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1.  Introduction



Overview

Typical examples:
① Finite density QCD
② Quantum Monte Carlo simulations of quantum statistical systems
③ θ vacuum with finite θ
④ Real-time dynamics of quantum fields

- (0+1)-dim massive Thirring model
- 1-dim and 2-dim Hubbard model
- chiral random matrix model (Stephanov model)

Today, I would like to show that
a new algorithm “Tempered Lefschetz Thimble Method” (TLTM)
and its extension “Worldvolume-TLTM” (WV-TLTM)
may be a promising method towards solving the sign problem, 
by exemplifying its effectiveness for various models 

The numerical sign problem is one of the major obstacles
when performing first-principles calculations in various fields of physics

[MF-Umeda, 1703.00861]

(such as the Hubbard model)

[MF-Umeda, 1703.00861]
[MF-Matsumoto-Umeda, 1906.04243]

[MF-Matsumoto, 2012.08468]

I also would like to discuss the computational scaling of WV-TLTM
[MF-Matsumoto-Namekawa, work in progress] [1/25]

[MF-Matsumoto, 2012.08468]
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Various approaches
■method 1: no use of reweighting

▼ complex Langevin method
(may show a wrong convergence problem)

■method 2: deformation of the integration surface
▼ Lefschetz thimble method

▼ path optimization method (POM)

Tempered Lefschetz thimble method (TLTM)

worldvolume TLTM (WV-TLTM)

■method 3: no use of MC in the first place
▼ tensor network

 
 
 
 

- good at calculating the free energy
- but not so much for correl fcns
- complementary to MC approach?

[Parisi 1983, Klauder 1983, Aarts et al. 2009]

[MF-Umeda 2017]

[MF-Matsumoto 2020]

[Mori-Kashiwa-Ohnishi 2017,

[Levin-Nave 2007, ...]

 wrong results
     w/ small stat errors
⇐ 
 
 

[MF-Umeda-Matsumoto 2019]

[Witten 2010, Cristoforetti et al. 2012,
Fujii et al. 2013, Alexandru et al. 2015]

Alexandru et al. 2018]
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2.  Lefschetz thimble method



Basic idea of the thimble method (1/2)
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Basic idea of the thimble method (2/2)
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How does the sign problem disappear?
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3. Tempered Lefschetz thimble method
and its worldvolume extension 

(TLTM & WV-TLTM)



Ergodicity problem
[Fukuma-Umeda 1703.00861]
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iy
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0
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[9/25]

difficult to communicate with each other

( )of z  ero S ze−

Sign problem resolved?

Actually, there comes out another problem at large t : Ergodicity problem

NO!

2( ) /2 ( )S x xe e x iβ β− −= − ( 1)β 

solution：
[MF-Umeda 2017]

Implement the tempering to the thimble method

[Marinari-Parisi 1992]
[Swendsen-Wang 1986, Geyer 1991
Hukushima-Nemoto 1996]

using the flow time as a temp param

[ ]sign problem : NG

sign problem : OK           
ergodicity problem : NG
 
  



Tempered Lefschetz thimble method (TLTM) (1/2)
[Fukuma-Umeda 1703.00861]
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Tempered Lefschetz thimble method (TLTM) (2/2)

Important point in TLTM:

NO "tiny overlap problem" in TLTM

We can expect significant overlap between adjacent replicas!

t

Distribution functions have peaks at the same positions 
for varying tempering parameter (which is  in our case)

x
t

σ

[MF-Umeda 1703.00861, MF-Matsumoto-Umeda 1906.04243]

0 0
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Pros and cons of original TLTM
■TLTM

Cons : large comput cost at large DOF
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Worldvolume TLTM (WV-TLTM) (1/2)

ζ− ζ +
+

iy

■Worldvolume TLTM (WV-TLTM)
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- No need to calculate Jacobian in MD process
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Worldvolume TLTM (WV-TLTM) (2/2)
■Basic Idea
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( )( )  arbitrary functionW t ：
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 Path integrals over the worldvolume ⇐ 

Statistical analysis method
for the WV-TLTM is established in
[MF-Matsumoto-Namekawa  2107.06858]
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Appendix: Details on WV-TLTM (1/2)
[MF-Matsumoto 2012.08468]
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Appendix: Details on WV-TLTM (2/2)
[MF-Matsumoto 2012.08468]
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RATTLE on   [Alexandru@Lattice2019,  MF-Matsumoto-Umeda 2019]t

∞= Σ
Σ
cf)

( )  is estimated with RATTLEf z〈 〉

HMC on a constrained space

†
0

†
0

( ) ( )] 0
( ) ( ) 0

[
][

  and  Im
  and  Im

a
a

a
az

z z E z
z z

J
T J E

λ
π λ′





′∈ =
′ ′ ′∈ =
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4.  Application to various models



200
 ,
 though the system sizes are yet small (DOF ) 
So far successful for all the models when applied

N ≤

(WV-)TLTM has been successfully applied to ...
ー (0+1)dim massive Thirring model

ー 2dim Hubbard model

ー chiral random matrix model (a toy model of finite density QCD)

ー anti-ferro Ising on triangular lattice

[MF-Umeda 1703.00861]

[MF-Matsumoto-Umeda 1906.04243, 1912.13303]

[MF-Matsumoto 2020, JPS meeting]

[MF-Matsumoto 2012.08468]
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4-1.  Hubbard model
(using original TLTM)



Hubbard model (1/3)
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： 

( )20 [ ] [ ] [ ] 0det det mF deor half filling ( ) :   No sign problt ea b aM M Mµ φ φ φ ⇒= = ≥
0states ( )µ ≠This gives complex actions for non half-filling

[MF-Matsumoto-Umeda 1906.04243]
We apply the Tempered LTM to this system ,) ( )

1, (
(

),  
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s

x
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x
N NNτ
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 = … =
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HS



Hubbard model (2/3)
5, 2 2
3, 13  

sN N
U

τ
β κ β

= = × 
 = = 

[MF-Matsumoto-Umeda 1906.04243]

reweighting
large errors
due to the sign problem

deviate from exact values
due to multimodality
(but very small errors) agree with exact values

(small errors)
w/o temp

w/ temp

( 0)T >

( 0)T >

( 0)T =

βµ

( ), ,

1 1
s

n
N

n n ↑ ↓〈 + −〉 = ∑ x x
x

[19/25]25)NB Large  (e.g.  can be easily reached N Nτ τ =



Hubbard model (2/3)
[MF-Matsumoto-Umeda 1906.04243]5, 2 2

3, 13  
sN N

U
τ

β κ β
= = × 

 = = 

reweighting
large errors
due to the sign problem

deviate from exact values
due to multimodality
(but very small errors) agree with exact values

(small errors)
w/o temp

w/ temp

focus on this

( 0)T >

( 0)T >

( 0)T =

βµ

( ), ,

1 1
s

n
N

n n ↑ ↓〈 + −〉 = ∑ x x
x

[19/25]25)NB Large  (e.g.  can be easily reached N Nτ τ =



Hubbard model (3/3)
[MF-Matsumoto-Umeda 1906.04243]
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projected on a plane : sN

T

z N zτ

βµ

− 
 

= =

=
 

∑ x
x





Distribution of flowed configs at flow time 

w/ temp

distributed widely
over many thimbles

[20/25]

w/o temp

stuck to a small # of thimbles



Comment on the Generalized LTM

5Example: βµ =

large stat errors
(due to sign problem)

wrong value
(due to multimodality)

It is a hard task to find an intermediate
flow time that solves both the sign and
ergodicity problems simultaneously [21/25]

Alexandru et al. (2015) made a very interesting proposal  
for reconciling the sign and ergodicity problems: 
  Choose a flow time that is sufficiently large so as to resolve the sign problem
  but at the same time is not too large so as to avoid the ergodicity problem.

Our experience says it is NOT possible
in many cases.

In fact, in most cases, the sign problem
gets relaxed only after  reaches a zerotΣ
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We confirm this for various values of βµ

[MF-Matsumoto-Umeda 1906.04243]



4-2.  Chiral random matrix model
and the computational scaling

(using WV-TLTM)



Chiral random matrix model (1/2)
■finite density QCD

[MF-Matsumoto 2012.08468]
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■chiral random matrix model [Stephanov 1996, Halasz et al. 1998]
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quantum field replaced by
a matrix incl spacetime DOF

( )2 4 22 1)(  4 cLN n N⇔= −DOF : 

- complex Langevin suffers from wrong convergence [Bloch et al. 2018]

■role as an important benchmark model
- well approximates the qualitative behaviour of QCD at large n

toy model

)( 10, fT N= =

[22/25]



Chiral random matrix model (2/2)

chiral condensate

baryon # density

(now easy at large DOF compared to the original TLTM)
10 200 (DOF )n N= =matrix siz ：e : 

1
2 StephlnZ

n m
ψψ ∂
〈 〉 ≡

∂

† 1
2 StephlnZ

n
ψ ψ

µ
∂

〈 〉 ≡
∂

[ ]0.004 0, m T= =

[MF-Matsumoto 2012.08468]

reweighting

reweighting

complex Langevin

complex Langevin

WV-TLTM

WV-TLTM

[23/25]

(sign problem)

(sign problem)

(wrong convergence)

(wrong convergence)

sample size
reweighting : 10k
complex Langevin :10k
WV-TLTM : 4k-17k



Scaling of computational cost
[MF-Matsumoto-Namekawa, work in progress]

[24/25]

computed on Yukawa-21@YITP
CPU: Xeon Platinum 8280
GPU: NVIDIA Tesla V100

3( ) (not exponential)O N
3.5( ) with original TLTMO N  



~2 3( )We expect  for generating a config (work in progress)O N

2 62 48 4,41× =22N n=

3( )O N⇐
3( )O N⇐

Ongoing: comput scaling
with fixed statistical errors

Phase 1
2 ( )s

-
c

 Use a direct method (LU decomp) in linear inversion
 i  alculated explicitly by  solving a diff eq - t t t tJ J S z J= ∂ ⋅

Phase 2

( 0, 0.004)Stephanov model T m= =

The code on this part is currently being updated : Phase 1 ⇒ Phase 2

2, ( )
- Use
- Only need

 an iterative me
 
thod (BiCGStab) i

e
n linear 

v
inversion

 to solv te a flow eq for a o  ang ntector  t    t t t t tv v S z vΣ = ∂ ⋅

2( )O N⇐

2~3( )O N⇐

We need to make a linear inversion of  several times in generating a config.t x bJ =



5.  Summary and outlook



Summary and outlook
■Summary

▼ TLTM has been successfully applied to various models

chiral random matrix model
1D/2D Hubbard model

antiferro Ising
on trianglular lattice

■Outlook
▼ Large-scale computation for large-size systems w/ WV-TLTM
▼ Further improvements of algorithm

▼ Combining various algorithms
(e.g.) TRG (non-MC)：good at calculating free energy

▼ Particularly important: MC calc for time-dependent systems
first-principles calc of nonequilibrium processes
such as early universe, heavy ion collision experiments, ...

[MF-Matsumoto]

[MF-Matsumoto-Umeda]

[MF-Matsumoto]

•

•  

 finite density QCD
strongly correl electron systems  QMC frustrated classical / quatum spin systems





 

：

[MF-Matsumoto-Namekawa, work in progress]

▼ TLTM has a potential to be a solution to the sign problem
- Sign and ergodicity problems are solved simultaneously

(yet only to toy models w/ small DOF at this stage)

[25/25]

cf) TRG for 2D YM: 
[MF-Kadoh-Matsumoto 2107.14149]



Thank you.
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