
Phase structure of QCD in 
the heavy quark region

Shinji Ejiri (Niigata Univ.)

WHOT-QCD Collaboration

Shota Itagaki(Niigata), Ryo Iwami (Niigata),

Kazuyuki Kanaya (Tsukuba), Masakiyo Kitazawa (Osaka),

Atsushi Kiyohara (Osaka), Yusuke Taniguchi (Tsukuba), 

Mizuki Shirogane (Niigata), Hiroshi Suzuki (Kyushu),

Takashi Umeda (Hiroshima),Naoki Wakabayashi (Niigata)

QCD phase diagram and lattice QCD, YITP Kyoto,  2021/10/281



This talk
• Important topics in the heavy quark region of Lattice QCD 

• Latent heat at first order transition [PTEP,2021,013B03 (2021)] 

• Small flow time expansion method based on Gradient flow

• Comparison to the derivative method

• End point of the first order transition region 

• Reweighting method with hopping parameter expansion 

• Determination by the shape of  the histogram[PRD101,054505(2020)]

• Truncation error of hopping parameter expansion

• Lattice spacing dependence

• Spatial volume dependence

• Finite volume scaling analysis [arXiv:2108.0018]

• Simulations with a Polyakov loop term
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Latent heat and pressure gap in Quenched QCD
Whot-QCD, PTEP,2021,013B03 (2021)  

• The latent heat (energy gap) the most basic quantity.

• The gap of pressure must vanish.
Reliability of the calculation can be confirmed.

• Integral method cannot be used because the gap zero is assumed.

• Derivative method (F. Karsch, 1981) is required to compute the  Gaps.
(Whot-QCD, Phys. Rev. D94, 014506 (2016))

• Non-perturbative Karsch coefficients must be calculated.

• Large computational power is required to  reduce the lattice spacing.

• We use the small flow time expansion (SFtX) method for the 
calculation of the energy density and pressure.
• Information about the Karsch coefficients are included in the formulation.

Pressure at 
low T phase

Pressure at 
high T phase

balanced

[H. Suzuki, 2013]
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Small Flow time Expansion method
• Compute physical quantities from flowed operators after Gradient Flow

• Gradient flow: solve “diffusion equation” →  coarse graining

• Reduce quantum fluctuations ⇒ Reduce the statistical error

• Information loss of the original lattice⇒ continuum limit 

• By the coarse graining, the theory is regularized in the continuum limit

• Physical quantities that are difficult to define on a lattice, e.g. energy-
momentum tensor 𝑇𝜇𝜈, can be defined in the continuum limit.

• This method is valid when flow time t is small.

⇒We calculate with various t and extrapolate where t is small.

𝜕t𝐵𝜇 𝑡, 𝑥 = 𝐷𝜈𝐺𝜇𝜈 𝑡, 𝑥 = −
𝛿𝑆

𝛿𝐵𝜇
𝑎 𝑡, 𝑥

𝐵𝜇 𝑡 = 0, 𝑥 = 𝐴𝜇 𝑥 𝐺𝜇𝜈 𝑡, 𝑥 = 𝜕𝜇𝐵𝑣 𝑡, 𝑥 − 𝜕𝜈𝐵𝜇 𝑡, 𝑥 + 𝐵𝜇 𝑡, 𝑥 , 𝐵𝜈 𝑡, 𝑥

（for Quench QCD）
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[H. Suzuki (2013)]

𝑇𝜇𝜈 𝑥 = lim
t→0

𝑐1 𝑡 𝑈𝜇𝜈 𝑡, 𝑥 + 4𝑐2 𝑡 𝛿𝜇𝜈 𝐸 𝑡, 𝑥 − 𝐸 𝑡, 𝑥 0energy-momentum tensor:



Latent heat and pressure gap measured at flow time t

• Results when the same spatial volume but different lattice spacing

• Separate configurations into high T phase and low T phase

• As the flow time increased, the lattice spacing dependence disappeared.

• The orange line is the continuous limit.

𝜇0

Δ 𝜖 + 𝑝

𝑇4
=

𝜖 + 𝑝

𝑇4 hot −
𝜖 + 𝑝

𝑇4 cold ,
Δ 𝜖 − 3𝑝

𝑇4
=

𝜖 − 3𝑝

𝑇4 hot −
𝜖 − 3𝑝

𝑇4 cold

𝑎 =
1

𝑁𝑡𝑇𝑐
𝑉 = 𝑁𝑠𝑎

3 =
𝑁𝑠

𝑁𝑡

3 1

𝑇𝑐
3 lattice spacing: spatial volume: 

643 × 8
Lattice size: 963 × 12

1283 × 16
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Continuum limit and t → 0 limit

• The fit range dependence is negligible.
• One can change the order of 𝑎 → 0 and 𝑡 → 0.
• Spatial volume dependence is sizable.
• Pressure gap is zero.

Fit range

1 0.010-0.020

2 0.010-0.025

3 0.005-0.020

4 0.015-0.025

5 0.005-0.025

𝑁𝑠

𝑁𝑡
=8

𝑁𝑠

𝑁𝑡
=6

6

𝑎 → 0, then  𝑡 → 0𝑡 → 0, then
𝑎 → 0



Comparison to the derivative method

• Open symbols are the results by derivative method.

• The results by SFtX method and derivative method are consistent 
except for 𝑁𝑡 = 6.

• Spatial volume dependence is observed.

• SFtX method works very well.

1

𝑇𝐶
= 𝑁𝑡𝑎
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Δ 𝜖 + 𝑝

𝑇4
=

𝜖 + 𝑝

𝑇4 hot −
𝜖 + 𝑝

𝑇4 cold

Δ 𝜖 − 3𝑝

𝑇4
=

𝜖 − 3𝑝

𝑇4 hot −
𝜖 − 3𝑝

𝑇4 cold
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Quark Mass dependence of QCD phase transition

• The determination of the boundary of 1st

order region: important. 

• We study the boundary in the heavy 
quark region.

• To understand the center symmetry 
breaking

• A good practice to find the critical 
point in the light quark region

• In order to investigate the critical point, it 
is important to calculate the physical 
quantity as a continuous function.

• Reweighting method is useful.
• Parameter in dynamical fermions: difficult

• Large computational cost for quark 
determinant

• Hopping parameter expansion is useful 
to calculate the quark determinant in the 
heavy quark region.
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Polyakov loop distribution at bc in the complex plane

K: hopping parameter  ~ 1/(mass)

critical point

(2-flavor,  243 x 4 lattice, Phys.Rev.D89, 034507(2014))

Z(3) symmetric𝐾4 = 0.0 𝐾4 = 5.0 × 10−6 𝐾4 = 1.0 × 10−5

𝐾4 = 1.5 × 10−5 𝐾4 = 2.0 × 10−5 𝐾4 = 2.5 × 10−5

Quenched QCD
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Critical surface in the heavy quark region of 
(2+1)-flavor QCD

Critical surface at finite density

( )lattice 4243 

at  kcp for 2-flavor

crossover

First order

0=

[Phys.Rev.D84, 054502(2011); Phys.Rev.D89, 034507(2014)]

𝑚𝑃𝑆

𝑇𝑐
≈ 16.

Quenched QCD simulations + reweighting
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Histogram method
⚫ Probability distribution function (Histogram)

W: Polyakov loop (order parameter)

(Sg: gauge action, M: quark matrix)

⚫ Effective potential     𝑉eff = −ln 𝑊

⚫ Critical point of K:

Histogram: W Effective potential

𝑊 Ω;𝛽,𝐾 ≡
1

𝑍
න𝐷𝑈 𝛿 Ω − ෡Ω det𝑀 𝐾

𝑁f
𝑒−𝑆𝑔

𝑉eff = −ln𝑊

First order

transition
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ln det𝑀 𝐾 = 288𝑁site𝐾
4𝑃 + [768 𝑁site𝐾

6(3 + +6 )]+⋯

Reweighting method in the heavy quark region 

• Quenched QCD simulations + reweighting

• Multi-point (b) reweighting method is used.

• Hopping parameter expansion  (K~1/(ma))

𝑊 Ω;𝛽, 𝐾 =
1

𝑍
න𝐷𝑈 𝛿 Ω − ෡Ω det𝑀 𝐾

𝑁f
𝑒−𝑆𝑔

=

𝛿 Ω − ෡Ω det𝑀 𝐾
𝑁f

quench

det𝑀 𝐾
𝑁f

quench

Polyakov loop 

plaquette 

Histogram

* plaquette and 6-step Wilson loop can be absolved into the gauge action.

Leading term Next to leading terms

for Nt=6

6-step Wilson loop 
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Determination of Kct (leading order calculation)

Effective potential

Lattice Configurations

243x6 676,190

323x6 1,172,000

243x8 342,821

lattice (243x6)

Kct=0.1359(30)

Effective potential 𝑉eff = −ln𝑊
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Determination of Kc (Next to leading order calculation)

Effective potential

Lattice Configurations

243x6 676,190

323x6 1,172,000

243x8 342,821

lattice (243x6)

To estimate the truncation error  of the hopping parameter, the next to leading 
contribution is computed.    

Kct=0.1202(19)
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Determination of Critical K for 2-flavor QCD

Leading order                      Next to leading order

Lattice     Kct mPS/Tc Kct mPS/Tc

243x4      0.0658(10)    15.47(14)      0.0640(10)     15.73(14)

243x6      0.1359(30) 7.43(78)      0.1202(19) 11.15(42)

243x8      > 0.18

• In the study on a 243x4 lattice, the truncation error of the 
hopping parameter expansion is negligible.

• The truncation error is visible for the 243x6 lattice.

• Pseudo-scalar meson mass mPS measured by T=0 full QCD 
simulations at Kc for Nt=6 is smaller than that for Nt=4.

[WHOT-QCD, Phys.Rev.D101,054505(2020)]
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Determination of Kc in 2+1 flavor QCD

LO: leading order        NLO: next to leading order

• Difference between the leading order and next to leading 
calculations are sizeable for the 243x6 lattice.

243x4 lattice 243x6 lattice
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Truncation error of hopping parameter expansion

• Nt=4: The leading order term is dominant at Kct.

• Nt=6: Higher order terms are large at Kct.

ln det𝑀 𝐾 =෍
𝑛=1

∞ 1

𝑛!

𝜕𝑛 ln det𝑀

𝜕𝐾𝑛
𝐾𝑛 ≡ 𝑁site෍

𝑛=1

∞

𝐷𝑛 𝐾
𝑛

𝐷𝑛 =
1

𝑁site

−1 𝑛−1

𝑛
tr

𝜕𝑀

𝜕𝐾

𝑛

= 𝑊 𝑛 + 𝐿(𝑁𝑡 , 𝑛)

෍
𝑛=𝑁𝑡

𝑛𝑚𝑎𝑥

)𝐿0(𝑁𝑡, 𝑛 𝐾𝑛

Nt=6Nt=4

Wilson loop type

Polyakov loop type

Closed by the boundary condition

𝐾𝑐𝑡

𝐾𝑐𝑡

෍
𝑛=𝑁𝑡

𝑛𝑚𝑎𝑥

)𝐿0(𝑁𝑡, 𝑛 𝐾𝑛

The case of all 𝑈𝜇(𝑥) = 1.   Then, all Polyakov loops are 1.
Because it is uniform in space-time, it is enough to calculate one diagonal element.

leading order 17



Effective critical K

• Polyakov loop and bent Polyakov loops are strongly correlated.

𝐿 𝑁𝑡, 𝑛 = 𝐿0 𝑁𝑡, 𝑛 𝑐𝑛 Re 𝛺

෍
𝑛=𝑁𝑡

𝑛𝑚𝑎𝑥

)𝐿(𝑁𝑡, 𝑛 𝐾𝑛 = Re 𝛺෍
𝑛=𝑁𝑡

𝑛𝑚𝑎𝑥

)𝐿0(𝑁𝑡, 𝑛 𝑐𝑛𝐾
𝑛

෍
𝑛=𝑁𝑡

𝑛𝑚𝑎𝑥

)𝐿0(𝑁𝑡, 𝑛 𝑐𝑛𝐾𝑐𝑡
𝑛 = 𝐿0 𝑁𝑡, 𝑁𝑡 𝐾𝑐𝑡,𝐿𝑂

𝑁𝑡

𝑐𝑁𝑡+2 = 0.813(3)

𝑐𝑁𝑡+2𝑛 ≈ 0.8 𝑛

𝐾𝑐𝑡,𝐿𝑂

𝐾𝑐𝑡,𝑁𝐿𝑂 = 0.1202

𝐾𝑐𝑡

𝐿0 𝑁𝑡, 𝑁𝑡 𝐾𝑐𝑡,𝐿𝑂
𝑁𝑡

෍
𝑛=𝑁𝑡

𝑛𝑚𝑎𝑥

)𝐿0(𝑁𝑡, 𝑛 𝑐𝑛 𝐾
𝑛

𝐿 𝑁𝑡, 𝑁𝑡 = 𝐿0 𝑁𝑡, 𝑁𝑡 Re 𝛺 =
12 × 2𝑁𝑡

𝑁𝑡
Re 𝛺

𝐿 𝑁𝑡, 𝑁𝑡 + 2 = 𝐿0 𝑁𝑡, 𝑁𝑡 + 2
2Re 𝛺1 +⋯+ 2Re 𝛺𝑁𝑡/2−1 + ReΩ𝑁𝑡/2

𝑁𝑡 − 1

Nt=6

𝑐𝑁𝑡 = 1,

Ω3 =Leading order term 

Next to leading order term 

Bent Polyakov loop 

Consistent with

Solving the equation,

Polyakov loop 

We approximate

Well approximated by

Truncation error can be removed.

Only one parameter

ln det𝑀 𝐾 /𝑁site − Wilson loops =
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Finite-size scaling analysis for Kct determination

• Binder cumulant is computed at Tc to determine the critical point.

• Universality class is discussed.

Volume dependence of Critical K determined by histogram method

Lattice     Kct

243x6      0.1359(30)

323x6      0.1286(40)

363x6      [overlap problem]

• Kc becomes smaller as the volume increases.

• 363x6 lattice: overlap problem arises before Kct.

• Reweighting form quenched simulation dose not work for large 
volume.

→ Simulations with a Polyakov loop term.

[WHOT-QCD, Phys.Rev.D101,054505(2020)]
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Simulations with the Polyakov loop term Ω

• Simulations with an effective action

• The Polyakov loop term corresponds to the leading order 
contribution of the hopping parameter expansion of ln det M. 

l = 384 K 4 (for 2-flavor, Nt=4)

• Heat bath algorithm is applicable. → small computational cost.

• Overlap problem can be avoided.

• We include the next to leading contribution of the hopping 
parameter expansion by the reweighting.

• Nt=4: Large volume is more important than small lattice spacing.
• Truncation error of hopping parameter expansion: small

• Lattice size: Nt=4, Ns=24, 32, 36, 40, 48 

• High statistics:

𝑆eff = −6𝑁𝑠
3𝛽𝑃 + 𝑁𝑠

3𝜆ReΩ

6 × 105 measurements for each parameter

𝑉 = 𝑁𝑠𝑎
3 =

𝑁𝑠

𝑁𝑡

3 1

𝑇𝑐
3

[Kiyohara et al., arXiv:2108.0018]
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Binder cumulant 
• No volume dependence at the 

critical point lc

• 3D Ising universality class:  

B4=1.604 at lc and  n=0.63.

• Results of 𝑁𝑡 = 4, 𝑁f = 2

• Intersect around 𝐵4 ≈ 1.6

• Fit the data by

• 4 fit parameters

𝐵4 =
Ω − Ω 4

Ω − Ω 2 2

lc

l

𝐵4 = 𝐵𝑐 + 𝑐 𝜆 − 𝜆𝑐 𝐿𝑇 1/𝜈

𝐿𝑇 = 𝑁𝑠/𝑁𝑡

[Kiyohara et al., arXiv:2108.0018]
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Critical point and Z(2) Universality class

• No volume dependence at the critical point lc

• 3D Z(2) universality class: B4=1.604 at lc and n=0.63.

• Consistent with 3D Ising universality.

• lc=0.00503  → 𝐾𝑐=0.0602(4)   is smaller than the 
result by the histogram method:  0.0640(10)

𝐵4 = 𝐵𝑐 + 𝑐 𝜆 − 𝜆𝑐 𝐿𝑇 1/𝜈
Fit result

𝑁𝑠/𝑁𝑡 =6, 8, 9, 10, 12

• lc=0.00511(8)(2)

• Bcp=1.645(11)(2)

• n=0.593(18)(3)

𝑁𝑠/𝑁𝑡 =8, 9, 10, 12

• lcp=0.00510(10)(2)

• Bcp=1.643(15)(2)

• n=0.614(29)(3)

𝑁𝑠/𝑁𝑡=9, 10, 12

• lcp=0.00503(14)(2)

• Bcp=1.630(24)(2)

• n=0.614(48)(3)
(NLO, 243x4 lattice)

Final result

𝑁𝑡 = 4
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Volume dependence of the histogram

• l<lc, The middle dent in the histogram gets deeper as the 
volume increases.  (first order)

• l>lc, the middle dent  becomes shallower and disappears. 
(crossover)

• lc is the boundary that divides one peak or two peaks in the 
volume infinity limit.

lc=0.00503(14)(2)

l=0.003 l=0.005 l=0.007
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Finite volume Scaling of the gap

• Assuming the gap DW corresponds to  
(magnetization)/(volume) of 3D ising,

is expected at lc.

DW

∆Ω ∝ 𝐿𝑇−0.519

−0.519

In the limit 𝐿𝑇 → ∞,
∆Ω vanises.
Single well in the 
volume infinity limit. 

If we find the critical 
point from the shape of 
the histogram, Kc is 
highly volume-dependent.

𝑝(Ω)

− ln 𝑝 (Ω)
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Summary and out look
• Latent heat at first order transition were computed using small flow time 

expansion method based on Gradient flow. 

• We compared the results with those by the derivative method.

• We studied the location of critical point at which the first order phase 
transition changes to crossover in the heavy quark region by investigating 
the histogram of the Polyakov loop and applying the finite-size scaling 
analysis.

• simulations of quenched QCD or quench + Polyakov loop term

• reweighting method

• quark determinant: hopping parameter expansion

• Scaling behavior at lc is consistent with 3D ising model.

• Truncation error of the hopping parameter expansion: Method to remove 
the truncation error: proposed.

• If we try to find the critical point from the shape of the histogram, error due 
to finite volume effect is large.

• Study of the critical point on fine lattices is important.
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