Peeking into the θ vacuum

Norikazu Yamada (KEK,SOKENDAI)

Refs. Kitano, Matsudo, NY, Yamazaki, PLB822, 136657 (2021) Kitano, NY, Yamazaki, JHEP02 (2021) 073

YITP workshop QCD phase diagram and lattice QCD @YITP on zoom, Oct. 29, 2021

Introduction

- None of symmetries of the SM constrains the value of θ (usually called θ). Why is $\theta \ll 1$? (strong CP problem)
- Effects of the θ term on various observables have been actively studied experimentally, theoretically and on the lattice.

Focus on the effect of θ on the vacuum of 4d SU(N) YM.

 $\theta\text{-term: } \mathscr{L}_{\theta} = -i\theta \frac{g^2}{64\pi^2} \epsilon_{\mu\nu\rho\sigma} G^a_{\mu\nu} G^a_{\rho\sigma}$

How to explore the effect of θ on the vacuum

Look at vacuum energy density, $f(\theta)$

$$e^{-Vf(\theta)} = \frac{Z(\theta)}{Z(0)}$$

where

$$Z(\theta) = \int \mathcal{D}U e^{-S_{\rm YM} + i\theta Q}$$

$$Q = \int d^4 x \, q(x)$$

• For SU(N) YM theory, $Q \in \mathbb{Z} \Rightarrow f(\theta) = f(\theta + 2\pi)$ S_{YM} is CP even $\Rightarrow f(\theta) = f(-\theta)$ $f(\pi - \theta') = f(\pi + \theta')$

Action is CP symmetric at $\theta = 0$ and π .

Expected θ dependence: instanton vs large- N_c

Dilute instanton gas approximation (DIGA) $\Rightarrow f(\theta) = \chi(1 - \cos \theta)$

- a single branch
- smooth everywhere

Large N_c argument [Witten (1980, 1998)] $\Rightarrow f(\theta) = \chi/2 \min(\theta + 2\pi k)^2 + O(1/N_c^2)$ $k \in \mathbb{Z}$

- many branches
- spontaneous CPV (1st order PT) at $\theta = \pm (2n + 1)\pi$
- order parameter $df(\theta)/d\theta|_{\theta=\pi} = -i\langle q(x) \rangle_{\theta=\pi}$

the behavior of $f(\theta)$ around $\theta = \pi$

Lesson from $2d CP^{N-1}$ model

$$\mathscr{L} = \frac{N}{2g} \overline{D_{\mu}z} D_{\mu}z - i\theta q$$

$$z : N\text{-component complex scalar field}$$

$$D_{\mu} = \partial_{\mu} + iA_{\mu} , \quad A_{\mu} = i\overline{z}\partial_{\mu}z$$

$$q(x) = \frac{1}{2\pi} \epsilon_{\mu\nu}\partial_{\mu}A_{\nu} = \frac{i}{2\pi} \epsilon_{\mu\nu}\overline{D_{\mu}z} D_{\mu}z$$

- Good testing ground for 4d SU(N) YM because of many similarities [asymptotically free, dynamical mass gap, instanton, 1/N expandable, ...]
- At $\theta = \pi$, gapped and CP broken for $N \ge 3$
- But CP^1 (*i.e.* N = 2) is exceptional! \Rightarrow gapless and no CPV at $\theta = \pi$ (\Leftrightarrow Haldane conjecture)

eld with $\bar{z}z = 1$

 $f(\theta)$ in 2d CP^{N-1} model (lattice)

- CP^9 consistent with large N
- $f(\theta)/\chi$ decreases as N decreases.
- CP^9 and CP^5 shows CPV at $\theta = \pi$.
- CP^1 is consistent with the DIGA

 $f(\theta) = \chi(1 - \cos \theta)$

Lattice calculations of $f(\theta)$ in 4d SU(N)

 $\mathscr{L}_{\theta} = \frac{1}{\varDelta} G^{a}_{\mu\nu} G^{a}_{\mu\nu} - i\theta q$

• *"i"* makes direct lattice calculation difficult/impossible (sign problem). • Taylor expansion around $\theta = 0$

$$f(\theta) = \frac{\chi}{2} \theta^2 (1 + b_2 \theta^2 + b_4 \theta^4 + \cdots)$$

and determines each coefficient on the lattice by

First two coefficients

Is $N_c = 2$ exceptional like 2d CP^1 ?

Correction to the large N_c limit looks small \Rightarrow nothing special happens down to $N_c = 3$

[Kitano, NY, Yamazaki (2021)]

- smoothly connected to large N_c limit
 - $\Rightarrow N_c \in \mathbb{Z}$ can be analytically continued to \mathbb{R} $\Rightarrow f(\theta)$ is a smooth function of N_c

•
$$b_2 \neq -\frac{1}{12}$$
 (*i.e.* not instanton-like)

Speculated that SU(2) belongs to large N_c class and *CPV* takes places at $\theta = \pi$.

Conjectured θ -T phase diagram

- $4d SU(N_c) YM$ for $N_c \ge 2$ deconfine T_c in the confining phase." [Gaiotto, et al.(2017)], [Kitano, Suyama, NY(2017)] confine [D'Elia, Negro(2012, 2013)].

- Large N_c argument \Rightarrow CPV in the vacuum at $\theta = \pi$ • At high *T*, instanton calc. \Rightarrow no CPV at $\theta = \pi$ at high *T* • "For general N_c , CP has to be broken at $\theta = \pi$ if the vacuum is • Numerical evidences and our speculation $\Rightarrow CPV$ for $N_c \ge 2$ • $T_c(\theta)$ has been known for SU(3) YM around $\theta = 0$.

We want to check the conjecture that SU(2) is large N_c -like. \Rightarrow Naive lattice method fails. How to check?

 π $\mathbf{\Lambda}$

A method without any expansion

Replace
$$Q$$
 with $Q_{sub} = \sum_{x \in V_{sub}} q(x) \notin \mathbb{Z}$

where $V_{\rm sub} = l^4$ is a sub-volume.

$$e^{-V_{\rm sub}f_{\rm sub}(\theta)} = \frac{Z_{\rm sub}(\theta)}{Z(0)} = \frac{1}{Z(0)} \int \mathcal{D}U \ e^{-S_g + i\theta Q_{\rm sub}} = \langle e^{i\theta Q_{\rm sub}} \rangle$$

$$f_{\rm sub}(\theta) = -\frac{1}{V_{\rm sub}} \ln\langle \cos(\theta Q_{\rm sub}) \rangle$$

$$f(\theta) = \lim_{V_{\text{sub}} \to \infty} f_{\text{sub}}(\theta) = \lim_{l \to \infty} \left\{ \frac{f(\theta)}{l} + \frac{s(\theta)}{l} + O(1) \right\}$$

with $s(\theta)$ surface tension

[Keith-Hynes and Thacker (2008)] [Kitano, Matsudo, NY, Yamazaki (2021)]

sub-volume method

11

Some remarks on the sub-volume method

What is the suitable range for V_{sub} ?

- $V_{\rm sub} \gg l_{\rm dyn}^4$ ($l_{\rm dyn}$: dynamical length scale)
- . As long as $V_{\rm sub} \gg l_{\rm dyn}^4$, $f_{\rm sub}(\theta)$ is expected to show a scaling behavior, $f_{sub}(\theta) = f(\theta) + \frac{s(\theta)}{l} + O(1/l^2)$. (c.f. static potential)
- As $V_{\text{sub}} \rightarrow V_{\text{full}}$, finite size effects may appear. \Rightarrow

 $l_{\rm dyn}^4 \ll V_{\rm sub} \ll V_{\rm full}$

$$V_{\rm sub} \ll V_{\rm full}.$$

$\theta =$	= 0

Some remarks on the sub-volume method (cont'd)

$$f_{\rm sub}(\theta) = -\frac{1}{V_{\rm sub}} \ln \langle \cos(\theta Q_{\rm sub}) \rangle$$

The method fails when $\langle \cos(\theta Q_{\rm sub}) \rangle \leq 0$.
Since $Q_{\rm sub}$ increases with $V_{\rm sub}$, $V_{\rm sub}$ may have
bound, $V_{\rm sub}^{\rm max}(\theta)$.

Requirement: $l_{dyn}^4 \ll V_{sub}^{max}(\theta)$

If the window is open, possible to peek into the θ -vacuum.

e an upper

$\theta =$	= 0
v –	- 0

Lattice parameters and observables

- SU(2) YM theory by Symanzik improved gauge action $\beta = \frac{4}{g^2} = 1.975 \text{ [cf. } 1/(aT_c) = 9.50\text{]}$
- $V_{\text{full}} = 24^3 \times \{48, 8, 6\} \ (T = 0, 1.2T_c, 1.6T_c)$
- · Periodic boundary condition in all directions
- # of configs = { 68000 , 5000 , 5000 }
- $V_{\text{sub}} = l^4$ for T=0 and $V_{\text{sub}} = l^3 \times N_T$ for finite T
- $\cdot Q_{sub} = \sum q(x)$ is calculated after APE smearing and $x \in V_{sub}$

substituted in

$$\checkmark f(\theta) = -\lim_{V_{\text{sub}} \to \infty} \frac{1}{V_{\text{sub}}} \ln \langle \cos(\theta Q_{\text{sub}}) \rangle$$

$$\checkmark \frac{df(\theta)}{d\theta} = \lim_{V_{\text{sub}} \to \infty} \frac{1}{V_{\text{sub}}} \frac{\langle Q_{\text{sub}} \sin(\theta Q_{\text{sub}}) \rangle}{\langle \cos(\theta Q_{\text{sub}}) \rangle}$$

$l \to \infty \liminf^{\pi/2} a T = 0$

- $V_{\text{sub}} = l^4$ with $l \in \{10, 12, \dots, 20\}$
- Data in the range of $l_{\rm dyn}^4 \ll V_{\rm sub} \ll V_{\rm full}$ are fitted to

$$f_{\rm sub}(\theta) = f(\theta) + \frac{as(\theta)}{l}$$

• Linear extrapolation works well.

 2π

$n_{\rm APE} \rightarrow 0 \, {\rm limit} \, {\rm at} \, T = 0$

1 /

 $\pi/2$

-20

()

 $3\pi/2$

 π

θ

θ dependence of $f(\theta)$ at T = 0

- Succeed to calculate up to $\theta \sim 3\pi/2$
- Monotonically increasing function
- Inconsistent with DIGA
- Re-weighting (=full volume) method works only around $\theta = 0$.
- Numerical consistency with $\int d\theta \frac{df}{d\theta}$

θ dependence of $f(\theta)$ at $T = 1.2T_c$

- Large systematic uncertainty due to ambiguity of the scaling region
- Within large uncertainty, consistent with the DIGA, and $df(\theta)/d\theta\Big|_{\theta=\pi} \approx 0 \Rightarrow \text{no } CPV \text{ for } T \ge 1.2 T_c$
- Similar results at $T = 1.6 T_c$

 $f(\pi - \theta) = f(\pi + \theta)?$

 $\sin \theta$

Λf

 $f(\theta)/\chi$

4

We are looking at

 $f(\pi - \theta) = f(\pi + \theta)?$ (Cont'd)

- Sub-volume method stick to trace the original branch even after passing the crossing points.
- Similar experience in the the static potential on the dynamical configs, where"string breaking" is expected to occur at large separation but ...
 ⇒ Nothing but overlap problem
- In the present case, the transition from domain to a bag-like object is expected to occur but ...

Summary and conclusion

- We have developed a sub-volume method, which enables us to calculate $f(\theta)$ up to $\theta \sim 3\pi/2$ in SU(2) Yang-Mills theory.
- Combining with the theory requirement $f(\pi - \theta) = f(\pi + \theta)$, our result provides with the evidence for spontaneous *CPV* at $\theta = \pi$ for the vacuum.

 \Rightarrow N_c=2 belongs to large N class (not like CP¹ model).

- The same method reproduces the result consistent with the DIGA, $f(\theta) \sim \chi(1 - \cos \theta)$, above 1.2 T_c .

Future studies

- In order for everything to be clear, we want to look at the θ vacuum rather than peek into.
- Exploring the location of $T_c(\theta)$ [D'Elia, Negro(2012, 2013)]
- Also interesting to apply the sub-volume method to the finite density system.
- Other application ?

