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This talk

* Important topics in the heavy quark region of Lattice QCD

* Latent heat at first order transition [PTER,2021,013B03 (2021)]
* Small flow time expansion method based on Gradient flow
 Comparison to the derivative method

* End point of the first order transition region
e Reweighting method with hopping parameter expansion
* Determination by the shape of the histogram(prp101,054505(2020)]
* Truncation error of hopping parameter expansion
o . . d d Nf=2 Quencled
Lattlf:e spacing dependence o0 oo der
* Spatial volume dependence
.. : : Physical point s,
* Finite volume scaling analysis [arxiv:2108.0018] | K
: : : Msp\
e Simulations with a Polyakov loop term

" Crossover




Latent heat and pressure gap in Quenched QCD
Whot-QCD, PTEP,2021,013B03 (2021)

* The latent heat (energy gap) the most basic quantity.

* The gap of pressure must vanish. | |
S _ . Pressure at Pressure at
Reliability of the calculation can be confirmed.  high Tphase | | low T phase
balanced

* Integral method cannot be used because the gap zero is assumed.

* Derivative method (. karsch, 1981) is required to compute the Gaps.
(Whot-QCD, Phys. Rev. D94, 014506 (2016))
* Non-perturbative Karsch coefficients must be calculated.
e Large computational power is required to reduce the lattice spacing.

* We use the small flow time expansion (SFtX) method for the
calculation of the energy density and pressure.  [H. Suzuki, 2013]

* Information about the Karsch coefficients are included in the formulation.



Small Flow time Expansion method [H. suzuki (2013)]

Compute physical quantities from flowed operators after Gradient Flow
energy-momentum tensor: T, (x) = %i_r)rol{cl (U, (t,x) + 4cy(£)6,, [E (L, x) — (E(t, x))o]}
Gradient flow: solve “diffusion equation” -> coarse graining
B,(t =0,x) = A,(x) Gy (t,x) = 3, B, (t, x) — 0,B,(t,x) + |B,(t, x), By (t, x)]
0S
6B

atBu (t,x) = D, Guv (t,x) = — (t,x) (for Quench QCD)

Reduce quantum fluctuations = Reduce the statistical error
Information loss of the original lattice = continuum limit
By the coarse graining, the theory is regularized in the continuum limit

Physical quantities that are difficult to define on a lattice, e.g. energy-

momentum tensor T,,, can be defined in the continuum limit.

This method is valid when flow time t is small.
= We calculate with various t and extrapolate where t is small.



Latent heat and pressure gap measured at flow time t
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* Results when the same spatial volume but different lattice spacing

e Separate configurations into high T phase and low T phase
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* As the flow time increased, the lattice spacing dependence disappeared.
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* The fit range dependence is negligible.
e One can change the orderofa - 0andt — 0.
* Spatial volume dependence is sizable.

* Pressure gap is zero.
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A(e+p)/T

Comparison to the derivative method
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Open symbols are the results by derivative method.
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The results by SFtX method and derivative method are consistent
except for N, = 6.

Spatial volume dependence is observed.

SFtX method works very well.



Quark Mass dependence of QCD phase transition

Nf=2 Quencfhed .
X 2ndorder
Physical point
D
® P4
| " Crossover
ol \ p=0 .
0 Mud o0

WHOT-QCD Collab.

Phys.Rev.D84, 054502(2011)
Phys.Rev.D89, 034507(2014)
Phys.Rev.D101,054505(2020)

The determination of the boundary of 1t
order region: important.

We study the boundary in the heavy
qguark region.

* To understand the center symmetry
breaking

* A good practice to find the critical
point in the light quark region

In order to investigate the critical point, it
is important to calculate the physical
guantity as a continuous function.

Reweighting method is useful.

e Parameter in dynamical fermions: difficult

e Large computational cost for quark
determinant

Hopping parameter expansion is useful
to calculate the quark determinant in the
heavy quark region. ’



Polyakov loop distribution at [3c in the complex plane
(2-flavor, 243 x 4 lattice, Phys.Rev.D89, 034507(2014))
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Critical surface in the heavy quark region of
(2+ 1)—f| aVvOr QCD  (phys.Rev.084, 054502(2011); Phys.Rev.D89, 034507(2014)]

L= 0 Quenched QCD simulations + reweighting (243 X 4 |attice)

Crossover

Critical surface at finite density
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Histogram method

o Probability distribution function (Histogram)
Q: Polyakov loop (order parameter)

W(Q; B,K) = %fDU 5(2— Q) (detM(K))" Te~Ss

(Sg: gauge action, M: quark matrix)

o Effective potential Vogg = —In W

Histogram: W Effective potential Vet = —InW

Firstorder /N /\ \
transition AVCH;I
2 I Q|

o Critical pointof K: AV,g =0
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Reweighting method in the heavy quark region

* Quenched QCD simulations + reweighting

w0 = [0 80 - ) (Gemci) e S0
(8- ﬁ)(detM(K))Nf>quenCh
<(detM (K ))Nf>quench
* Multi-point (3) reweighting method is used.
* Hopping parameter expansion (K~1/(ma)) for N,=6

In(detM (K)) = 288NsjteK*P + [768 NyjreK (3 L + (7} +6 I+
plaquette 6-step Wilson loop

L

+12x2N x N3 [K N1 Ref) + 6N, K Vet ;:\ OGN N2 r} 3N RN ’:I}

Polyakov loop
Leading term Next to leading terms

* plaguette and 6-step Wilson loop can be absolved into the gauge action:



Determination of K, (leading order calculation)

Effective potential Vet = —In W
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Determination of K_ (Next to leading order calculation)

To estimate the truncation error of the hopping parameter, the next to leading
contribution is computed.

N; = 6 lattice (243x6)

Effective potential
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Determination of Critical K for 2-flavor QCD

[WHOT-QCD, Phys.Rev.D101,054505(2020)]

Leading order Next to leading order
Lattice K Mpe/ T, Kt Mpe/ T,
243x4  0.0658(10) 15.47(14) 0.0640(10) 15.73(14)
243x6  0.1359(30) 7.43(78) 0.1202(19) 11.15(42)
243x8 >0.18

* In the study on a 243x4 lattice, the truncation error of the
hopping parameter expansion is negligible.

* The truncation error is visible for the 243x6 lattice.

* Pseudo-scalar meson mass m,. measured by T=0 full QCD
simulations at K_ for N,=6 is smaller than that for N .=4.
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Determination of Kc in 2+1 flavor QCD
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LO: leading order NLO: next to leading order

* Difference between the leading order and next to leading
calculations are sizeable for the 243x6 lattice.
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Truncation error of hopping parameter expansion

| dtM(K)—zoo 16"lndetMKn_ o D. KT
ndae _ n=1n! oK™ — 1V¥site 1 n
1 —1 n-1
D, = (=1 tr K > ] W) + L(Nt, n)
Nsite 1 X ~Z_ Polyakov loop type

Wilson loop type Closed by the boundary condition

The case of all U, (x) = 1. Then, all Polyakov loops are 1.
Because it is uniform in space-time, it is enough to calculate one diagonal element.
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* Nt=6: Higher order terms are large at Kct. leading-order



Effective critical K t, oo [EB -
Bent Polyakov loop 0.05 [-Re0’ -

Leading order term 12 5 2Ne Q3 = ol ]
L(N,,N,) = L°(N;, N,) Re 2 = N Re 2 ol ]
Next to leading order term -0.0(1) I ]
2Re 2 + -+ 2Re 2y, 5—1 + ReQy. 5 02 N.=6 -

L(Ng, Ny + 2) = L°(N,, Ny + 2) - T2 i 'g‘gi [ t ]
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* Polyakov loop and bent Polyakov loops are strongly correlated. Polyakov loop

T We approximate  L(n,,n) = L°(N,, n)c,, Re
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Finite-size scaling analysis for K, determination

e Binder cumulant is computed at Tc to determine the critical point.

* Universality class is discussed.

Volume dependence of Critical K determined by histogram method

| attice Kct [WHOT-QCD, Phys.Rev.D101,054505(2020)]

24%x6  0.1359(30)
323x6  0.1286(40)
363x6  [overlap problem]
* K. becomes smaller as the volume increases.
* 3636 lattice: overlap problem arises before K.

* Reweighting form quenched simulation dose not work for large
volume.

— Simulations with a Polyakov loop term. y



Simulations with the Polyakov loop term ()

[Kiyohara et al., arXiv:2108.0018]
e Simulations with an effective action

_ 3 3
Seff = —6NgBP + Ng ARe()
* The Polyakov loop term corresponds to the leading order
contribution of the hopping parameter expansion of In det M.

AL =384 K* (for 2-flavor, Nt=4)
* Heat bath algorithm is applicable. & small computational cost.
* Overlap problem can be avoided.

* We include the next to leading contribution of the hopping
parameter expansion by the reweighting.

* Nt=4: Large volume is more important than small lattice spacing.
* Truncation error of hopping parameter expansion: small

3
+ Lattice size: Nt=4, Ns=24, 32, 36, 40, 48 V=W =(3)

* High statistics: 6 x 10> measurements for each parameter 2



Binder cumulant (@@=

B, =
— 2\2
* No volume dependence at the ((Q = {2)?)
critical point A_ LT = N;/N;
* 3D Ising universality class: 2l LT=6
] LT=28
B,=1.604 at A_and v=0.63. IT—9
i LT=10
* Resultsof Ny =4, Ng=2 _ 17 LT=12
* Intersect around B, = 1.6 12 ]
* Fit the data by 1.4 A
— 1 1.3 NLO;Ny=2
By =B + C(A - AC)(LT) v 0.003 0.004 0.005 0.006 0.007
* 4 fit parameters 7L

[Kiyohara et al., arXiv:2108.0018]
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Critical point and Z(2) Universality class

1.68] HM LT=12,10,9 o B
. 4
W LT=12-38 =
1.661 W LT=12—6
N )~
Qq
1.621 LT=6
LT=8
1.60 > AT A LT=9 ]
LT=10
1.58 ¥ = NLO, Nf:2 LT=12
0.0048 0.0050 0.0052
A

No volume dependence at the critical point A_

3D Z(2) universality class: B,=1.604 at A_and v=0.63.

Consistent with 3D Ising universality.

A.=0.00503 > K.=0.0602(4) is smaller than the
result by the histogram method: 0.0640(10)

(NLO, 243x4 lattice)

Fitresult N, =4
=B.+c(A—21)(LT)V

N, /N, =6, 8,9, 10, 12

* 2.=0.00511(8)(2)

* B,,=1.645(11)(2)

* v=0.593(18)(3)

N, /N, =8, 9, 10, 12

* 1,,=0.00510(10)(2)
* B,,=1.643(15)(2)

. v=0.614(29)(3)

Final resul

N,/N,=9, 10, 12

* 1,,=0.00503(14)(2)
+ B,,=1.630(24)(2)

. v=0.614(48)(3),




Volume dependence of the histogram

A=0.003 A=0.005 A=0.007
- LT=12 9 LT=12 15 LT=12
LT=10 LT=10 LT=10
LT=9 IT=9 LT=9
151 LT=38 101 LT=8 101 LT=38
= LT=6 = LT=6 o LT=6
S S S
=~ 10; = =
5 5
54
0 T T y T 0 / : : : 0 :
0.00 0.05 0.10 0.15 0.00 0.05 0.10 0.15 0.00 0.05 0.10 0.15
Qg Qr Qg

A,.=0.00503(14)(2)

* A<A,, The middle dent in the histogram gets deeper as the
volume increases. (first order)

* A>A,, the middle dent becomes shallower and disappears.
(crossover)

* A is the boundary that divides one peak or two peaks in the
volume infinity limit.
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Finite volume Scaling of the gap

* Assuming the gap AC2 corresponds to g

(magnetization)/(volume) of 3D ising,
AQ oc LT0->19

is expected at A_.

In the limit LT — oo, 4-

A() vanises.

Single well in the ~

volume infinity limit. %

If we find the critical

point from the shape of
the histogram, Kc is
highly volume-dependent.
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Summary and out look

e Latent heat at first order transition were computed using small flow time
expansion method based on Gradient flow.

 We compared the results with those by the derivative method.
* We studied the location of critical point at which the first order phase
transition changes to crossover in the heavy quark region by investigating

the histogram of the Polyakov loop and applying the finite-size scaling
analysis.

e simulations of quenched QCD or quench + Polyakov loop term
* reweighting method

e quark determinant: hopping parameter expansion

* Scaling behavior at A_is consistent with 3D ising model.

* Truncation error of the hopping parameter expansion: Method to remove
the truncation error: proposed.

* If we try to find the critical point from the shape of the histogram, error due
to finite volume effect is large.

e Study of the critical point on fine lattices is important.



