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1. Introduction



Overview

The numerical sign problem is one of the major obstacles
when performing first-principles calculations in various fields of physics

Typical examples:

@ Finite density QCD
@ Quantum Monte Carlo simulations of quantum statistical systems
® 6 vacuum with finite 6 (such as the Hubbard model)

@ Real-time dynamics of quantum fields

Today, | would like to show that  [(MF-Umeda, 1703.00861]
a new algorithm “Tempered Lefschetz Thimble Method" (TLTM)
and its extension "Worldvolume-TLTM" (WV-TLTM) [MF-Matsumoto, 2012.08468]
may be a promising method towards solving the sign problem,

by exemplifying its effectiveness for various models
- (0+1)-dim massive Thirring model [IMF-Umeda, 1703.00861]

- 1-dim and 2-dim Hubbard mode| [MF-Matsumoto-Umeda, 1906.04243]

- chiral random matrix model (Stephanov model)
[MF-Matsumoto, 2012.08468]

| also would like to discuss the computational scaling of WV-TLTM
[MF-Matsumoto-Namekawa, work in progress] [1/25]



Sign problem

| | | [dxe*?0(x)
Our main concern is to estimate: (O(x)), = jd ~S(x)
Xe

x = (x') e R": dynamical variable (real-valued)
S(x): action, O(x): observable
Markov chain Monte Carlo (MCMC) simulation:
probability distribution function
When S(x) e R, one can regard p,,(x) =e~" /jdxe‘s(x) as a PDF:
0< P (X) <1, jdxpeq(x)zl

Generate a sample {x*}_, _ fromp,(x) (N, :sample size)
1 Neonf
(O(X))s = > 0(x")
conf k=1
Sign problem:

When S(x) = S, (x) +iS, (x) € C, one cannot regard e >" /Idxe‘s(x) as a PDF

Reweighting method :
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p )2 = : _ B2
Let us consider {S(X)zz(x") =S (X) +1iS,(x) [SR(X)—E(X —1)]
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Various approaches

B method 1: no use of reweighting

¥ complex Langevin method [Parisi 1983, Klauder 1983, Aarts et al. 2009]

(may show a wrong convergence problem) (< wrong results
w/ small stat errors

B method 2: deformation of the integration surface

V¥ lLefschetz thimble method [Witten 2010, Cristoforetti et al. 2012,
Fujii et al. 2013, Alexandru et al. 2015]

Tempered Lefschetz thimble method (TLTM) [MF-Umeda 2017]
[MF-Umeda-Matsumoto 2019]

worldvolume TLTM (WV-TLTM) [MF-Matsumoto 2020]

V¥ path optimization method (POM) [Mori-Kashiwa-Ohnishi 2017,
Alexandru et al. 2018]

B method 3: no use of MC in the first place

V¥ tensor network [Levin-Nave 2007, ...]
- good at calculating the free energy
- but not so much for correl fcns
- complementary to MC approach? [4/25]
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2. Lefschetz thimble method



Basic idea of the thimble method (1/2)

B complexification of dyn variable: x=(x)eR" = z=(z' =x'+iy')eC"

assumption (satisfied for most cases) (S(x) : action, O(x) : observable)

e 5@ e3@O(z) : entire fcns over CN (can have zeros) \

Cauchy’s theorem /y}

- -——

-
-
-

Integrals do not change under continuous deformation
of integration surface : =, =R" — X (<= C")
(boundary at | x|— « kept fixed)

oy A XETOW[aze o
(O = j dxeS® jdz e5(2)
% >

severe sign problem |sign problem will be significantly reduced
if ImS(z) is almost constant on X

[5/25]



Basic idea of the thimble method (2/2)

JC (anti-thimble)

\\ j(Lefschetz thimble)

ImS(z) : constant

W prescription for deformation ~

anti-holomorphic gradient flow

2, =0S(z,) with z,_, =X

| , __mN
property X 20 — R

[S(z)] =05(z,)-2 =[6S(z,)| >0

ReS(z)| >0 : always increases except at crit pt £ (¢ : crit pt
t

[ImS(z)] =0 : always constant < 05(4)=0

Z o J (Lefschetz thimble) = set of orbits starting from ¢
ImS(z) : constant on J (=ImS(¢))

Sign problem s expected to disappear on Z; at a sufficiently large t
[6/25]




How does the sign problem disappear?

e Integration on the original surface =, =R" (flow time t =0)

'm0 0N L o1/ /N .
(O(x)) = Ziim S(x) SoTe ~ e—O(N) - [ = (E .D'OsFam le size)
<e >20(reWt) e iO(l/ Nconf) conf * p
need ahuge size of sample : N__ . =e°™) sign problem
flow
e Integration on a deformed surface Z; (flow time t) e,
i it
<O(X)>_<e'9(z)0(2)>zt et M roas N &
<elz(2)>zt e_e_ﬂtO(N) iO(:I'/ ‘\/ Nconf) 2t j
i0(z) _ —ilmS(z) 04Z
[e =e @] [eﬂbt =0O(N) < t=0(log N)] . -y
- O@)£O@@/\/Ngp) A (typical) singular value
= O(l) iO(ll m) of Hessian 8,813(4)

Sign problem disappears at flow timet =0(logN)

[7/25]




y

Gradient flow:

2, =S(z,)= (T +1) with z_, =X

= z,() =xe” +i(l-e) -|dz|=

IMS (z,(x)) = - A

e”tdx

of coefficient

= {ReS(zt (X)) = %,Bezﬂt (x* —e™*M) —_ﬁt /
e| X

gi0(2 () _

[S@ =812 (- =5"(@)=p-1)]

Ji 121501 (@) [dee P2 (7,(x)

f =
:> < (Z)>zt J‘E |dZ | e—Re S(Z)

No small numbers appear

if we take a larget (=T) st. e’ <

- <ei9(2)22>2T

(x*) =

<ei9(Z)>ZT
2 (87-1) o
- o~ (B12)e?T - 0()

NB. Logarithmic increase is enough:

T ~O(log 8) (=O(logN))

jdx o pel X2
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3. Tempered Lefschetz thimble method
and i1ts worldvolume extension
(TLTM & WV-TLTM)



Ergodicity problem

[Fukuma-Umeda 1703.00861]

Sign problem resolved? NO!
Actually, there comes out another problem at large t : Ergodicity problem

iy zero of e 5%

1 (ReS(2)=+w g > =e_ﬂXZ/2(X—i)ﬂ (B>1)

s signproblem: OK
T | ergodicity problem : NG

> X

AN .
2, =R" [signproblem:NG]

difficult to communicate with each other  marinari-parisi 1992]

[Swendsen-Wang 1986, Geyer 1991
Hukushima-Nemoto 1996]

solution : | Implement the tempering to the thimble method
[MF-Umeda 2017] using the flow time as a temp param [9/25;




Tempered Lefschetz thimble method (TLTM) (1/2)

[Fukuma-Umeda 1703.00861]
mTLTM

(1) Introducereplicasinbetween theinitialinteg surface 2, = RN
and the target deformed surface X; as {Ztozo' Tt Zgn o By, }

(2) Setup a Markov chain for the extended config space {(x,t,)}
(3) After equilibration, estimate observables with a subsample on X

Yy ReS(z) =+

[ sign problem'OK

ergod|C|ty problem OK
by tempering

z,=R" [signproblem:NG]|

easy transition through a detour

Sign and ergodicity problems solved simultaneously ! |



Tempered Lefschetz thimble method (TLTM) (2/2)

[MF-Umeda 1703.00861, MF-Matsumoto-Umeda 1906.04243]

Important point in TLTM:

[ NO “tiny overlap problem" in TLTM ]

Distribution functions have peaks at the same positions x_
for varying tempering parameter (which is t in our case)

We can expect significant overlap between adjacent replicas!

[11/25]



Pros and cons of original TLTM

BTLTM [MF-Umeda 2017]
Replicas introducedinbetween X, and X; : {Ztozo’ Tt Zpr e ZtAZT}

1y A finite discrete set of replicas

N
£, =R

Pros : can be applied to any systems in principle
once formulated by path integrals with continuous variables

Cons : large comput cost at large DOF
- necessary # of replicas «c O(N°™?)

- need to calculate Jacobian J, (x) = 6z, (X) / &x o«c O(N®)
everytime we exchange configs between adjacent replicas [12/25]



Worldvolume TLTM (WV-TLTM) (1/2)

[MF-Matsumoto 2012.08468]
® Worldvolume TLTM (WV-TLTM)

HMC on a continuous accumulation of integ surfaces, R = U 24
0<t<T

ly “worldvolume”

R : orbit of integration surface
inthe "target space" C" = R*"

3 orbit of particle — worldline

orbitof string — worldsheet

orbit of surface — worldvolume
(membrane)

> X
Aol A Dyw
Zy=R
Pros : can be applied to any systems
once formulated by path integrals with continuous variables
@ major reduction of comput cost at large DOF
- No need to introduce replicas explicitly

-No need to calculate Jacobian J; (x) = 0z, (x) / 0x inMD process

- Configs canmove largely due to the use of HMC (13/25]



Worldvolume TLTM (WV-TLTM) (2/2)

[MF-Matsumoto 2012.08468]

M Basic |dea
J‘ dx e > O(x) _[2 dz, e P O(2) t-independent
(O(x)) = >0 5 = 5 (Cauchy's theorem)
.[2 dx e 5™ jﬁt dz, e (2) t-independent
0

.
B Io dte™" Iﬁt dz, e O(2) (W (t) : arbitrary function)

- J-T it e‘W(t)j dz. -5 cho§en s.t. the appearance prob
0 B at different t are almost the same
[ dtdz, e We 5@ 0(2)

- j dtdz, e W Me=S(2)
R t _

< Path integrals over the worldvolume R

Statistical analysis method

for the WV-TLTM is established in
[MF-Matsumoto-Namekawa 2107.06858]

X
. =RN [14/25]



Appendix: Details on WV-TLTM (1/2)

| [ dtdz eV Ve > 0(2) § " H/‘t
(O(x)) = A
j‘ dtdZt e—W(t)e S(z) /1‘—1—(& z + dz®)
e odt
natural measure to appear in HMC on R APM decomposition (height
= vol element Dz of the induced metric ) - x*
Lat) (6 X +dx® -
ds? = @ %dt? + y, (dx? + B2dt)(dx° + °dt) (« : lapse) /’(L dz)t(x)lz( o)
0
Dz = crdlt | dz, (X) |= & | det J | dtdlx [J —%J

dtdz, () = Dz LI _ p QXL )i | gio o GELT
Dz dtdx e | detJ | | detJ |

j dtdz, e W MeS@(z) j Dza (z)e'?(®) e W g-ReS(@)-1ImS(2) 1) 7y
I dtdz, eV (Me=3(2) IR Dz a7 (z)e'#(®) gV (Ng=ReS(2)-1ImS(2)
_[R Dz e ReS@ e WO ;1 (7)el¢(De 1M 0 (2)

B J'R Dz e ReS(2) g-W() a—l(z)eiw(z)e—ilmS(Z)

_ IR Dz e VD A(2) O(2) _(A(2)O(2)x (D) = IR Dz e V@ ¢ (2)
[[D7ePAG) (Al ICTSC

(Ox)) =




Appendix: Details on WV-TLTM (2/2)

W Algorithm

(A(2) O(2))»

(X)) =
(O(x)) AD)

(f (Z)>R =

[MF-Matsumoto 2012.08468]

-V (2)
jR Dz e VD §(2)

.[72 Dze V@

V(z) =ReS(z) +W(t(z)) : potential
A(z) = aY(z)e'?Pe ™S - reweighting factor

HMC on a constrained space [Andersen 1983, Leimkuhler-Skeel 1994]

(f(2)), is estimated with RATTLE

7y, =1 —AsOV (z) - A°F,(2)
Z'=7+AST,,
7' =x—AsoV (z) - A"°F,(2)

A% and A'? are determined s.t.

2’eR and A*Im[J!(2)E,(2)]=0
7'eT,R and A*Im[J](z")E,(z')]=0

EF.—i—h.

cf) RATTLE on J =%, [Fujii et al. 2013]
RATTLE on X; [Alexandru@Lattice2019, MF-Matsumoto-Umeda 2019]

[16/25]



4. Application to various models



(WV-)TLTM has been successfully applied to ...

— (0+1)dim massive Thirring model [MF-Umeda 1703.00861]
— 2dim Hubbard model [MF-Matsumoto-Umeda 1906.04243, 1912.13303]

— chiral random matrix model (a toy model of finite density QCD)
[MF-Matsumoto 2012.08468]

— anti-ferro Ising on triangular lattice [MF-Matsumoto 2020, JPS meeting]

So far successful for all the models when applied,
though the system sizes are yet small (DOF N <200)

[17/25]
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4-1. Hubbard model
(using original TLTM)



Hubbard model (1/3)

1
H = —K'ZZ ny Cl,ocy,a o IUZ(nX,T t nx,i _1) +U Z nx,T B Ej(anL
X X

X,y o

Vo

]

(fermion bilinear) (four fermion)
n,, =cl ¢, (xsite, o =T,{: spin) |

x(>0) : hopping parameter, K = (K, ) : adjacent matrix
1 : chemical potential (N : # of sites)
U (>0) : strength of on-site replusive potential

N, >N, —1/2 st|u=0 < half-filling >’ <nm —1/2>:O

VT

T
HS N, ; N
St WDy, 4,
2,,=[ldgle ) = [[T[Tdd, e =" detM, (4] detM,[4]
(=1 X
M.[] =1, +eiﬂ“:__[(e“‘"K diag[eii@%'x]) : N, x N, matrix
G ; )

This gives complex actions for non half-filling states (u = 0)
(For half filling (u = 0) : detM [¢] detM,[¢] =|detM_[#]]* >0 = No sign problem)

We apply the Tempered LTM to this system | X= (x')=(¢,,) eR"
[MF-Matsumoto-Umeda 1906.04243] { i =1,...,N (N =N_N,) (18/24]



{N,=5, Ng =2x2

Hubbard model (2/3)

1
Br=3 SU =13} <”>:<N—Z(”X,T

(

0.8
0.6

0.4

0.2}

s X

)

+m¢—ﬂ>

[MF-Matsumoto-Umeda 1906.04243]

n
1.0¢

“ e’
oop-+-g 1]

+ reweighting (T
-=- exact value

+ W/ tempering (T >|0)
»x wj/o tempering (T >0) -

= 0)

deviate from exact values
due to multimodality ) 4
(but very small errors) P

w/o temp |y ,{
» &
p

1
> 4

#w/ temp

A

‘f

&

s

e |
A

[ 7

agree with exact values
(small errors)

s

0
NB Large N, (e.g. N_ =25) can be easily reached

5

10

reweighting

large errors
due to the sign problem

[19/25]



N_ =5, Ng =2x2 1

[,BK 3, U =13} ()=
(n)

1.0f

0.8

0.6

0.4

0.2}

Hubbard model (2/3)

S X

L3000

[MF-Matsumoto-Umeda 1906.04243]

+ W/ tempering (T >|0)
»x wj/o tempering (T >0) -
+ reweighting (T =0)
-- exact value

deviate fro fOCUS ON this

due to multimodalit
(but very small error

w/o temp

)
’

oop-+¢-1]

X o
p

1

#w/ temp

[ 7

agree with exact values
(small errors)

0
NB Large N, (e.g. N, =25) can be easily reached

10

reweighting

large errors
due to the sign problem

[19/25]



Hubbard model (3/3)

[MF-Matsumoto-Umeda 1906.04243]
Distribution of flowed configs at flow time T =0.5 (Su =5)

[projected onaplane:Z= (NTNS)‘lz z“j
£,X

w/o temp w/ temp

05— ——————————— 05—

- Imz ; - Im2z
0.4} ] 0.4} 1
0.3} 1 0.3 1
0.2} ] 0.2 1
0.1f - 0.1f 1

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

distributed widely

stuck to a small # of thimbles :
over many thimbles

[20/25]



Comment on the Generalized LTM

[MF-Matsumoto-Umeda 1906.04243]
Alexandru et al. (2015) made a very interesting proposal
for reconciling the sign and ergodicity problems:
Choose a flow time that is sufficiently large so as to resolve the sign problem
but at the same time is not too large so as to avoid the ergodicity problem.

Our experience says it is NOT possible  Example: Su=5

in many cases. large stat errors wrong value
(due to sign problem) (due to multimodality)

In fact, in most cases, the sign problem

gets relaxed only after X; reachesazero (4 Na .

We confirm this for various values of Su 0 3 } ; 'S
_NZ‘:5’ NS:2X2 | og ¢ )| EE‘ { { !E
Brx=3, pU=13 0<T<0.4(<=0<a<10) 0 52:_____ _______ . ;:;';':_"_"_"_"_"_':::_"_"_"_"_"_'_:
N, =5,000~25,000 depending on Su - }: j
<ei9(z)n(z)>Zt 1
=— —~N, 71
] (e' )>2ta | 01 :| o w/o tempering
P H o t val

It is a hard task to find an intermediate 0 D N 1 ‘eIX'efcl Ya‘u? S

flow time that solves both the sign and 0 2 4 7 6 8 10 a

% ‘$’
“ssEssEEEEEEEEEEEEEEEEEEEEEEES

ergodicity problems simultaneously [21/25]




4-2. Chiral random matrix model

and the computational scaling
(using WV-TLTM)



Chiral random matrix model (1/2)
. . [MF-Matsumoto 2012.08468]
W finite density QCD

0 o
U
_ tre=AH=uN) [{7#%}: 25,0 V.=V = [a* 0 H
(U292)[trF 2, + [[7 (7D +m)y +uy ]

Z
Qcp p

= J[dA ldydy] e

B I G
8 aj(a# +A)+u m
toy model

B chiral random matrix model [Stephanov 1996, Halasz et al. 1998]

m W +ﬂJ quantum field replaced by j

. —n trw tw
Zsrepn —deVV € det(iwt fuom a matrix incl spacetime DOF
(T=0,N, =1

W = (VVIJ) = (le + IYIJ) NxXn Comp|eX matl’iX
(DOF : N=2n* < 4L*(N?-1))

M role as an important benchmark model

- well approximates the qualitative behaviour of QCD atlarge n

- complex Langevin suffers from wrong convergence [Bloch et al. 2018]
[22/25]



Chiral random matrix model (2/2)

matrix size : n=10 (DOF : N = 200) [MF-Matsumoto 2012.08468]
(now easy at large DOF compared to the original TLTM) sample size

1 2 reweighting : 10k
. — o\ . _ complex Langevin :10k
chiral condensate (yy) = oA InZg,,, [m=0.004, T =0] WV-TLTM - 4k-17k

0.06 ] 0.06F

0.05

¢ WV-TLTM

X reweighting ’ 0.05 —

= exact

——0:04

X complex Langevin 1

s 0.03; < 0.035_ WV-TLTM —— exact
= .02; reweighting S ook .
] 3
0.01ksign problem ool .
0.00F ] X %
: 0.00f >
0.01F ] ' complex Langevin
-0.01p ‘ e -001{wrong convergence)
0.2 0.4 0.6 0.8 1.0 02 0d 0% o3 -
u

. 1 "
baryon # density <WTW> E_EanSteph
- 2ndu

5ol 2 WV-TLTM
[ X reweighting X X 2.0:_ °® WV-TLTM 3
15} T exad * X complex Langevin . x % X
g [ . ht' ] § 1~5_' — exact X X
2 - reweighting (x4 1 z i x X .
s 1o (sign problem) * : 2 10} *” complex Langevin
: ] i x (wrong convergence)
0.5¢ ] [ X
E E 0.5 -x y x X ]
—0:07 1 0.0F .
0.2 0.4 0.6 0.8 1.0 02 o4 06 08 10

) ) [23/25]



Scaling of computational cost

[MF-Matsumoto-Namekawa, work in progress]
We need to make a linear inversion of J,x =Db several times in generating a config.
The code on this part is currently being updated : Phase 1 = Phase 2

Phase 1 - Use a direct method (LU decomp) in linear inversion < O(N®)
- J, is calculated explicitly by solving a diff eq J, = 6°S(z,) - J, < O(N?)

computational cost (1 transition)

| —<- cpU Stephanov model (T =0, m=0.004)
103 ] —®- CPU+GPU .
] o JV3-015 % 0.090 ““ 3 .
. « 3022023 / O(N”) (not exponential)
S 102 4 7 [O(N <%%) with original TLTI\/I]
PR .‘/"' Ongoing: comput scaling
S / 7 with fixed statistical errors
10! 4 7 4
/, _.'/
...’—;‘---"'"" computed on Yukawa-21@YITP
N i al CPU: Xeon Platinum 8280
R R GPU: NVIDIA Tesla V100
102 103 2x48° = 4,416
N =2n° "

Phase 2 - Use an iterative method (BiCGStab) in linear inversion < O(N*™)
- Only need to solve a flow eq for a vector v, tangent to %, v, =9°S(z,) -V,

2
We expect O(N °°) for generating a config (work in progress) C[(Z);;IZ;]




5. Summary and outlook



Summary and outlook
B Summary

V¥ TLTM has a potential to be a solution to the sign problem
- Sign and ergodicity problems are solved simultaneously

¥ TLTM has been successfully applied to various models
(yet only to toy models w/ small DOF at this stage)

(o finite density QCD chiral random matrix model [MF-Matsumoto]
. OMC _{strongly correl electron systems 1D/2D Hubbard model

N\

F-Matsumoto-Umeda]

frustrated classical / quatum spin systems antiferro Ising

on trianglular lattice
[MF-Matsumoto]

\

B Outlook [MF-Matsumoto-Namekawa, work in progress]

V¥ Large-scale computation for large-size systems w/ WV-TLTM

V¥ Further improvements of algorithm

¥ Combining various algorithms
. cf) TRG for 2D YM:
(e.9.) TRG (non-MC) : good at calculating free energy  [vir-kadoh-Matsumoto 2107.14149]

V¥ Particularly important: MC calc for time-dependent systems

first-principles calc of nonequilibrium processes

such as early universe, heavy ion collision experiments, ...
y y P [25/25]



Thank you.
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