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1 Motivation

QCD at high density has been investigated by Complex Langevin Method(CLM)
Sexty(2013), ..., Ito et al. including YN(2020), ... ; See Jaeger’s talk(3rd day) and Ziegler’s poster

• CLM is sign problem free and low cost

• But, CLM can not cover the whole phase diagram of QCD due to
validity condition of CLM (two conditions must be satisfied)
♦ Excursion problem must be under control Aarts et al.(2011)

♦ Singular drift must be under control Nishimura and Shimasaki(2015)
← (Consistency with the boundary term has been confirmed Scherzer et al.(2019))

→ Alternative approach is needed to cover the whole phase diagram

Fukushima,Hatsuda(2011) Tsutsui et al. including YN(coming soon)

CLM on 243 × 12
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[List of alternative approaches to QCD at high density]

• Tensor renormalization group method
Levin and Nave(2006), ... ; See Akiyama’s talk(1st day)

• Lefschetz thimble method
Witten(2010), ... , Fukuma et al. including YN(2021), ... ; See Fukuma’s talk(2nd day)

• Sign reweighting method de Forcrand et al.(2003), ... ; See Borsányi’s talk(5th day)

• Path optimization method(this talk) Mori et al.(2017), ...

Yusuke Namekawa(Kyoto U) – 3 / 15 – YITP workshop 2021@Online



2 Short summary

Path optimization method(POM) Mori et al.(2017),... significantly reduces sign
problem in U(1) gauge theory with complex coupling, if gauge invariant input
is employed for neural network(NN)

• POM is a method which complexifies dynamical variables and deforms
the integration path using machine learning to minimize sign problem

♦ Naive link-variable input to neural network does not work

♦ We found gauge invariant input to neural network successfully
reduces the sign problem, as indicated by enhancement of the
average phase factor(left panel) and the histogram(right panel)
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eiθ := Je−S/|Je−S |

J := det(∂U/∂U)

U : complexified link variable
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[Path Optimization Method] Mori et al.(2017),...

A Monte Carlo scheme that modifies the integration path to minimize the
sign problem by machine learning via neural network

〈O〉 :=
1

Z

∫

R
DUOe

−S[U]
=

1

Z

∫

C
DUe

−S[U]

O : observable, Z : partition func, S : action, U : link variable (defined below)

NB. Cauchy’s integral theorem ensures this equality

[Neural network]

• Input(old): link variable Ux,µ := e
igAµ(x+µ̂/2)

g : gauge coupling, Aµ(x) : gauge field ∈ R → Aµ(x) ∈ C

• Input(new): gauge invariant plaquette Px,12 := Ux,1 U
x+1̂,2

U
−1

x+2̂,1
U
−1
x,2

• Output: yx ∈ R, relating to Ux,µ = Ux,µ e−yx

←Machine learning chooses best yx which enhances phase factor eiθ := Je−S/|Je−S |,
J := det(∂U/∂U)✓ ✏

yn =ωnF (w
(2)
nj

hj + bj ), i, j = 1, · · · , 2 × ndof

hj =F (w
(1)
ji

ti + bj ), hidden layer

t := input, w, b, ω := parameters of neural network

F (x) := tanh(x), activation func

Fcost[y(t)]:=|Z|

(

|〈e
iθ(t)

〉pq|
−1
− 1

)

, pq : phase quenched✒ ✑
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[Path Optimization Method(continued)] Mori et al.(2017),...

• Input(old): link variable Ux,µ := eigAµ(x+µ̂/2)

g : gauge coupling, Aµ(x) : gauge field ∈ R→ Aµ(x) ∈ C

• Input(new): gauge invariant plaquette Px,12 := Ux,1 Ux+1̂,2 U
−1

x+2̂,1
U−1
x,2

• Output: yx ∈ R, related to Ux,µ = Ux,µ e−yx

←Machine learning chooses best yx which enhances phase factor eiθ
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[Application of POM to 2-dim U(1) gauge theory with complex coupling]

• Sign problem is originated from the complex coupling β = 1/(ga)2 ∈ R → C

• Analytic result has been obtained
→ Good testbed for new approach Kashiwa,Mori(2020),Pawlowski et al.(2021)

cf. 2-dim U(1)+θ-term, another type of sign problem, is investigated by tensor renormalization

Kuramashi and Yoshimura(2019) and complex Langevin Hirasawa et al.(2020)

S = −
β

2

∑

n

(

Px,12 + P−1
x,12

)

β = 1/(ga)2 ∈ R→ C

Px,12 := Ux,1 Ux+1̂,2 U
−1

x+2̂,1
U−1
x,2

[Analytic result] Wiese(1988),...

Z :=

∫

dUe−S =

+∞
∑

n=−∞

In(β)
V

In(β) :=
1

2π

∫ π

−π
dφ eβ cosφ−inφ
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[U(1) gauge theory with complex coupling]

• Pure imaginary coupling β = 1/(ga)2 ∈ R→ C mimics the case of real-time
action exp(iS), instead of exp(−SE)

♦ Pure imaginary exp(iS) leads to the severest sign problem
← We challenge this case by path optimization method(POM)

• (|
〈

eiθ
〉

| is an indicator of sign problem: |
〈

eiθ
〉

| = 1 for mild, |
〈

eiθ
〉

| = 0 for severe)
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3 Simulation result

[Neural network iteration dependence of average phase factor]

• Neural network with gauge invariant input successfully enhances
average phase factor 〈exp(iθ)〉 (an indicator of sign problem),
though naive link-variable input fails

♦ Similar enhanced result can be obtained by fixing gauge completely, in expense of
additional cost for gauge fixing

• The enhancement is clearly observed in histogram of the phase data
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[Volume dependence]

• Enhancement by POM is confirmed in 2× 2, 4× 4, and 8× 8 lattices

♦ The enhancement is maximally 550% in the average phase factor

• Enhancement decreases on larger volume

♦ Volume dependence is milder than that of naive reweighting
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[β-dependence of | 〈exp(iθ)〉 |]

• Clear improvement over the naive reweighting method is observed

• Enhancement of the average phase factor becomes less clear, if we have
no clear peak in the histogram of the phases

♦ At high βi, POM becomes unstable probably due to limitation of
statistics and/or multimodality effect
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[β-dependence of Im 〈plaq〉]

• Results by POM reproduce the exact solution, as long as we find a
peak in the histogram of the phases

• Deviations from the exact solution are also observed, if we have no
clear peak in the histogram of the phases
→ Further improvement is required especially on larger volumes
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[Histogram of phase around βc]

• Results by POM reproduce the exact solution, as long as we find a
peak in the histogram of the phases

• Deviations from the exact solution are also observed, if we have no
clear peak in the histogram of the phases
→ Further improvement is required especially on larger volumes
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[β-dependence of topological charge]

• Results by POM reproduce the exact solution, as long as we find a
peak in the histogram of the phases

• Deviations from the exact solution are also observed, if we have no
clear peak in the histogram of the phases
→ Further improvement is required especially on larger volumes
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4 Summary

Path optimization method significantly reduces sign problem in U(1) gauge
theory with complex coupling, chosen to be pure imaginary(the severest sign
problem region)

• Gauge invariant plaq input successfully reduces sign problem, leading
to maximally 550% enhancement of the average phase factor

• For large βi on large volume, machine learning fails to find a peak in
the histogram of phase data → Further improvement is needed

[Future direction]

• Use larger Wilson and Polyakov loops as inputs to neural network

• Test other gauge-symmetry respecting neural networks Favoni et al.(2020),

Tomiya and Nagai(2021), combination of path optimization with action
optimization Tsutsui and Doi(2015,2017),Lawrence(2020)

♦ Try larger volumes(severer sign problem), finite density and
θ-term (another type of sign problem) with improved POM
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Appendix
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[Sign problem (overlap problem)]

• Direct Monte Carlo is not possible, because complex part cannot be
regarded as probability

• Naive reweighting suffers from sever cancellation between denominator
and numerator
→ Required #data blows up exponentially as the system size with the
degrees of freedom Ndof increases

〈O〉 =
〈

Oe−iImS
〉

pq

〈e−iImS〉pq
, 〈f(z)〉pq := (1/ZR)

∫

dUf(z)e−ReS

≈ e−O(Ndof) ±O(1/
√
Ndata)

e−O(Ndof) ±O(1/
√
Ndata)

∴ e−O(Ndof) ≫ O(1/
√
Ndata) i.e., Ndata ≫ eO(Ndof)
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