From zero flavors to twelve: the opening of the conformal window

Anna Hasenfratz University of Colorado Boulder

YITP Workshop QCD phase diagram and lattice QCD

Oct 24 2021

/iew of Kyoto

The phase diagram as the function of N_f

- $N_f = 0$ YM is confining (zero temperature)
- QCD with 2 light flavors is chirally broken, confining (zero temperature)

- the conformal phase is characterized by in infrared fixed point
- there might be a UV fixed point with a new relevant operator (4-fermion?)

• At $N_f = 16.5$ (SU(3) color) asymptotic freedom is lost

- the system could be "trivial"
- or a UV-safe fixed point might emerge (again, new relevant operator)

Phase structure of (near-)conformal systems

g²

Conjectured phase diagram in the extended parameter space

Kaplan et al, P*hys.Rev.D* 80 (2009) 125005 Gorbenko et al, *JHEP* 10 (2018) 108

 $\beta(g^2)$

Goal is to determine the RG flow along the renormalized trajectory:

- this is a 1-paramter function: RG β fn
- can be done without NJL action

The continuous β function on the lattice

In Wilsonian RG language:

- RG transformation: determines the FP and its renormalized trajectory (RT) (continuum physics)
- ✦ Lattice action: starting point of RG flow
 - along the RT RG flows from different bare couplings overlap, and describe continuum physics
- + Operator: g_{GF}^2 should correspond to scaling operator along the RT
 - $g_{GF}^2 \propto \mu^{-4} \langle E \rangle$ (no anomalous dimension)

The continuous β function from gradient flow

GF is a smoothing transformation (Luscher JHEP 2010, 071)

It can be used to define a real-space Wilsonian RG transformation: $\mu \propto 1/\sqrt{8t}$,

A. Carosso, AH, E. Neil, PRL 121,201601 (2018) Sonoda, H., Suzuki, H. PTEP,023B05 (2021)

Lattice details:

The RG picture is valid

- in infinite volume
- in am = 0 chiral limit

The continuum limit is $t/a^2 \rightarrow \infty$

- the flows approach the RT
- the correct scaling operator is projected out
- Remaining cut-off effects are removed by $a^2/t \rightarrow 0$

AH, O. Witzel, *Phys.Rev.D* 101 (2020) 3

The continuous β function from gradient flow

GF is a smoothing transformation (Luscher JHEP 2010, 071)

It can be used to define a real-space Wilsonian RG transformation: $\mu \propto 1/\sqrt{8t}$,

 $\beta(g_{GF}) = -t \frac{dg_{GF}^2}{dt}$

A. Carosso, AH, E. Neil, PRL 121,201601 (2018) Sonoda, H., Suzuki, H. PTEP,023B05 (2021)

Lattice details:

The RG picture is valid

- in infinite volume
- in am = 0 chiral limit

The continuum limit is $t/a^2 \rightarrow \infty$

- the flows approach the RT
- the correct scaling operator is projected out
- Remaining cut-off effects are removed by $a^2/t \rightarrow 0$

AH, O. Witzel, *Phys.Rev.D* 101 (2020) 3

- Step scaling function requires that the volume is the only scale; valid only in the deconfined regime
- Continuous β function requires infinite volume extrapolation but it is correct even in the confining regime

continuum physics

◆Different bare couplings overlap, form a unique curve :

- flow reached the RT
- cutoff effects are small

Nakamura, Schierholz 2106.11369

+In the confining regime $\beta(g^2) \propto g^2$: non-perturbative; Topology?

 $N_T = N_I + N_A$ instantons \rightarrow vacuum energy density: $\langle E \rangle = \langle E \rangle_{N_T=0} + N_T * S_I / V$ GF coupling: $g_{GF}^2 = g_{GF,0}^2 + ct^2 N_T / V$ If $\lim_{V \to \infty} N_T / V$ = finite, topology dominates and $\beta(g^2) \propto g^2$

The continuous β function, $N_f = 2$ DWF, $m_f = 0$

The continuous β function, $N_f = 2$ DWF, $m_f = 0$

The continuous β function, $N_f = 2, 2 + 1$ DWF, $m_f = 0$

The continuous β function, $N_f = 4$ DWF, $m_f = 0$

```
AH, O. Witzel, in preparation
```

Simulations in the weak coupling chirally symmetric regime, 20⁴, 24⁴, 32⁴ volumes

Raw data (Zeuthen flow, Wilson op)

- shows significant overlap and minimal finite volume effects
- sits almost on top of continuum extrapolation

The continuous β function, $N_f = 6$ DWF, $m_f = 0$

```
AH, O. Witzel, in preparation
```

Simulations in the weak coupling chirally symmetric regime, 20^4 , 24^4 , 32^4 , 40^4 volumes Raw data

- shows significant overlap and minimal finite volume effects
- sits almost on top of continuum extrapolation

The continuous β function, $N_f = 8$ DWF, $m_f = 0$

Simulations in the weak coupling chirally symmetric regime, 16⁴, 24⁴, 32⁴, 48⁴ volumes Raw data

- shows significant overlap and minimal finite volume effects
- → sits almost on top of continuum extrapolation up to $g_{GF}^2 \approx 8$ at stronger coupling the perturbative guidance breaks down, no overlap, no unique curve traced out by raw data

Is this a signal of nearby IRFP/UVFP ? (Somewhere at $N_f \gtrsim 8$)

The continuous β function, $N_f = 10$ and 12 DWF

AH,O.Witzel, *Phys.Rev.D* 101 (2020) 11, 114508

- Very slow running
- At stronger couplings there is no overlap, no unique curve traced out by raw data
- Is this a signal of nearby IRFP/UVFP ?

The β function of (near-)conformal systems

To solve these issues will require a new approach

Any calculation based on the perturbative Gaussian FP will cover only the regime between GFP and IRFP:

- $N_f = 0 6$ shows slow running but cutoff effects are easy to control
- $N_f \ge 8$ shows increasing non-perturbative effects
 - perturbatively justified extrapolation in $(a/L)^2$ or (a^2/t) might need to be replaced with $(a/L)^{\alpha}$, $(a^2/t)^{\alpha/2}$
 - new relevant operator at the UVFP means that a 1-parameter β function might not describe the RG flows

Most simulations are plagued by (bulk) 1st order transition that prevent investigations at strong coupling

Improved action with Pauli-Villars bosons

AH,T.DeGrand PRD 49 (1994) 466 AH,B. Svetitsky, Y. Shamir, *Phys.Rev.D* 104 (2021) 7

Simulations in the strong coupling are difficult. Many flavor studies are particularly hard due to the induced effective gauge action from fermions

$$e^{-S_{ind}[U]} = \int \prod_{i=1}^{N_f} d\psi_i d\bar{\psi}_i e^{\left[-\sum_{i=1}^{N_f} \bar{\psi}_i (D+m_f)\psi_i\right]} = Det(D+m_f)^{N_f} = e^{N_f Tr \log(D+m_f)}$$

Expanding S_{ind} in $1/m_f$ gives a sum of gauge loops. For staggered fermions

$$S_{ind} = -N_f / 4 \sum_{\ell} \frac{(-1)^{\ell/2}}{\ell (2am_f)^{\ell}} \sum_{x} \sum_{\mathscr{C}_{\ell}} \mathscr{C}_{\mathscr{C}_{\ell}} Tr U_{\mathscr{C}_{\ell}}$$

Leading term is plaquette: $\beta_{ind}^{(p)} = \frac{6N_f}{4(2am_f)^4}$: $\beta_{eff} = \beta_g + \beta_{ind}$

The induced action of fermions

Compare simulations with $N_f = 0, 4, 8, and 12$ fundamental (staggered) fermions

As N_f grows,

- identical renormalized coupling corresponds to smaller the bare coupling
- the plaquette much rougher

Simulations to be done at strong bare coupling

- lattice artifacts are large
- spurious bulk transitions limit the renormalized coupling range

Both $N_f = 8$ and 12 exhibit 1st order bulk transition that limits the accessible coupling range

The induced action of fermions

Compare simulations with $N_f = 0, 4, 8, and 12$ fundamental (staggered) fermions

Improved action with Pauli-Villars bosons

Compensate the effect of fermions by adding heavy Pauli-Villars bosons:

- If $m_{PV} \gg m_f, 1/L, \Lambda_{QCD}$ the PV fields decouple and do not change the IR dynamics
- PV bosons induce a negative effective action
- any number of PV bosons can be added (even with different Dirac operator)

- this is already done in DW simulations

Improved action with Pauli-Villars bosons

Including PV boson are computationally inexpensive

They likely speed up the simulations while remove cutoff effects and open up the strong coupling parameter space

 $N_{f} = 12$

$N_{ m PV}$	eta	$g^2_{ m GF}$	$N_{ m step}$	$N_{ m CG}$	$ \delta H $
0	2.8	10.87(6)	15	1190	0.45
2	6.8	10.89(9)	12	400	0.062
4	9.0	10.58(8)	12	365	0.033
6	11.2	10.87(30)	12	353	0.033
8	13.4	10.87(100)	12	359	0.034

$N_f = 12$ with/wo Pauli-Villars bosons

Predicted step scaling beta functions are identical (staggered) PV action can explore much stronger couplings

$N_f = 8$ with/wo Pauli-Villars bosons

Expected to be very close to the conformal window Simulations without PV bosons are limited by a 1st order bulk transition to an S4 phase where staggered shift symmetries are broken

S4 phase remains as PV bosons are added but the transition becomes smooth, appears continuous

Could $N_f = 8$ be the boundary to the conformal window?

$N_f = 8$ phase structure with 4PV, $am_{PV} = 0.4$

Running coupling g_{GF}^2 at flow time $\sqrt{8t} = 0.45L, L = 6,...,20$ Significant finite volume dependence -> finite size scaling

Topological susceptibility is rising even though simulations are at $m_f = 0$

Staggered fermions are Dirac-Kaehler, equivalent to Dirac only at $g_0^2 = 0$

$N_f = 8$:finite size scaling

At fixed g_{GF}^2 the coupling scale as 1st order : $\beta(L) - \beta^* \propto L^{-1/4}$ 2nd order : $\beta(L) - \beta^* \propto L^{-1/\nu}$ Essential singularity (XY model/ Miransky) : $\beta(L) - \beta^* \propto 1/\log^2(cL)$

Data are not consistent with 1st order transition

$N_f = 8$:finite size scaling

PRELIMINARY

Summary and Outlook

The equivalence of Wilsonian RG and gradient flow allows a theoretically solid description of the strong coupling regime of lattice models

This is particularly important in near-conformal / conformal systems where new fixed points, new relevant operators appear

The continuous β function:

In QCD-like chirally broken systems it is well controlled with minimal cutoff effects with improved action/flow/operator in QCD-like chirally broken systems

◆Near the conformal sill strong non-perturbative effects appear :

- extended actions (4-fermion term?) might be necessary
- larger volumes (brute-force approach) can extend the accessible range, but will not cover the IRFP or UVFP beyond

PV bosons reduce cutoff effects, open up the parameter space

- cleaner numerical results
- possibly revealing new dynamics
- \bullet is $N_f = 8$ special?

AH, O. Witzel, *Phys.Rev.D* 101 (2020) 3

We use

- Symanzik gauge action, Mobius domain wall fermions (Grid)
- Zeuthen (Z), Wilson(W) and Symanzik(S) flows : optimize to pull the RT close
- Wilson plaquette(W), clover(C) and Symanzik(S) operators : combine to optimize for the scaling operator

ZW raw data

- shows minimal finite volume effects and significant overlap

AH, O. Witzel, *Phys.Rev.D* 101 (2020) 3

Analysis steps for continuum limit:

- 1. Infinite volume extrapolation $(1/L^4)$ in the chirally symmetric regime)
- 2. Infinite flow time extrapolation (a^2/t) at fixed g_{GF}^2

- Other flow/operator combos predict the same continuum limit, sometimes with larger cut-off effects (WS)
- It is possible to "optimize" the operator for different flows and find "scaling operators" (e.g. X = 0.25W + 0.75C is optimal for Wilson flow) (WX)

GF β function is closest to 1-loop; consistent with GF 3-loop up to $g_{GF}^2 \approx 2.5$

In all cases:

- The β functions runs slower than 1-loop PT
- minimal cutoff effects if Zeuthen flow+Wilson op (or tree level improved coupling) In the confining regime apparently $\beta(g^2) \propto g^2$

