Peeking into the θ vacuum

Norikazu Yamada (KEK,SOKENDAI)

Refs. Kitano, Matsudo, NY, Yamazaki, PLB822, 136657 (2021)
Kitano, NY, Yamazaki, JHEP02 (2021) 073

Introduction

$$
\theta \text {-term: } \mathscr{L}_{\theta}=-i \theta \frac{g^{2}}{64 \pi^{2}} \epsilon_{\mu \nu \rho \sigma} G_{\mu \nu}^{a} G_{\rho \sigma}^{a}
$$

- None of symmetries of the SM constrains the value of θ (usually called $\bar{\theta}$). Why is $\theta \ll 1$? (strong CP problem)
- Effects of the θ term on various observables have been actively studied experimentally, theoretically and on the lattice.

Focus on the effect of $\boldsymbol{\theta}$ on the vacuum of $4 \mathrm{~d} \operatorname{SU}(\boldsymbol{N}) \mathrm{YM}$.

How to explore the effect of θ on the vacuum

Look at vacuum energy density, $f(\theta)$

$$
e^{-V f(\theta)}=\frac{Z(\theta)}{Z(0)}
$$

where
$Z(\theta)=\int \mathscr{D} U e^{-S_{\mathrm{YM}}+i \theta Q}$
$Q=\int d^{4} x q(x)$

- For $S U(N)$ YM theory,

$$
Q \in \mathbb{Z} \Rightarrow f(\theta)=f(\theta+2 \pi)
$$

$$
S_{\mathrm{YM}} \text { is } \mathrm{CP} \text { even } \Rightarrow f(\theta)=f(-\theta)
$$

$$
f\left(\pi-\theta^{\prime}\right)=f\left(\pi+\theta^{\prime}\right)
$$

Action is CP symmetric at $\theta=0$ and π.

Expected θ dependence: instanton vs large- N_{c}

Dilute instanton gas approximation (DIGA)

$$
\Rightarrow f(\theta)=\chi(1-\cos \theta)
$$

- a single branch
- smooth everywhere

Large N_{c} argument [Witten $(1980,1998)$]

$$
\Rightarrow f(\theta)=\chi / 2 \min _{k \in \mathbb{Z}}(\theta+2 \pi k)^{2}+O\left(1 / N_{c}^{2}\right)
$$

- many branches
- spontaneous CPV (ist order PT) at $\theta= \pm(2 n+1) \pi$
- order parameter $d f(\theta) /\left.d \theta\right|_{\theta=\pi}=-i\langle q(x)\rangle_{\theta=\pi}$

Lesson from $2 \mathrm{~d} C P^{N-1}$ model

$$
\mathscr{L}=\frac{N}{2 g} \overline{D_{\mu} z} D_{\mu} z-i \theta q
$$

$z: N$-component complex scalar field with $\bar{z} z=1$

$$
\begin{aligned}
& D_{\mu}=\partial_{\mu}+i A_{\mu}, \quad A_{\mu}=i \bar{z} \partial_{\mu} z \\
& q(x)=\frac{1}{2 \pi} \epsilon_{\mu \nu} \partial_{\mu} A_{\nu}=\frac{i}{2 \pi} \epsilon_{\mu \nu} \overline{D_{\mu} z} D_{\mu} z
\end{aligned}
$$

- Good testing ground for $4 \mathrm{~d} S U(N)$ YM because of many similarities [asymptotically free, dynamical mass gap, instanton, $1 / N$ expandable, ...]
- At $\theta=\pi$, gapped and CP broken for $N \geq 3$
- But $C P^{1}$ (i.e. $N=2$) is exceptional!
\Rightarrow gapless and no CPV at $\theta=\pi(\Longleftrightarrow$ Haldane conjecture)

$f(\theta)$ in $2 \mathrm{~d} C P^{N-1}$ model (lattice)

$N=10,6,2$ were studied.

- $C P^{9}$ consistent with large N
- $f(\theta) / \chi$ decreases as N decreases.
- $C P^{9}$ and $C P^{5}$ shows CPV at $\theta=\pi$.
- $C P^{1}$ is consistent with the DIGA

$$
f(\theta)=\chi(1-\cos \theta)
$$

Lattice calculations of $f(\theta)$ in $4 \mathrm{~d} S U(N)$

- Taylor expansion around $\theta=0$

$$
\mathscr{L}_{\theta}=\frac{1}{4} G_{\mu \nu}^{a} G_{\mu \nu}^{a}-i \theta q
$$

- " i " makes direct lattice calculation difficult/impossible (sign problem).

$$
f(\theta)=\frac{\chi}{2} \theta^{2}\left(1+b_{2} \theta^{2}+b_{4} \theta^{4}+\cdots\right)
$$

and determines each coefficient on the lattice by

$$
\begin{aligned}
& \chi=\frac{\left\langle Q^{2}\right\rangle_{\theta=0}}{V} \\
& b_{2}=-\frac{\left\langle Q^{4}\right\rangle_{\theta=0}-3\left\langle Q^{2}\right\rangle_{\theta=0}^{2}}{12\left\langle Q^{2}\right\rangle_{\theta=0}} \\
& b_{4}=\frac{\left\langle Q^{6}\right\rangle_{\theta=0}-15\left\langle Q^{2}\right\rangle_{\theta=0}\left\langle Q^{4}\right\rangle_{\theta=0}+30\left\langle Q^{2}\right\rangle_{\theta=0}^{3}}{360\left\langle Q^{2}\right\rangle_{\theta=0}} \\
& \vdots \\
& \text { c.f. } f(\theta)=\chi(1-\cos \theta) \Rightarrow b_{2}=-\frac{1}{12}, \cdots
\end{aligned}
$$

First two coefficients

$\chi / \sigma^{2}=C_{\infty}+\frac{c_{2}}{N_{c}^{2}}+O\left(1 / N_{c}^{4}\right)$

$$
b_{2}=\frac{\bar{b}_{2}}{N_{c}^{2}}+O\left(1 / N_{c}^{4}\right)
$$

Correction to the large N_{c} limit looks small \Rightarrow nothing special happens down to $N_{c}=3$ Is $N_{c}=2$ exceptional like $2 \mathrm{~d} C P^{1}$?

- smoothly connected to large N_{c} limit
$\Rightarrow N_{c} \in \mathbb{Z}$ can be analytically continued to \mathbb{R}
$\Rightarrow f(\theta)$ is a smooth function of N_{c}
. $b_{2} \neq-\frac{1}{12}$ (i.e. not instanton-like)
Speculated that $\mathrm{SU}(2)$ belongs to large N_{c} class and $C P V$ takes places at $\theta=\pi$.

Conjectured $\theta-T$ phase diagram

- Large N_{c} argument $\Rightarrow \mathrm{CPV}$ in the vacuum at $\theta=\pi$
- At high T, instanton calc. \Rightarrow no CPV at $\theta=\pi$ at high T
- "For general N_{c}, CP has to be broken at $\theta=\pi$ if the vacuum is in the confining phase."
[Gaiotto, et al.(2017)], [Kitano, Suyama, NY(2017)]
- Numerical evidences and our speculation $\Rightarrow C P V$ for $N_{c} \geq 2$
- $T_{c}(\theta)$ has been known for $\mathrm{SU}(3) \mathrm{YM}$ around $\theta=0$.
[D'Elia, Negro(2012, 2013)].

We want to check the conjecture that $S U(2)$ is large N_{c}-like.

A method without any expansion

Replace Q with $Q_{\text {sub }}=\sum_{x \in V_{\text {sub }}} q(x) \notin \mathbb{Z}$
where $V_{\text {sub }}=l^{4}$ is a sub-volume.
$e^{-V_{\text {sub }} f_{\text {sub }}(\theta)}=\frac{Z_{\text {sub }}(\theta)}{Z(0)}=\frac{1}{Z(0)} \int \mathscr{D} U e^{-S_{g}+i \theta Q_{\text {sub }}}=\left\langle e^{i \theta Q_{\text {sub }}}\right\rangle$
$f_{\text {sub }}(\theta)=-\frac{1}{V_{\text {sub }}} \ln \left\langle\cos \left(\theta Q_{\text {sub }}\right)\right\rangle$
$f(\theta)=\lim _{V_{\text {sub }} \rightarrow \infty} f_{\text {sub }}(\theta)=\lim _{l \rightarrow \infty}\left\{f(\theta)+\frac{s(\theta)}{l}+O\left(1 / l^{2}\right)\right\}$
with $s(\theta)$ surface tension

sub-volume method

Some remarks on the sub-volume method

What is the suitable range for $V_{\text {sub }}$?

- $V_{\text {sub }} \gg l_{\text {dyn }}^{4}\left(l_{\text {dyn }}\right.$: dynamical length scale)
. As long as $V_{\text {sub }} \gg l_{\text {dyn }}^{4}, f_{\text {sub }}(\theta)$ is expected to show a scaling behavior, $f_{\text {sub }}(\theta)=f(\theta)+\frac{s(\theta)}{l}+O\left(1 / l^{2}\right)$. (c.f. static potential)
- As $V_{\text {sub }} \rightarrow V_{\text {full }}$, finite size effects may appear. $\Rightarrow V_{\text {sub }} \ll V_{\text {full }}$.

$$
l_{\mathrm{dyn}}^{4} \ll V_{\text {sub }} \ll V_{\text {full }}
$$

Some remarks on the sub-volume method (cont'd)

$$
f_{\mathrm{sub}}(\theta)=-\frac{1}{V_{\mathrm{sub}}} \ln \left\langle\cos \left(\theta Q_{\mathrm{sub}}\right)\right\rangle
$$

The method fails when $\left\langle\cos \left(\theta Q_{\text {sub }}\right)\right\rangle \leq 0$.
Since $Q_{\text {sub }}$ increases with $V_{\text {sub }}, V_{\text {sub }}$ may have an upper bound, $V_{\text {sub }}^{\max }(\theta)$.

$$
\text { Requirement: } l_{\mathrm{dyn}}^{4} \ll V_{\mathrm{sub}}^{\max }(\theta)
$$

If the window is open, possible to peek into the θ-vacuum.

Lattice parameters and observables

- $S U(2)$ YM theory by Symanzik improved gauge action
. $\beta=\frac{4}{g^{2}}=1.975\left[\mathrm{cf} 1 /.\left(a T_{c}\right)=9.50\right]$
- $V_{\text {full }}=24^{3} \times\{48,8,6\} \quad\left(T=0,1.2 T_{c}, 1.6 T_{c}\right)$
- Periodic boundary condition in all directions
- \# of configs $=\{68000,5000,5000\}$
- $V_{\text {sub }}=l^{4}$ for $T=0$ and $V_{\text {sub }}=l^{3} \times N_{T}$ for finite T
- $Q_{\text {sub }}=\sum_{x \in V_{\text {sub }}} q(x)$ is calculated after APE smearing and substituted in

$$
\begin{aligned}
& \checkmark f(\theta)=-\lim _{V_{\mathrm{sub}} \rightarrow \infty} \frac{1}{V_{\mathrm{sub}}} \ln \left\langle\cos \left(\theta Q_{\mathrm{sub}}\right)\right\rangle \\
& \checkmark \frac{d f(\theta)}{d \theta}=\lim _{V_{\mathrm{sub}} \rightarrow \infty} \frac{1}{V_{\mathrm{sub}}} \frac{\left\langle Q_{\mathrm{sub}} \sin \left(\theta Q_{\mathrm{sub}}\right)\right\rangle}{\left\langle\cos \left(\theta Q_{\mathrm{sub}}\right)\right\rangle}
\end{aligned}
$$

$l \rightarrow \infty$ limit at $T=0$

- $V_{\text {sub }}=l^{4}$ with $l \in\{10,12, \cdots, 20\}$
- Data in the range of $l_{\text {dyn }}^{4} \ll V_{\text {sub }} \ll V_{\text {full }}$ are fitted to

$$
f_{\mathrm{sub}}(\theta)=f(\theta)+\frac{a s(\theta)}{l}
$$

- Linear extrapolation works well.

$n_{\text {APE }} \rightarrow 0 \operatorname{limit}$ at $T=0$

- Fit range $n_{\text {APE }}=[20,40]$ determined in [Kitano, NY, Yamazaki (2021)].
- Linear fit works well.
- Monotonic function $f(\pi)<f(3 \pi / 2)$

θ dependence of $f(\theta)$ at $T=0$

- Succeed to calculate up to $\theta \sim 3 \pi / 2$
- Monotonically increasing function
- Inconsistent with DIGA
- Re-weighting (=full volume) method works only around $\theta=0$.
- Numerical consistency with $\int d \theta \frac{d f}{d \theta}$

$d f(\theta) / d \theta$ at $T=0$

- Order parameter is non-zero

$$
d f(\theta) /\left.d \theta\right|_{\theta=\pi}=-i\langle q(x)\rangle_{\theta=\pi} \neq 0
$$

\Rightarrow spontaneous CPV at $\theta=\pi$

θ dependence of $f(\theta)$ at $T=1.2 T_{c}$

- Large systematic uncertainty due to ambiguity of the scaling region
- Within large uncertainty, consistent with the DIGA, and $d f(\theta) /\left.d \theta\right|_{\theta=\pi} \approx 0 \Rightarrow$ no $C P V$ for $T \geq 1.2 T_{c}$
- Similar results at $T=1.6 T_{c}$

$f(\pi-\theta)=f(\pi+\theta)$?

We are looking at

$f(\pi-\theta)=f(\pi+\theta) ?($ Cont'd $)$

- Sub-volume method stick to trace the original branch even after passing the crossing points.

- Similar experience in the the static potential on the dynamical configs, where"string breaking" is expected to occur at large separation but ...
\Rightarrow Nothing but overlap problem
- In the present case, the transition from domain to a bag-like object is expected to occur but ...

Chernodub (2010)

4d SU(N) YM has an topological object called "glue bag".
[Luscher (1978)].

Summary and conclusion

- We have developed a sub-volume method, which enables us to calculate $f(\theta)$ up to $\theta \sim 3 \pi / 2$ in $\operatorname{SU}(2) \quad T$ Yang-Mills theory.
- Combining with the theory requirement $f(\pi-\theta)=f(\pi+\theta)$, our result provides with the evidence for spontaneous $C P V$ at $\theta=\pi$ for the vacuum.
$\Rightarrow N_{c}=2$ belongs to large N class (not like $C P^{1}$ model).
- The same method reproduces the result consistent with the DIGA, $f(\theta) \sim \chi(1-\cos \theta)$, above $1.2 T_{c}$.

θ

Future studies

$4 \mathrm{~d} S U\left(N_{c}\right) \mathrm{YM}$

- In order for everything to be clear, we want to look at the θ vacuum rather than peek into.
- Exploring the location of $T_{c}(\theta)$
[D'Elia, Negro(2012, 2013)]
- Also interesting to apply the sub-volume method to the finite density system.
- Other application?

