Eq. (2) and not Eq. (4); only
the former has CLúL(x̨i, x̨j ; T ) gauge invariant. Moreover,
Tr [exp(≠—H)Pij ] is not identically zero since there are
allowable states in the physical Hilbert space with the
appropriate color charges at x̨i and x̨j . Thus, it appears
as though the only viable choice of boundary condition
is Eq. (2). However, this conclusion is dependent on the
derivation of Eq. (13b) and that derivation is flawed.

VI. BREAKDOWN OF THE STANDARD
INTERPRETATION

There are two flaws in the analysis of the previous
section.

The first concerns the starting point of that analy-
sis, Eq. (11). The first form of Eq. (11) is obtained by
integrating out the color sources to relate the expecta-
tion value of

q
c,cÕ Sj;cÕ(—)Si;c(—)S†

j;c0S
†
j;cÕ(0)P0 to CLúL.

However that step is legitimate only to the extent that one
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is computing the expectation value of a gauge-invariant
object. However

q
c,cÕ Sj;cÕ(—)Si;c(—)S†

j;c0S
†
j;cÕ(0) is not

gauge invariant as an operator, nor are the Polyakov
loop operators used in defining CLúL. They might be
considered gauge invariant objects rendering the steps
that follow meaningful, but only if one assumes at the
outset that the simple periodic boundary conditions of
Eq. (2) holds rather than the more general form of Eq. (4)
for finite temperature systems. This suggests that the
conclusion at the end of Sec. V—that only Eq. (2) is
consistent—is entirely dependent on circular reasoning.
Only if one starts by assuming that Eq. (2) is valid rather
than Eq. (4) does one concludes that Eq. (2) is valid
while Eq. (4) is not. Had one assume from the outset
that Eq. (4) one could have concluded that both CLúL

and Trphys
Ë
exp(≠—H)Sj;cÕ(—)Si;c(—)S†

j;c0S
†
j;cÕ(0)P0

È
are

zero and Eq. (11) would be trivial true since 0=0 and
further analysis would yield no additional physical infor-
mation.

There is another more serious flaw. Suppose one ac-
cepted at the from the beginning that the boundary con-
dition of Eq. (2) held, one still cannot reach Eq. (13b)

and justify the free energy interpretation without making
an illegitimate step.

This can by seen by focusing on the connection Eq. (13a)
and Eq. (13b); strictly, it is Eq. (13b and not Eq. (13a)
that allows a free energy interpretation. Equation (13b)
is obtained from Eq. (13a) via the cyclic property of the
trace. However that property only holds for matrices that
map from a vector space onto itself, or in the quantum
mechanical context from operators that map from the
Hilbert space of interest onto itself. It is important to
recall that the trace in Eq. (13a) is over the physical
states in the Hilbert space only—those states that satisfy
the color Gauss law (see Appendix A)—and not over
the full Hilbert space. It is by no means clear that the
operator that is cycled through the trace does not leave
the space of physical states over which the trace is taken.
In fact, it does leave the space of physical states; and
this invalidates the use of the cyclic property and with it
removes the justification for Eq. (13b) and the free energy
interpretation.

To see this rewrite Eq. (13a) by inserting a projection
operators unto the space inside the trace and take the
trace over the full space rather than the physical space:

CLúL(x̨i, x̨j ; T ) = Trfull
Ë
Sj;cÕ(0)Si;c(0) exp(≠—H)S†

j;c0S
†
j;cÕ(0)P0Pphys

È
(15a)

This is innocuous as the only states in the trace that contribute are physical. The cyclic property is then clearly valid
since it is for the full space; thus

CLúL(x̨i, x̨j ; T ) = Trfull
Ë
exp(≠—H)S†

j;c(0)S†
j;cÕ(0) P0 Pphys Sj;cÕ(0)Si;c(0)

È
. (15b)

It is useful to divide the terms in the trace into physical states selected by the projector Pphys and unphysical states
selected by the projector 1 ≠ Pphys

CLúL(x̨i, x̨j ; T ) = Trfull
Ë
exp(≠—H)S†

j;c(0)S†
j;cÕ(0) P0 Pphys Sj;cÕ(0)Si;c(0)Pphys

È

+ Trfull
Ë
exp(≠—H)S†

j;c(0)S†
j;cÕ(0) P0 Pphys Sj;cÕ(0)Si;c(0)(1 ≠ Pphys)

È (15c)

In Appendix C it is shown via rather formal means that

PphysSj;cÕ(0)Si;c(0) Pphys = 0 . (16)

Intuitively one can see that this is true since the first
projector on the right acting on any any state projects
onto to a physical state and such states satisfy the color
Gauss law. However the operator Sj;cÕ(0)Si;c(0) acting
on that state adds color charges without altering the color
electric field. Thus, all components of the state violate
the Gauss law after being acted upon by Sj;cÕ(0)Si;c(0);
the action of the projector on the left projects this onto
zero5. Eq. (16) implies that the first term in Eq. (15c) is

5 An analogous argument is relevant to the implicit assumption

zero. Thus, the correlator of the Polyakov loop is given
by a sum of unphysical states only

CLúL(x̨i, x̨j ; T ) =

Trunphys
Ë
e

≠—H
S

†
j;c(0)S†

j;cÕ(0) P0 Pphys Sj;cÕ(0)Si;c(0)
È

.

(17)

This is clearly di�erent from
Equation (13b) is necessary for the interpreta-

tion in terms of free energies and the derivation of

discussed in Footnote 4. The states considered there are not in
the physical subspace for the same reason that Eq. (16) holds.
This invalidates their use in a free energy calculation
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formally but easy to understand intuitively:    
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CLúL(x̨i, x̨j ; T ) =
ÿ

c,cÕ

e
Sj;cÕ(—)Si;c(—)S†

j;c(0)S†
j;cÕ(0)P0

f

T

= Trphys
Ë
exp(≠—H)Sj;cÕ(—)Si;c(—)S†

j;c(0)S†
j;cÕ(0)P0

È

=
ÿ

kœphys
ÈÂk| exp(≠—H)Sj;cÕ(—)Si;c(—)S†

j;c(0)S†
j;cÕ(0)P0|ÂkÍ

(11)

where repeated color indices are summed and the second
form is written in terms of a Hamiltonian formulation;
the trace is over the physical states in the Hilbert space
and P0 is a projector onto states with no color sources
(i.e. pure Yang-Mills):

P0 ©

ŒŸ

n=1

Q

an ≠

ÿ

j,c

S
†
j,c

Sj,c

R

b . (12)

The next step uses the fact that in Euclidean space an
operator O(· + —) = exp(—H)O(·) exp(—H). Inserting
this into the trace form of Eq. (11) yields

CLúL(x̨i, x̨j ; T ) = Trphys
Ë
Sj;cÕ(0)Si;c(0) exp(≠—H)S†

j;c(0)S†
j;cÕ(0)P0

È

=
ÿ

kœphys
ÈÂk|Sj;cÕ(0)Si;c(0) exp(≠—H)S†

j;c(0)S†
j;cÕ(0)P0|„kÍ

(13a)

where repeated color indices are summed. The cyclic property of the trace allows this to be rewritten as

CLúL(x̨i, x̨j ; T ) = Trphys
Ë
exp(≠—H)S†
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È
= Trphys [exp(≠—H)Pij ] (13b)

where Pij given by

Pij = S
†
j;c(0)S†

j;cÕ(0)P0Sj;cÕ(0)Si;c(0) . (13c)

Equation (13b) appears to be easy to interpret4. Note
that Pij is a projector on to states with a color charge in
the fundamental at x̨i and one in the anti-fundamental
at x̨j and no other color charges. Moreover, it is clearly
gauge invariant. Thus the last form of Eq. (13b) is of the
form of Eq. (Eq:Zconst) in the appendix, which means
that CLúL(x̨i, x̨j ; T ) is the partition function for a system
constrianted to have a color charge in the fundamental
at x̨i and the anti-fundamental at x̨j ; thus that the free
energy to place these charge, F12 is given by

CLúL(x̨i, x̨j ; T ) = exp(≠—Fij) (14)

4 The step of using the cyclic property of the trace to rewrite
Eq. (13a) as Eq. (13b) is often done implicitly as in ref. ****.
One implicitly assumes that summing over all states of the
form S†

j;c0S
†
j;cÕ (0)P0|ÂÍphys is equivalent to summing over phys-

ical states with a fundamental color source at x̨i and an anti-
fundmental color color source at x̨j . It this assumption were
correct, one could explicitly use the cyclic property of the trace
to obtain a form where that unambiguously occurs. However
it is worth taking that step as one can subsequently probe the
legitimacy of using the cyclic property of the trace in this context.

If one repeats this procedure with di�erent choices for x̨i

and x̨j one can map out the free energy as a function of
separation and Eq. (7) for the string tension follows.

If this derivation is correct then CLúL(x̨i, x̨j ; T ) is a
partition function for states with fixed color charges and
the partition function is is physical and hence gauge
invariant. This appears to imply that CLúL(x̨i, x̨j ; T ) is
also physical and hence gauge invariant which in turn
means that either it is identically zero or the the boundary
condition must be that of Eq. (2) and not Eq. (4); only
the former has CLúL(x̨i, x̨j ; T ) gauge invariant. Moreover,
Tr [exp(≠—H)Pij ] is not identically zero since there are
allowable states in the physical Hilbert space with the
appropriate color charges at x̨i and x̨j . Thus, it appears
as though the only viable choice of boundary condition
is Eq. (2). However, this conclusion is dependent on the
derivation of Eq. (13b) and that derivation is flawed.

VI. BREAKDOWN OF THE STANDARD
INTERPRETATION

There are two flaws in the analysis of the previous
section.

The first concerns the starting point of that analy-
sis, Eq. (11). The first form of Eq. (11) is obtained by
integrating out the color sources to relate the expecta-
tion value of
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†
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However that step is legitimate only to the extent that one
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is computing the expectation value of a gauge-invariant
object. However

q
c,cÕ Sj;cÕ(—)Si;c(—)S†

j;c0S
†
j;cÕ(0) is not

gauge invariant as an operator, nor are the Polyakov
loop operators used in defining CLúL. They might be
considered gauge invariant objects rendering the steps
that follow meaningful, but only if one assumes at the
outset that the simple periodic boundary conditions of
Eq. (2) holds rather than the more general form of Eq. (4)
for finite temperature systems. This suggests that the
conclusion at the end of Sec. V—that only Eq. (2) is
consistent—is entirely dependent on circular reasoning.
Only if one starts by assuming that Eq. (2) is valid rather
than Eq. (4) does one concludes that Eq. (2) is valid
while Eq. (4) is not. Had one assume from the outset
that Eq. (4) one could have concluded that both CLúL

and Trphys
Ë
exp(≠—H)Sj;cÕ(—)Si;c(—)S†

j;c0S
†
j;cÕ(0)P0

È
are

zero and Eq. (11) would be trivial true since 0=0 and
further analysis would yield no additional physical infor-
mation.

There is another more serious flaw. Suppose one ac-
cepted at the from the beginning that the boundary con-
dition of Eq. (2) held, one still cannot reach Eq. (13b)

and justify the free energy interpretation without making
an illegitimate step.

This can by seen by focusing on the connection Eq. (13a)
and Eq. (13b); strictly, it is Eq. (13b and not Eq. (13a)
that allows a free energy interpretation. Equation (13b)
is obtained from Eq. (13a) via the cyclic property of the
trace. However that property only holds for matrices that
map from a vector space onto itself, or in the quantum
mechanical context from operators that map from the
Hilbert space of interest onto itself. It is important to
recall that the trace in Eq. (13a) is over the physical
states in the Hilbert space only—those states that satisfy
the color Gauss law (see Appendix A)—and not over
the full Hilbert space. It is by no means clear that the
operator that is cycled through the trace does not leave
the space of physical states over which the trace is taken.
In fact, it does leave the space of physical states; and
this invalidates the use of the cyclic property and with it
removes the justification for Eq. (13b) and the free energy
interpretation.

To see this rewrite Eq. (13a) by inserting a projection
operators unto the space inside the trace and take the
trace over the full space rather than the physical space:

CLúL(x̨i, x̨j ; T ) = Trfull
Ë
Sj;cÕ(0)Si;c(0) exp(≠—H)S†
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This is innocuous as the only states in the trace that contribute are physical. The cyclic property is then clearly valid
since it is for the full space; thus

CLúL(x̨i, x̨j ; T ) = Trfull
Ë
exp(≠—H)S†
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It is useful to divide the terms in the trace into physical states selected by the projector Pphys and unphysical states
selected by the projector 1 ≠ Pphys
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Ë
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j;cÕ(0) P0 Pphys Sj;cÕ(0)Si;c(0)(1 ≠ Pphys)
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In Appendix C it is shown via rather formal means that

PphysSj;cÕ(0)Si;c(0) Pphys = 0 . (16)

Intuitively one can see that this is true since the first
projector on the right acting on any any state projects
onto to a physical state and such states satisfy the color
Gauss law. However the operator Sj;cÕ(0)Si;c(0) acting
on that state adds color charges without altering the color
electric field. Thus, all components of the state violate
the Gauss law after being acted upon by Sj;cÕ(0)Si;c(0);
the action of the projector on the left projects this onto
zero5. Eq. (16) implies that the first term in Eq. (15c) is

5 An analogous argument is relevant to the implicit assumption

zero. Thus, the correlator of the Polyakov loop is given
by a sum of unphysical states only
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