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Topological susceptibility

Interesting, yet difficult for many reasons: 
• Non-integer on the lattice: need some smoothing, not perfect though. 
• Topology freezing: gets worse as the continuum limit approached. 
• Index theorem: related to fermion zero-modes. 
• Suppressed by sea quarks: near-zero modes are most relevant. 
• Measure of quark condensate: again near-zero modes.

Very sensitive to the discretization effect for (near-)zero modes.



Large discretization effect for topological susceptibility?

RQCD (2021)

O(a)-improved Wilson fermion

Large error, > O(100%), near 0.1 fm 

Suppression by fermion determinant 

doesn’t work properly at finite a.
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Figure 9: Topological susceptibility for many of the CLS ensembles described in [47].
Filled symbols mark ensembles that are simulated with a constant sum of quark masses
(solid lines), open symbols correspond to ensembles with the strange quark mass fixed to
approximately the physical value (dashed lines). Lines and shaded regions are the result
of a fit to eq. (6.27). The continuum limit result (black lines) is very close to both the
fit result at � = 3.85 as well as the leading order expectation (grey lines), when using
p
8t0F = 0.1866, see eq. (5.59), and setting Z! = 1.

From this four parameter fit with �2/Ndf ⇡ 35.3/33 ⇡ 1.07, we obtain in the continuum
limit p

8t�
0
F

Z!

= 0.190(13). (6.28)

When assuming Z! = 1, this value agrees with our previous result
p
8t�

0
F = 0.1866(48)

(see eq. (5.59) of sec. 5.7). The coefficients of the terms parameterizing the lattice spacing
dependence are

l(2)⌧ = �0.072(10), l(3)⌧ = 0.355(34) and l(4)⌧ = �0.324(30), (6.29)

resulting in the non-monotonous behaviour observed in fig. 9. The alternating sign also
explains how the susceptibilities at our finest lattice spacing a ⇡ 0.039 fm (� = 3.85) can
agree with the continuum limit expectation. We also tried to add mass-dependent terms
to our parametrization of lattice artefacts, however, the resulting coefficients turned out to

– 51 –



Large discretization effect for topological susceptibility?

Figure S1, where � is plotted as function of the lattice spacing squared. The result changes almost an
order of magnitude by moving from the coarsest to the finest lattice spacing on the plot.

At zero temperature � is proportional to the pion mass squared in the continuum. On the lattice
with staggered fermions it is expected, that � will be proportional to the mass squared of the taste
singlet pion. For the staggered chiral perturbation theory analysis of �, see [S9]. Thus it is natural to
rescale � with the pseudo-Goldstone mass squared over the taste-singlet pion mass squared. Since in
our nf = 2 + 1 + 1 simulations physical pion pseudo-Goldstone masses are used, in Figure S1 we plot
� multiplied by (m⇡,phys/m⇡,ts)2, where m⇡,ts is the taste-single pion mass [S48, S53]. The data shows
much smaller cut-o↵ e↵ects, than without multiplication and a nice a2-scaling sets in starting from a
lattice spacing of about 0.1 fm. The continuum extrapolated value is

�(T = 0) = 0.0245(24)stat(03)flow(12)cont/fm
4, (S2)

the first error is statistical. The second, systematic error comes from varying the definition of the charge,
i.e. the flow time at which the charge is measured. The third error comes from changing the upper limit
of the lattice spacing range in the fit. According to leading order chiral perturbation theory

⌃/� = 2m�1

ud +m�1

s + . . . (S3)

where ⌃ is the condensate in the chiral limit and the ellipses stand for higher order terms. Using the values
for quark masses and the condensate from [S34, S40] we obtain �LO = 0.0224(12)/fm4 in the isospin
symmetric limit, which is in good agreement with Equation (S2). For isospin corrections see Section S10.
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Figure S1: Lattice spacing dependence of the zero temperature topological susceptibility. The grey
squares are obtained with the standard approach, the red circles after dividing by the taste singlet pion
mass squared. The line is a linear fit. The blue cross corresponds to leading order chiral perturbation
theory. The plot shows nf = 2 + 1 + 1 flavor staggered simulations at zero temperature.

For the high temperature region the cut-o↵ e↵ects are not supposed to be described by chiral perturba-
tion theory. Other techniques are required to get the large cut-o↵ e↵ects under control, such a technique
is presented in Section S6.
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BMW, Nature (2016)

Stout-staggered (not improved)

Huge error, >> O(100%), at a = 0.06 fm.

Large error, O(100%), even after 
correcting the taste-breaking. 
(Topological charge couples to taste-
singlet fermionic determinant.)



Large discretization effect for topological susceptibility?
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Fig. 7 mud dependence of topological susceptibility obtained from the slab sub-volume

method. The heaviest four points are not included in the fit.
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Fig. 8 The same figure as Fig. 7 but a comparison with Ref. [8] (ETM2014,Nf = 2 + 1 + 1

results converted using the input r0 = 0.46 fm) and Ref. [9] (ALPHA2014, Nf = 2 results

converted assuming mud = M2
πF

2
π/(2Σ) using the inputs t1 = 0.061 fm2, Fπ = 92 MeV and

Σ =(270 MeV)3) is shown.

of Q2
lat, except for β = 4.47 where we choose τexp = 1700 MD time by hand (and assuming

100% error for it), which is a rough order estimate from the first zero-crossing point of Qlat.

Then we compute the auto-correlation of our target observable χslab
t by τimp to estimate

14

JLQCD (2017)

• ALPHA: O(a)-improved Wilson fermion 
• ETM: twisted mass fermion, χt from 
spectral sum 

• JLQCD: domain-wall fermion; 2 lattice 
spacings

Huge, large, or modest discretization 
effects depending on the fermion 
formulation, and how to define Q. 

Is                  reproduced?



Near-zero modes?
Common belief: the discretization effect appears as O(a2) 

How does it affect the near-zero modes?

Chiral symmetry violated; 
zero mode not protected. Probably, too large.

To my knowledge, there is no argument to apply 
Symanzik effective theory for Dirac eigenmodes.  



UA(1) susceptibility



UA(1) susceptibility

• Disc. error would be of O(a2Λ4). 

To probe the UA(1) violation in the vacuum, e.g.

Eigenvalue decomposition:

• Log divergent in UV

• More sensitive to low-lying 
eigenvalue spectrum compared to

Actually, probes lowest-lying modes 
almost exclusively.



UA(1) susceptibility
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FIG. 11: Low-mode saturation of �⇡��. The horizontal axis shows the threshold of the eigenvalue,

below which �ev
⇡�� is computed. The data for two typical configurations generated with � = 4.10,

ma = 0.001 on the 323 ⇥ 8 lattice are shown. The dotted lines are the results for the direct

computation �direct
⇡�� .
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FIG. 12: Quark mass dependence of the ratio �⇠⇠GW
⇡��/�⇡��. The contribution from the chirality

violating terms dominates the signal near the chiral limit.

The expectation value of N2
0 is expected to be an O(V ) quantity, as shown in [25], so

that these chiral zero-mode’s e↵ects should not survive in the large volume limit, as N0/V

is vanishing as O(1/
p
V ). We numerically confirm the monotonically decreasing volume

scaling of hN0/V i as shown in Fig. 13. Therefore, �̄ov
⇡�� and �ov

⇡�� are guaranteed to have

24

cutoff

JLQCD (2016)

|Q| = 1

|Q| = 0

30 MeV

Contributions from low-modes: 
• Zero mode is actually dominant (x100).  
• It is a volume-dependent statement, though. 
Zero-mode contribution is suppressed 
eventually as 1/V1/2. (Better to subtract 
from the beginning.) 

• Can we identify the zero-mode 
unambiguously? Chiral symmetry is crucial.



Domain-wall fermion is not 
good enough



Ginsparg-Wilson relation

• Exact chiral symmetry is realized on the 
lattice, if the Dirac operator satisfies 

• Domain-wall fermion is one implementation; 
overlap fermion is another. 

• Exact chirality is achieved when lattice size 
in 5th dim, Ls → ∞ , otherwise, chiral 
symmetry is inexact.

• Violation can be studied using an 
operator 

    with H = γ5D.



Residual mass
mres : parametrizes the effect of violation. 
Then, use Symanzik effective theory to 
estimate potential errors, as O(amres). But, 
how do you define mres ?  Try 

or
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a = 0.084 fm;  
Ls = 12

a = 0.055 fm;  
Ls = 8

Not unique. Much smaller at short distances.
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FIG. 1. Scatter plot of h�inn versus �n at � = 4.10, 323 ⇥ 8 and m = 0.01 (left), and at � = 4.24,

323 ⇥ 12 and m = 0.005 (right). The red thick line shows a binned average in a given range of

�. The blue dashed curve shows the maximal possible violation 2(� �m)(1 � �), and the orange

dash-dot line is the result of the stochastic measurement of the residual mass.

B. GW violation for individual eigenmodes

Figure 1 shows scatter plots of h�inn versus |�n| for the ensembles of � = 4.10, 323 ⇥

8 (⇥12) at m = 0.01 (left) and � = 4.24, 323⇥12 (⇥16) at m = 0.005 (right). For individual

eigenvalues, the matrix element h�inn takes the values between roughly 10�3 and 0.1 at

� = 4.10, and between 10�5 and 0.01 at � = 4.24 (right). The maximum possible value of

h�inn occurs when h�5inn = 1 and is given by 2(�n �m)(1��), which is shown in the plots

by a blue dashed curve.

From Figure 1 we clearly observe that the overall size of h�inn is made smaller for a

finer lattice. The average value calculated in a bin of |�n| shows a reduction of an order of

magnitude from � = 4.10 to 4.24. This is expected because the violation of chiral symmetry

should vanish in the continuum limit.

More importantly, the average value for a given range of �n gradually decreases for larger

|�n|. Also shown by a thick dot-dashed line is the corresponding stochastic estimate of the

residual mass taking account of all the eigenmodes. The binned average in a given range of

|�n| shown by red lines indeed shows a tendency approaching the residual mass at large �n’s.

(The available range of � is too narrow on the right to see the decrease.) Nearly maximum

12

Even defined for eigenmodes

• Violation may and does depend on the 
states. We can study more details through 

   for each eigenstate  of H. 

• Violation is typically enhanced for low-lying 
modes; the effect for individual eigenmode 
is very different (x100).

What is its effect on (near-)zero modes?

JLQCD (2016)

a = 0.084 fm; Ls = 16

sum of all eigenmodes



Eigenvalue decomposition
Identify the effect of the GW violation through eigenmodes.

red: GW violating
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FIG. 5. Eigenmode decomposition of the suseptibility difference �⇡��. Average in each bin of �

is plotted for full contribution (black circles) and for the contribution from the GW violating term

�⇠⇠GW
⇡�� (red crosses).

The second last column, on the other hand, shows the fractional size of the GW violating

contribution h�⇠⇠GW
⇡��i to h�(Nev)

⇡�� i. It shows larger variation between 0 and 1 depending on

the ensemble. In the following, we discuss on some remarkable observations.

Figure 5 shows the size of the GW violating contribution �⇠⇠GW
⇡�� in the eigenmode decom-

position of �⇡��. For each bin of |�|, we plot the average of full contribution �⇡�� (black

circles) and a partial contibution from the GW violating term �⇠⇠GW
⇡��. We find that on the

coarse lattice (left panel: � = 4.07, 323 ⇥ 8 (⇥24), m = 0.001) the GW violating term gives

a large fraction, one third of total, at the lowest bin, and it even dominates the signal for

other bins. The situation is better on the fine lattice when quark mass is large (right panel:

� = 4.24, 323⇥12 (⇥16), m = 0.01). Namely, the GW violating term is at least one order of

magnitude smaller than the total for all the measured bins. Reducing the quark mass (mid-

dle panel: � = 4.24, 323 ⇥ 12 (⇥16), m = 0.0025), the GW violating contribution becomes

more significant especially for the lowest bins.

Dependence on the lattice spacing is shown in Figure 6, where h�⇠⇠GW
⇡��i/h�

(Nev)
⇡�� i is plotted

as a function of 1/N2
t . For the same (or similar) temperature, it effectively shows the

dependence on the lattice spacing squared a2. The plot clearly shows that the GW violating

contribution h�⇠⇠GW
⇡��i is substantial for the lattices of Nt = 8. It can be as large as 30% or even

60% of the total, which is clearly not in the region where the usual O(a2) scaling toward the

16

a = 0.084 fm; Ls = 16a = 0.12 fm; Ls = 12

Signal is dominated by the 
GW violating effect, 
especially for coarse lattice 
and/or light quarks.

JLQCD (2016)



Subtlety of UA(1) susceptibility
1. Dominated by (near-zero) modes. 
2. Near-zero modes vulnerable to the GW violation.

Want to be careful:

• Reweighting to the exact GW fermion 
(that we call overlap) 

• Not very significant for fine lattice 
and heavier quarks. 

• But, if you focus on the most 
important region …
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results and dashed symbols are those of the Möbius domain-wall. Horizontal line shows the chiral

limit at T = 0 [60].
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JLQCD (2020)

a = 0.074 fm; Ls = 16
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220 MeV and the right is for T = 260 and 330 MeV. The lower three temperatures show a good

saturation but the data at T = 330 MeV is monotonically increasing and undershoot the band,

which represents the stochastic estimates using the Möbius domain-wall Dirac operator.
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JLQCD (2020)

a = 0.074 fm; Ls = 16

Danger of the (tiny) 
GW violation.

mres = 0.14(6) MeV

UA(1) susceptibility after (exact) zero-mode subtraction 

Even with Mobius domain-wall fermion at a fine lattice …



More subtleties



Mixed action?
Do not try to improve your valence quark only.
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Discretization error can become huge (x10). 
Continuum extrapolation would hardly work.



Staggered fermion
What is the effect of taste-breaking to

• 4 Eigenvalues for each continuum-like 
mode. Non-degeneracy is a sign of chiral 
violation. 

• Typical size with HISQ ~ 10 MeV.

9

It is su�cient to study these issues in the quenched
approximation, because we aim to test a structural prop-
erty of staggered fermions in fixed-Q sectors. In par-
ticular, omitting the determinant decouples Creutz’s in-
frared concerns from others’ ultraviolet concern that
taste breaking remains in the continuum limit. If the
eigenvectors satisfy Eq. (32) strongly enough, then the
’t Hooft vertex and the consequent cancellation of mass-
singular contributions to the connected and disconnected
flavor-singlet meson correlators should work out in gen-
eral. We shall see that this is the case.

With the original staggered-fermion action, Eq. (3),
the interaction connects adjacent sites. Very large dis-
cretization errors arise in a wide range of observables,
washing out the expected quartet structure in the eigen-
value spectrum. These discretization errors have been
traced to taste-changing interactions from gluons with
one or more components of momentum pµ ⇡ ⇡/a [69].
Because of the gluon exchange, these e↵ects are formally
of order ↵sa

2, i.e., ↵s times smaller than normal dis-
cretization e↵ects [70]. In order to reduce these taste-
changing e↵ects, it is necessary to smear the gauge field,
replacing Uµ and U

†
µ
in Eq. (3) with sums of products

of link matrices tracing out more complicated paths be-
tween x and x± µ̂a [69, 71, 72].

Several staggered-fermion actions have been developed
along these lines. The Asqtad [73] and Fat7⇥Asqtad [30]
actions exhibit a reduction, relative to the nearest-
neighbor action in Eq. (3), in splittings between pseu-
doscalar mesons of di↵erent taste [26, 30]. Similarly, with
these actions the quartet structure of the eigenvalue spec-
trum more clearly emerges [27, 30].

Here we have calculated low-lying eigenvalues and
eigenvectors for the highly improved staggered-quark
(HISQ) action [63], reusing the same gauge-field config-
urations. The HISQ action supersedes the Fat7⇥Asqtad
action; it is essentially the same but corrects the smear-
ing at the second stage to remove fully the discretiza-
tion errors that the smearing introduces. As we shall
see in Sec. IVB this change makes only a small e↵ect.
The eigenvalue quartet structure is very clear with the
HISQ action, which is reflected in other properties that,
by now, have been thoroughly tested: small pseudoscalar
mass splittings and small discretization errors, even for
heavy quarks [9, 63, 74, 75].

Appendix B provides explicit equations for the
smeared actions.

We use the Lanczos algorithm to calculate the low-
lying eigenvalues, i�, of the anti-Hermitian massless
HISQ Dirac operator, DHISQ, defined implicitly in
Eq. (B6). Owing to its red-black checkerboard structure,
the calculations can be simplified by using the Hermi-
tian positive semi-definite operator �D

2

HISQ
, projected

onto either the red (even) or black (odd) sites of the
lattice. This yields �

2, from the smallest values up-
wards, and eigenvector f , on the chosen half of the lat-
tice. The eigenvalues of DHISQ are then ±i�, and the
corresponding eigenvector on the other half of the lattice

is ±DHISQf/i�. This construction automatically imple-
ments the requirement that the eigenvectors correspond-
ing to eigenvalues i� and �i� are simply related by mul-
tiplication with "(x). Thus, on the odd (even) sites, the
�sth eigenvector is opposite (same) in sign as the +sth
eigenvector.

B. Eigenvalues and chirality with HISQ

Figure 2 shows the four near-zero eigenvalues as well as
the 16 pairs of nonzero eigenvalues of DHISQ with small-
est |�|, obtained on typical |Q| = 1 configurations from
ensembles labeled 1 (coarse), 3 (intermediate), and 5
(fine) in Table I. These lattices have similar physical vol-
ume but lattice spacing varying from 0.125 to 0.077 fm.
The anticipated picture is unmistakable: four (and only
four) very small eigenvalues appear, followed by distinct
quartets. As the lattice spacing decreases, eigenvalues
within a quartet come closer and closer to being degen-
erate, typically by forming two close-by almost degener-
ate pairs. The near-zero modes are typically, on these
lattices, at least an order of magnitude smaller than the
low-lying nonzero modes.

The Lanczos algorithm also gives the eigenvectors cor-
responding to these eigenvalues. Normalizing them to
have modulus 1, we compute the chirality X in Eq. (26),
using the smeared Wµ matrices [Eq. (B5)] instead of Uµ.
Reference [30] showed that it makes little qualitative dif-
ference to the results whether the original Uµ, Asqtad
Vµ [Eq. (B2)], or Fat7⇥Asqtad W̌µ [Eq. (B8)] are used.
The numerical values of the chirality may change, but
the picture remains qualitatively the same.
Because lattice artifacts break the taste-singlet sym-
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FIG. 2: The four near-zero eigenvalues (left panel) and the
16 lowest-lying nonzero pairs of DHISQ eigenvalues on a typ-
ical |Q|=1 configuration from sets 1 (red circles), 3 (green
squares), and 5 (blue triangles). For clarity, some modes are
o↵set horizontally.

HPQCD and Fermilab (2011)

On a |Q| = 1 config.

It would be in a dangerous region for the UA(1) 
susceptibility. When m = 5 MeV, it may over-/
under-estimate it by a factor of O(10). 



Summary
• Physics of near-zero mode in finite temperature QCD is interesting: topological 
susceptibility, UA(1) susceptibility, etc. 

• In the lattice calculation, chiral symmetry is extremely important. Unless it is satisfied 
super-precisely, your calculation will end up with large (or huge) discretization effect. 
The continuum limit with a2 may be an illusion. 

• Relevance to physics is extraordinary: 

• poster by H. Fukaya (Wed), “What is chiral susceptibility probing?” 

• talk by K. Suzuki (Thu), “Axial U(1) anomaly at high temperature with chiral fermions” 

• See also, poster by I. Kanamori (Wed), “2+1 Flavor Fine Lattice Simulations for Finite Temperature 
with Domain Wall Fermions” and Y. Nakamura, “Finite temperature phase transition for three flavor 
QCD with Mobius-domain wall fermions”


