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* Yang-Mills theory has first-order phase
transition. Conventional wisdom: low-
temperature phase confining and the high
temperature phase deconfined.

* Principal reason for belief that high temperature
phase is deconfined: analysis based on the
Polyakov loop.

* Paper explores possibility that Polyakov loop has been
misinterpreted and that the high temperature phase is
also confining.



Philosophical Issues

* At best, Polyakov loop and its
correlators show that quarks (or
other d.o.f carrying fundamental
color charges) are deconfined.

* Yang-Mills has no d.o.f. carrying
fundamental color charges. The real
issue of confinement involves the
gluons!

* Related philosophical issue: order
parameters based on PL do not
apply to QCD.

* Lack of free quarks in nature—

described by QCD—led to postulation of
confinement in the first place

" This talk will largely ignore these issues and focus on
the technical issues associated with the Polyakov loop.



Technical issue are
serious

Recent work on quantum computing
has acted refocus attention on

 Hamiltonian formulations of gauge
theories.
* Real time dynamics

This forces one to confront technical
issues with Polyakov loop observables



* Polyakov loop is strange
beast—neither fish nor fowl.

* Only defined in gauge invariant way in context of
Euclidean space functional (with periodic boundary
conditions imposing finite temperatures).

 Meaning in Minkowski space—space where physical events
occur is—at best—obscure.

* Does not correspond to a gauge-invariant quantum
mechanical operator.

* Meaning in Hamiltonian treatments with a Hilbert space
is—at best—obscure.

* Meaning for systems for systems that are out of thermal
equilibrium is—at best—obscure.



* The expectation value of the Polyakov loop and
the string tension obtained from its correlator
are ill-defined as gauge-invariant objects

* except in the context of thermally
equilibrated systems computed in a
particular way (via functional integrals in
Euclidean space with periodic boundary
conditions).




The Polyakov loop
L(%;8) = Tr [T(f; B)}

To+p5
T | exp 7,/ drgAo (T, T)
0’7‘0

Treat as an operator with §a parameter (not necessarily connected to
temp). NOT gauge invariant under general gauge transformations.

L(Z;6) =

Invariant under special gauge transformations satisfying

Q(xX, 7+ 8) = Q(Z, 7 + B) which preserves the periodic boundary
condition on the gauge fields A (X, 7+ B) = Au(Z, 7) (and ensures correct
thermal expectation values for gauge-invariant operators at 7=1/p).

PL—although not a gauge-invariant operator—might be regarded
as a gauge-invariant “object”—but only in the context of
functional integrals for thermal systems implemented in the
conventional way with these boundary conditions.




A paradox

 Many quantum computing applications use a Hamiltonian
formalism in the A,=0 gauge.

Such treatments are supposed to be capable of computing all
physical observables—at least in principle.

In any treatment with A,=0, L= 1 by construction,
regardless of temperature.

e But functional integral treatment—which are also supposed
to be capable of computing all physical observables—gives
<L>=0in low-T phase.

e Usual technical explanation: In functional integral, the
Polyakov loop defined on topologically nontrivial space-a
generalized cylinder where time wraps around; prevents A,
= 0 from be implementable over all Euclidean times by any
continuous gauge transformation.



A paradox

* But paradox remains: Functional integrals and the
Hamiltonian treatment in the temporal gauge are supposed
to be capable of describing any physical observable.

* Another way to see the paradox: From perspective of
Hamiltonian approach, the topology associated with the
Polyakov loop does not appear to exist: How can it emerge
when the physics is re-expressed as Euclidean space
functional integral?

* Yet another way to see the paradox: From perspective of
Hamiltonian approach, center transformations have no
meaning. How can can center symmetry emerge when the
physics is re-expressed as Euclidean space functional
integral?



Talk explores three heretical
views about the Polyakov
loop, and what it tells us
about the high temperature
phase of Yang-Mills Theory

* Polyakov loop is not gauge invariant in functional integrals using
most general boundary conditions consistent with finite

temperatures.

 With most general b.c., no topology and no Z(Nc) center symmetry
breaking.

* No connection between Polyakov loop observables and the free
energy of systems with static color charges.

* No reliable evidence that the high-temperature phase of Yang-
Mills deconfines fundamental color charges—high T phase could
be confining.



FUNCTIONAL INTEGRALS AND GAUGE
INVARIANCE AT NON-ZERO TEMPERATURE

* Functional integrals for bosonic field theories at

non-zero temperatures impose periodic b.c.s in on
the fields with the periodicity fixed by = 1/T:

X, T+ B) = P(X, 1)
* Two equivalent viewpoints:

e Space-time is unbounded but field values repeat with
periodicity S.

e Space-time has topology of cylinder with circumference
of #in the temporal direction.

* The topology of the cylinder plays no role.
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Same result if you calculate on cylinder or on one period of

unbounded space with periodic fields: topology of cylinder
irrelevant.



* More subtle with a gauge theory. One can impose
Feriodlc boundary condition on gluon
ields: 4,(*%, 7+ B) = A4,(X 1)

Non-gauge theory can be viewed as either periodic in
full space-time or on a cylinder.

* If you view a gauge theory as being on a cylinder and
require gauge transformations to be nonsingular on
cylinder then 2(x, T+ B) = 2(x, 1)

* Makes L gauge invariant.

* Topology of the cylinder is needed for this to make
sense.

* Means center transformations not allowable gauge
transformations.

* The spontaneous breaking of center symmetry is
only possible if one takes this view.



 Subtlety: the gluon field contains both physical information

and unphysical information (associated with gauge
redundancy).

* The physical information associated with the gauge field—all
gauge-invariant combinations of the fields—clearly needs to
be periodic.

* A priori, no need for periodicity of unphysical d.o.f. !

* Most general b.c. consistent with thermal physics only need
ensure gauge invariant combos of gauge fields are periodic.

e Start with a periodic gauge field defined on an infinite
space-time, make an arbitrary aperiodic gauge
transformation €2 on the full space-time on the fields: only
gauge-variant quantities would be affected, these become
aperiodic.



Functional integral evaluated over one period with bc.

A&, 1) = QF, 7+ B)Au(Z, 7 + B)QN(Z, 7 + B)

(4

q (a,uQ(fvT + 5)) QT(fvT + ﬁ)

has same expectation value for all gauge-invariant operators as with periodic b.c.
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* Upper cartoon: typical gauge configuration consistent with periodic boundary
conditions. Fully equivalent to the gauge fields on cylinder.

* Lower cartoon: typical gauge configuration consistent with the more general
b.c. The Gl part is same as top, NGI differs and differs on each segment.



* Functional integrals with more general b.c. has same
results for thermal expectation values of any gauge-
invariant operators as with simple periodic b.c.

But with more general b.c....
e Space-time does not have the topology of cylinder.

* The Polyakov loop (and its correlators) are not
gauge-invariant.

* Expectation values of these will yield zero—as
with any purely gauge-variant quantity.

 Center transformations become ordinary gauge

transformations and thus center symmetry cannot
break.



Two ways to impose boundary

conditions.

Equivalent for all expectation values of gauge-invariant
operators but different for Polyakov loop and related beasts.

Which b.c. is appropriate for these?

7

8l

A (Z, 7+ 8) =A%, T) Au(&,7) = Q&7+ B)Au(E, 7+ B)QN (T, 7+ §)

— 2 (0,0, 7 + ) Q' (7,7 + §)
Standard periodic b.c. g
Most general b.c. consistent
with correct thermal

expectation values



Heretical view:
The more general b.c. is the appropriate one!!!

 The Polyakov loops behaves like any other
mathematical object that does not correspond to
a gauge invariant operator—it vanishes in the
functional integral. The PL is NOT physical!



* The paradox associated with the difference between
Polyakov observables in Hamiltonian treatments in
temporal gauge and the functional integral treatments is
resolved.

e Explains the lack of topology in Hamiltonian
treatment—it is not there in functional treatment
either.

* Explains lack of center symmetry in Hamiltonian
treatment —it is not there in functional treatment
either.

* Explains why Polyakov loop has no meaning in
Minkowski space—it also has no meaning in Euclidean.



Center Symmetry and
Confinement

The Irish poet, William Butler Yeats might have seemed to have
been prescient about confinement. In 1920 he described the

Yang Mills phase transition in his apocalyptic poem Second
Coming:

i.e. deconfinement

“Things fall apart;/ in Yang Mills

the centre cannot hold”

Yeats won the Nobel Prize in 1923 for his work

but, inexplicably, it was in literature rather than
physics.

But perhaps the Nobel committee was correct, and the committee
realized that Yeats was using the wrong boundary conditions!

20



* If the correlator of the Polyakov loop is unphysical
so is the string tension obtained from it and one
can conclude nothing about confinement from
vanishing string tension.

* A puzzle: In context of functional integrals with
periodic b.c., string tension acts as order
parameter that cleanly distinguish between the
low temperature phase (non-vanishing string
tension) and high temperature phase (vanishing
string tension). How is this possible if the
Polyakov loop is unphysical?



Resolution: All physical observables (which are based on gauge
invariant operators) can be computed with either b.c. ; same
phase transition.

If one use the conventional periodic ones, the order parameters
based on the Polyakov loop are correlated with the phase, even
though the order parameters have no direct physical meaning
themselves.

They act like shadows on the wall of Plato’s cave. They tell us
something real about the phases without being real themselves.

9
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* There is a potential flaw with this explanation.

e Standard argument: C,+, (correlator of PL) related to
free energies of a system with color charges in the
fundamental and anti-fundamental (infinitely massive

quarks) added to system and separated by some
distance.

* This is physical quantity and expressed via gauge
invariant operators.

* Allows for the computation of a string tension which
vanishes in the high temp phase indicating
deconfinement.



CL*L(fia fj? T) = <L*(£U_f77 B)L(ZL',L,

B))r
| DA, (Z,t)L* (5,

mlr—l

; L(x3, 5) exp (— foﬁ dtfd3:v£(A)>
[ DAE tyexp (— [ dt [ dPeL(A))

Correlator of a Polyakov loop and its conjugate

Cr+p(%;,%;;T) = exp(—BF;;)

Standard interpretatiorx

Free energy is physical

log (CL*L(f+ é, X T))
Tpr = i
7Dpr = 7

String tension computed from PL appears to be physical



* However, standard argument relating C,+, to free
energies appears to suffer from subtle—but fatal—

bugs. i i

Allows heretical View:

There is no connection between Polyakov loop
observables and the free energy of systems with static
color charges.

N Here&:,c: ;




Derivation of Standard Connection of C «, and
Free Energy

Introduce fundamental static color charges at
discrete points Z; (think arbitrarily heavy quark)

S;r,c Is a fermionic operator that places color charge c at fz
Y

— eabCSJ.QST

Sl = ;a~1;b Places antifundamental color charge at fz
;¢ 9
These propagate in time but not space.

Using standard functional integral methods:
C’L*L(fi,fj;T> - <§j;c’ (B)Si;c(ﬂ)sg;cm)gjc' (O>PO>T
— Tl"phys [eXP(_ﬁﬂ)gj;c’ (5)573;0(5)33;6(0)?;50’ (O)PO}

- Z <¢k|eXp(_BH)gj;C’(5)Si;6(5)52;c(0)§;;c’(O)PO|¢k>

kephys



Trohys indicates trace over the physical states only—that is states
satisfying the color Gauss law.

Projector onto states with no

0= H (n - Z c) fundamental color charges, i.e. pure
e Y.M. states

Insert standard Euclidean time evolution for operators
O(r + B) = exp(BH)O(7) exp(—SH)

Cre1 (&, 75 T) = Trpnys | Sjier (0)Sise(0) exp(—BH)S](0)S].., (0)Po)

Use cyclic property of trace to rewrite as

O 1(F1. 53 T) = Trpigs [ 850004 0) exp(—BH)S L, (0)S, (0)Py]
= Trpnys [exp(—BH)Pij]

Pij = S},C(O)§;C,( 0)PoS;.c(0)S:..(0) 7 projects on to states with a
fundamental color charge at Z; and

gauge invariant an anti-fundamental charge at I



Derivation of Standard Connection of C «, and
Free Energy

CL*L(er’, fj, T) — Trphys [eXp<_BH>PfLJ]

In general, Tr [ e## 7] where 7, is a a gauge invariant
projector under to states satisfying some physical constraint
is the partition function subject to that constraint:

Trpnysl e Prl=Z(F) = exp(-fF¢)
As advertised
OL*L(fi, fj; T) = exp(—ﬁFz-j)

This is physical and nonzero and apparently
justifies the use of the conventional periodic b.c.
and not the more general aperiodic ones.



But...

* The preceding analysis is flawed in two ways:

1. The analysis uses circular reasoning. The first
step implicitly starts with the standard periodic
b.c. rather than the more general one to
conclude that only the standard periodic b.c. is
consistent.

2. The analysis starting from the standard periodic
b.c. makes use of an illegitimate mathematical
step.



Argument depends on circular reasoning 00 <>°
o . S 5
Starting point of the analysis: a @
¢ S
Calculate correlator of PL and operators @9 o
making and annihilating charge at 1=0 éca 9~A"
and B using standard functional integral q

methods.

CL*L(fz'a fj; T) = <Sj;c’ (B)S%C(ﬁ)‘sj,c(())gjc’ (O)PO>

T

Valid only if the correlator of the Polyakov loop and the correlator

of the creation and annihilation operator of the color charges are
gauge invariant.

Neither are gauge invariant operators. Might be regarded as gauge

invariant “objects”, but only if the periodic b.c. imposed at the
outset



Argument depends on circular reasoning oo <>°
"
Only by assuming implicitly periodic b.c., does one ~L' D
conclude that the free energy is physical (gauge O a
invariant), which implies C, +, is too, requires the s

use the periodic b.c. %Q )o
29q M

Had one imposed the more general b.c. at the beginning

one would have seen that

Cror (@i @53 T) = (S (8)Sise ()81 (05 (0)Py )

T

holds only in a trivial way yielding no new information since
Cr-r(Zs, 75;T) =0

<§j30’ (/B)Slac(/B)SJfJ,C(O)FI,CI (O)PO>T =
and 0=0.

Had one imposed the more general b.c. one would
see no contradictions.



Argument depends on circular reasoning

lronic to use circular reason to deduce
properties of a loop!!

x rey
o\@ ~S‘°°
g %
-~ -
0 (L]
()
5




An illegitimate step

Assume that conventional periodic b.c. holds.
Cron (@i 755 T) = Trpnys |Sjier (0)Sise(0) exp(—BH)S](0)S.0r(0)P

Cannot deduce the free energy form directly from this. S};COFI-;C/ (0)
And S;.(0)S;..(0) are not gauge invariant and acting on physical
states they may produce states outside the physical space.

To express things in a gauge invariant form, had to invoke cyclic
property of the the trace.

CrLep(Z,75;T) = Trpnys [gj;cl(O)Si;c(O) eXp(—ﬂH)SZC(O)g;;CI(0)7’0]

4

Cro1(Fi, 75 T) = Trpnys | S5:00(0)85:0(0) exp(—BH) S, (0)S],.(0)Po]

= Trpnys [exp(—BH)Pyj]



But.. .Cyclic property of trace only valid for operators that

map from a Hilbert space onto itself. The space here is the
physical Hilbert space—states that satisfy the Gauss Law

constraint.

The operator S ;... (0)S;..(0) could take one outside this space
and invalidates step. Check this:

Ce1 (&, 75 T) = Trphys | Sjser(0)Sie(0) exp(—BH) S (0)S].. (0)Po)
= D (W[50 (0)Sic(0) exp(—BH)SL(0)S0r(0)Pol o)

kephys Y
\ The color charge operators add color
charges without affecting color E-field
acting on a state that satisfies color
Physical state; satisfies Gauss law, yields one that does not—
Gauss law i.e. the state is unphysical

Cyclic property not valid & this invalidates free energy result!!



A simple calculation, taking into account physical space yields:
N S —BH gt (NG IS
CL*L(xia L5 T) — Trunphys [6 Si;c<0)sj;c’ (O) 7)0 Pphys Sj;C’ (O)SZ,C(O)
% Trpnys [exp(—B8H)Py]

Where 7, projects onto states satisfying Gauss law and Tr,,,,c sums
over eigenstates of (1- 7,,,.) with eigenvalue unity.

Result starting from conventional periodic b.c. has only unphysical
states contributing and no connection to free energy of physical
states with static color charges!!

Heretical View:

There is no connection
between Polyakov loop
observables and the free
energy of systems with static
color charges.




Provides additional argument that the appropriate boundary

conditions are the more general ones and not the usual periodic
ones.

 Starting with the assumption that the standard period
boundary conditions are valid

 one obtains the result that all of the contributions to
C,+; only comes from unphysical states—ones that do

not satisfy the color Gauss law when evaluated in a
Hamiltonian picture.

* This suggests that the correlator of Polyakov loops is
without direct physical content

The first two heretical propositions have been discussed: 1.
Polyakov loop is not gauge invariant in functional integrals using

most general thermal boundary conditions. 2. No connection
between Polyakov loop observables and the free energy.



* First two heretical ideas imply the third.

* The third heresy: No reliable evidence that the
high-temperature phase of Yang-Mills deconfines
fundamental color charges.

* The evidence that fundamental color charges are
deconfined at high temperatures come from studies of
observables related to the Polyakov loop.

7 -
7

Raises the possibility that Herekic'l
fundamental color charges Y wi
are confined in both high | \saX
temp and low temp phases.




Back up slides



 Whether or not fundamental color charges are
deconfined in the high temperature phase might
be answered by lattice studies without recourse to

the Polyakov loop.

* One “simply” adds in explicit heavy quarks, takes the
appropriate limits in the correct order and then
calculates the observables that act as signatures of
deconfinement.

* However, apart from possible technical challenges,
there are some subtle issues of principle as to what
observables one should use and in what order
various limits should be taken. Theses issues are
currently being explored.



Derivation of C, «

Cyclic property of trace only valid for operators that map from
a Hilbert space onto itself. The space here is the physical
Hilbert space—states that satisfy the Gauss Law constraint.

The operator S,;...(0)S;..(0) could take one outside this space
(and in fact does) and this invalidates step.

Check: Rewrite initial expression as trace over full
Hilbert space, with projector onto the physical space.
In full space, cyclic property valid
Crep(Zi, @3 T) = Trphye [Sj;c, (0)Si:0(0) exp(—BH)ST (0)ST (0)730}
= TI’fun [gj;cl (O)Si;c(()) exp(—BH)SJT;CO?;;C, (O)P()’Pphys}

= Trpan |exp(—BH)S],.(0)S].0:(0) Po Pnys Syier(0)Sise(0)]



Contribution from
physical states

Crep(%;,%;;T) = Treun [exp(—ﬁH)Sj;c(O)gj-;C, (0) Po Pphys g.7'50’ (O)Si;C(O)}

'
= Trean [eXp(—ﬂH)S;;c(O)S;;c/ (0) Po Ppohys Ojie (O)Si;cm)PthS]

+ Trean [eXp(—ﬁﬂ)S;;c(O)g;r-;c/ (0) Po Pphys Sj:er (0)Si(0)(1 — 7Dphys)}

Contribution from/

unphysical states

However, Pphyﬁj;c, (0)S5:¢(0) Pphys = 0 this can be shown
formally but easy to understand intuitively:

. Projects on to
Projects on to

o q. , states satisfying
states SatI%Pphys‘S jic! (O)Sz;c(O)’Pp TS e Lo
Gauss Law Y

Adds color charges without change color E-field. If acting on
configuration satisfying Gauss law yields configuration which
doesn’t. If acting on a physical state yields an unphysical one.



PphysSj;c’ (O)S’L,C(O) Pphys =0

2. 2. _ t ool ol PR ]
Crp(%;,Z;;T) = WC\O/SJ A0 FoPobys Oj;c’ku)ﬁl;c\U)/’phySJ

o+ e [exp(—BH)S],. (0080 (0) Po Ponys Sy (0)S::6(0) (1 = Ponys)]

= Trunphys [e_BHS;;C(O)F;;C’ (O) PO 7DphyS ngC/ (O)S@,C(O)}



