Quantum phase transition and Resurgence: Lessons from 3d N=4 SQED

Takuya Yoda Department of Physics, Kyoto University

[Prog. Theor. Exp. Phys. (2021) 103B04. (arXiv: 2103.13654)]

Collaborators: Toshiaki Fujimori^{A,D}, Masazumi Honda^B, Syo Kamata^C, Takahiro Misumi^{D,E}, Norisuke Sakai^D Hiyoshi Phys. Keio U.^A, YITP^B, NCBJ^C, RECNS Keio^D, Akita->Kindai U.^E

Resurgence theory

[J. Ecalle, 81]

Lectures and reviews, e.g.

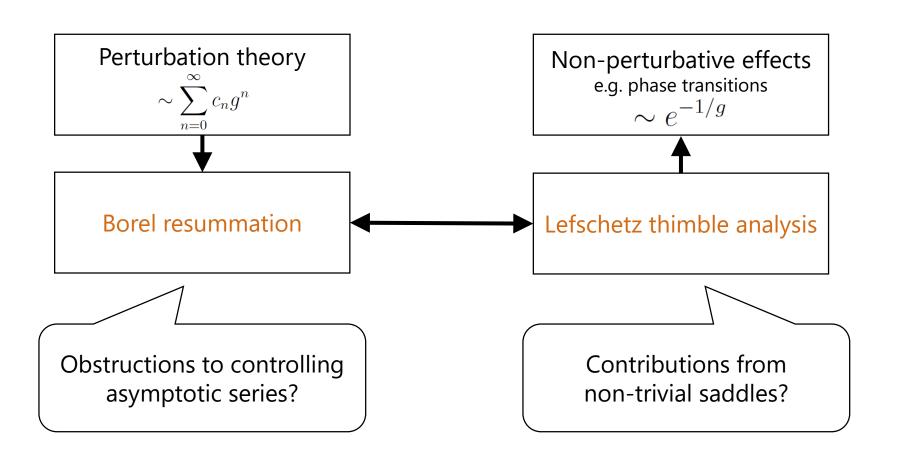
[M. Marino, 12]

[D. Dorigoni, 19]

[I. Aniceto, G. Basar, R. Schiappa, 19]

One of the approaches to non-perturbative physics

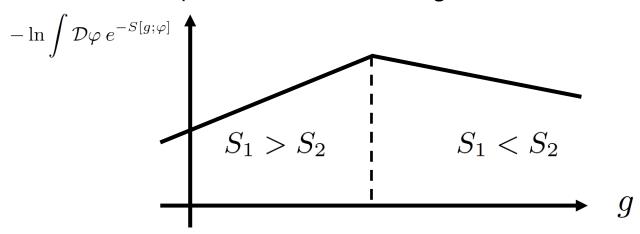
Decodes non-perturbative information from perturbation theory



Phase transitions and resurgence

Common story:

1st order phase transition = Change of dominant saddles



Recent works:

0-dim Gross-Neveu, Nambu-Jona-Lasinio like model

- [T. Kanazawa, Y. Tanizaki, 15]
- 2dim Yang-Mills on lattice (reduced to Gross-Witten-Wadia) etc.
- [G. Dunne et al., 16, 17, 18]

Is resurgence theory applicable to 2nd order phase transitions or more realistic QFTs?

Brief summary

Model [Russo, Tierz, 17]

- $3\mathrm{dim}~\mathcal{N}=4~U(1)$ SUSY gauge theory + $2N_f$ hypermultiplets with charge 1
- Fayet-Illiopoulos parameter η , flavor mass m
 - → 2nd order quantum phase transition at the large-flavor limit

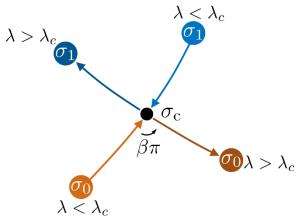
Result: resurgence is applicable!

[T. Fujimori, M. Honda, S. Kamata, T. Misumi, N. Sakai, TY, 21]

2nd order phase transition = Simultaneous Stokes and Anti-Stokes phenomena

Change of the form of asymptotic expansion and change of dominant saddles

- The order of the phase transition is determined by the collision angle of saddles
- Such information is encoded in a perturbative series



Contents

√	Motivations and Brief summary	(3)
•	2 nd order phase transition in SQED3 (review)	(4)
•	Lefschetz thimble analysis	(7)
•	Borel resummation	(4)
•	Lessons from SQED3	(3)
•	Conclusion and future works	(1)

Total: 22

SQED3

Model:

 $3\dim \mathcal{N} = 4 U(1)$ SUSY gauge theory with

- $2N_f$ hypermultiplets (charge 1)
- Fayet-Illiopoulos parameter η
- flavor masses $\pm m$

Partition function:

Exactly computed on S^3 by SUSY localization technique

[Pestun, 12]
[A. Kapustin, B. Willett, I. Yaakov, 10]
[N. Hama, K. Hosomichi, S. Lee, 11]
[D. L. Jafferis, 12]

$$Z = \int_{-\infty}^{\infty} d\sigma \frac{e^{i\eta\sigma}}{\left[2\cosh\frac{\sigma+m}{2} \cdot 2\cosh\frac{\sigma-m}{2}\right]^{N_f}}$$

 σ : Coulomb branch parameter

i.e. constant configuration of the scalar belonging to the vector multiplet in $\mathcal{N}=2$ Language

't Hooft like limit:

[Russo, Tierz, 17]

$$N_f \to \infty$$
, $\lambda \equiv \frac{\eta}{N_f} = \text{fixed}$.

"Action":

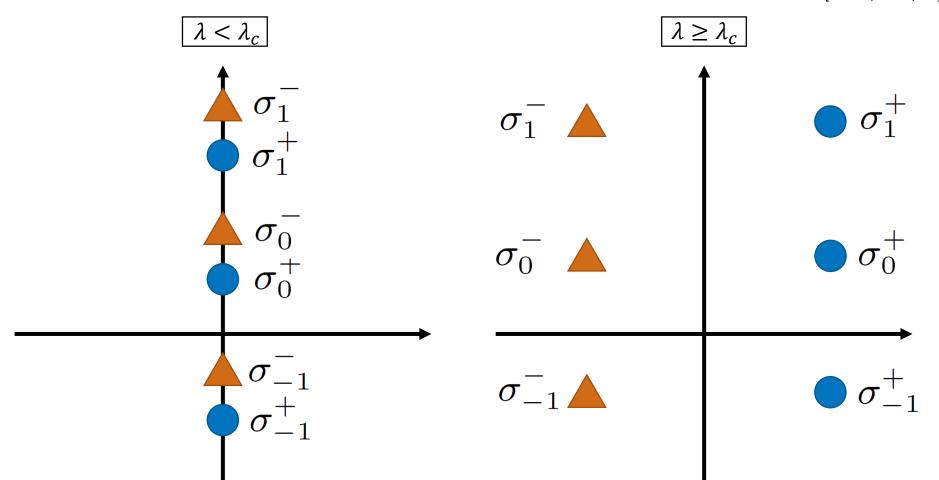
$$S(\sigma) = N_f \left[-i\lambda\sigma + \ln(\cosh\sigma + \cosh m) \right]$$

Saddles:

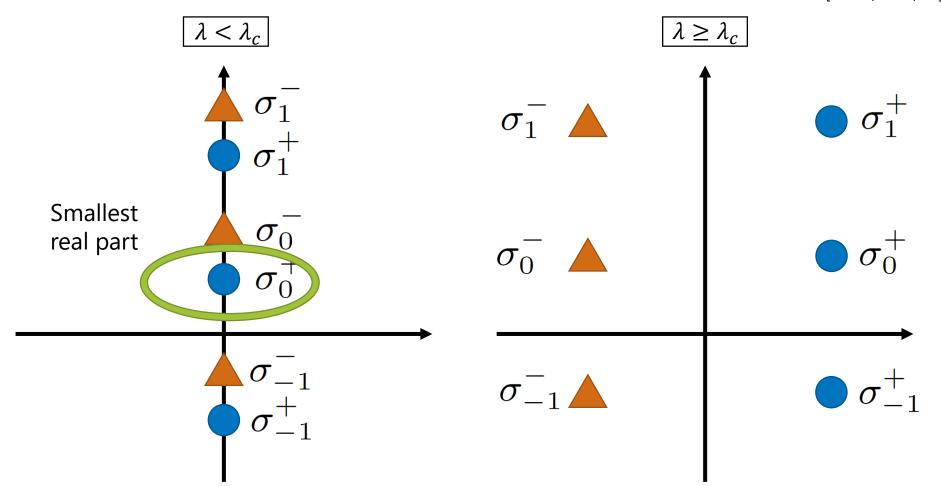
$$\sigma_n^{\pm} = \log\left(\frac{-\lambda \cosh m \pm i\Delta(\lambda,m)}{i+\lambda}\right) + 2\pi i n \quad (n \in \mathbb{Z}),$$

$$\Delta(\lambda,m) = \sqrt{1-\lambda^2 \sinh^2 m}. \quad \begin{cases} \text{Something must happen at} \\ \lambda_c \equiv \frac{1}{\sinh m} \end{cases}$$

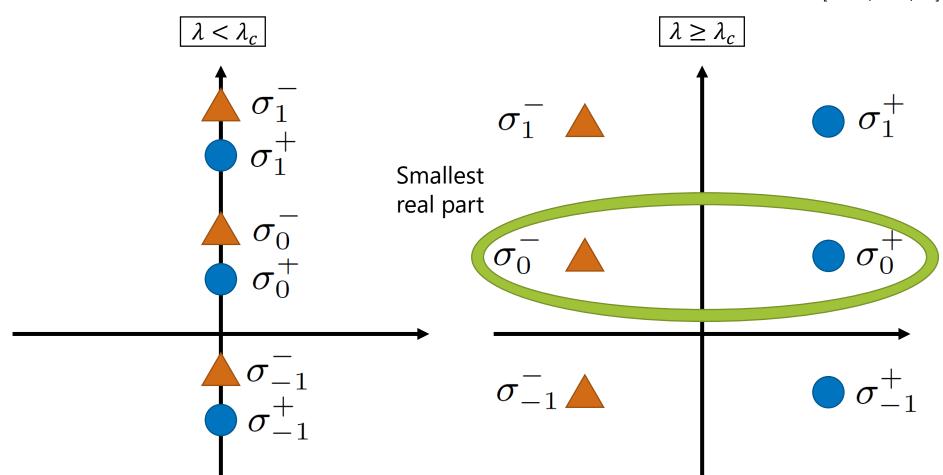
[Russo, Tierz, 17]



[Russo, Tierz, 17]



[Russo, Tierz, 17]



2nd order phase transition

If the saddles of smallest real part contribute,

[Russo, Tierz, 17]

$$\frac{d^2 F}{d\lambda^2} = \begin{cases} \frac{N_f}{1+\lambda^2} \left(1 + \frac{\cosh m}{\sqrt{1-\lambda^2 \sinh^2 m}} \right) & \lambda < \lambda_c \\ \frac{N_f}{1+\lambda^2} & \lambda \ge \lambda_c \end{cases}$$

→ 2nd order phase transition

Questions:

- Smallest real part does not necessarily mean that such saddles contribute to the path integral. Can we **justify it in more precise way**?
- Can we interpret the 2nd order phase transition **from the viewpoint of resurgence**, and **draw lessons** for generic QFTs?

We will answer to these questions, Yes!

Contents

✓ Motivations and Brief summary	(3)
✓ 2 nd order phase transition in SQED3 (review)	(4)
 Lefschetz thimble analysis 	(7)
 Borel resummation 	(4)
• Lessons from SQED3	(3)
 Conclusion and future works 	(1)

Total: 22

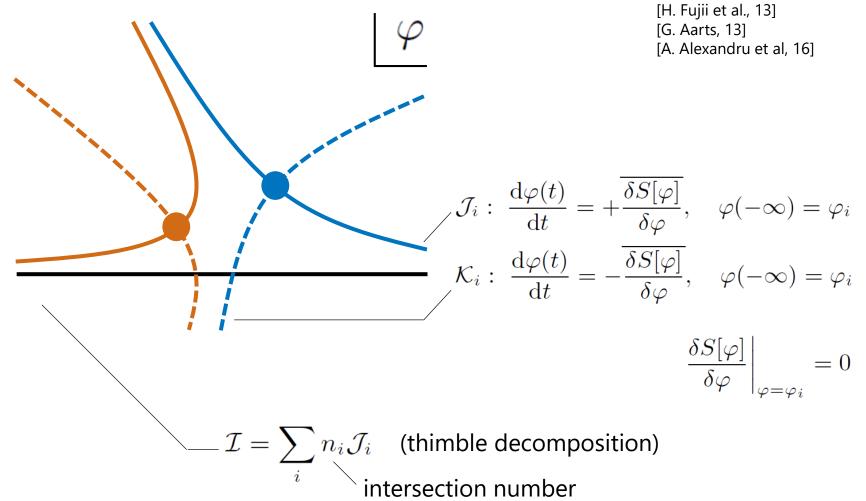
Lefschetz thimbles and dual-thimbles

Lefschetz thimbles = "Steepest descents" in configuration space

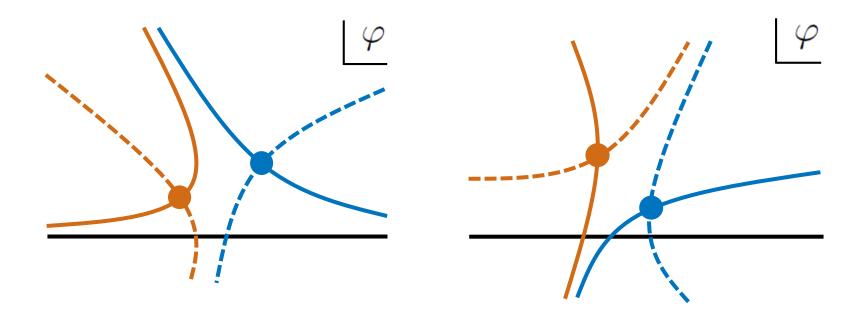
= "Steepest ascents" in configuration space Dual-thimbles

> [M. Cristoforetti et al., 12,13,14] [H. Fujii et al., 13] [G. Aarts, 13] [A. Alexandru et al, 16]

[E. Witten, 11]



Stokes and anti-Stokes phenomena



Stokes phenomenon

: Change of an intersection number, which occurs at

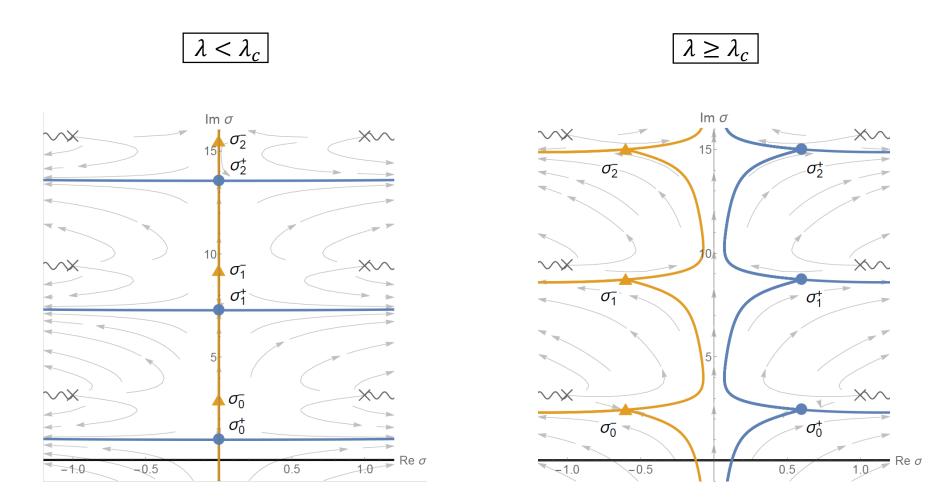
$$\operatorname{Im}[S[\varphi_i]] = \operatorname{Im}[S[\varphi_j]]$$

Anti-Stokes phenomenon: Change of dominant saddles, which occurs at

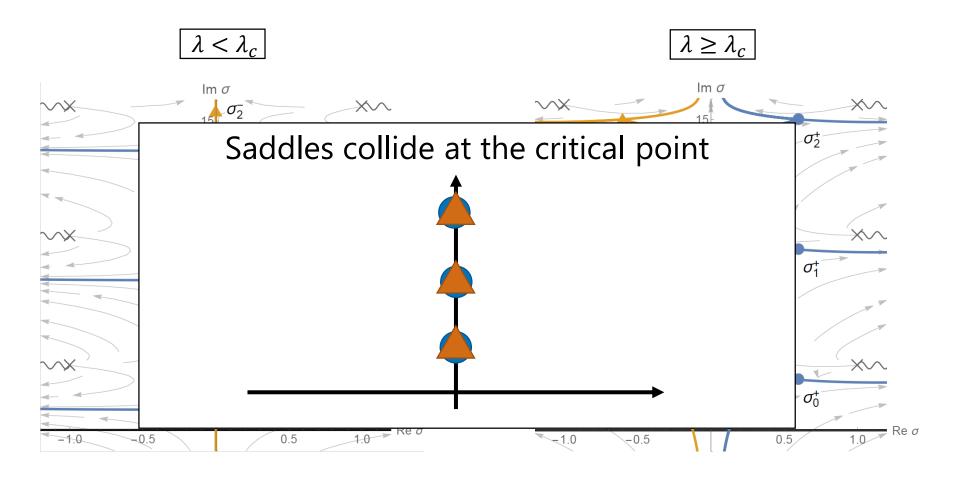
$$\operatorname{Re}[S[\varphi_i]] = \operatorname{Re}[S[\varphi_j]]$$

← 1st order phase transition

Stokes and anti-Stokes pheno. at the critical pt.



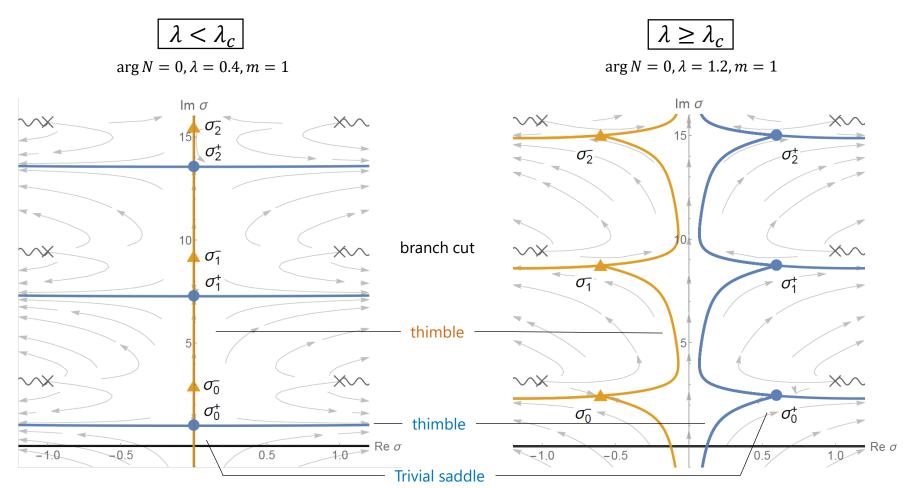
Stokes and anti-Stokes pheno. at the critical pt.



At the critical point, a Stokes and an anti-Stokes phenomenon co-occur.

Lefschetz thimble structure

[T. Fujimori, M. Honda, S. Kamata, T. Misumi, N. Sakai, TY, 21]

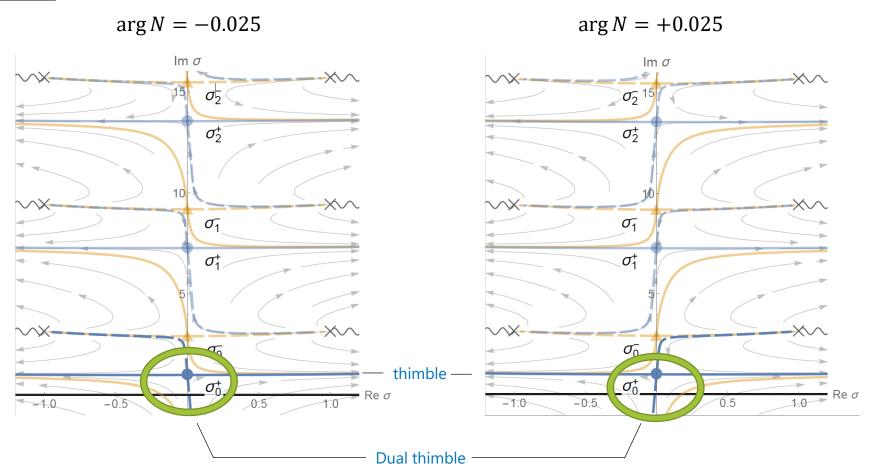


Thimble decomposition $\mathcal{I} = \sum_i n_i \mathcal{J}_i$ is ambiguous

 \longrightarrow Vary the phase of N_f

Lefschetz thimble structure (subcritical)

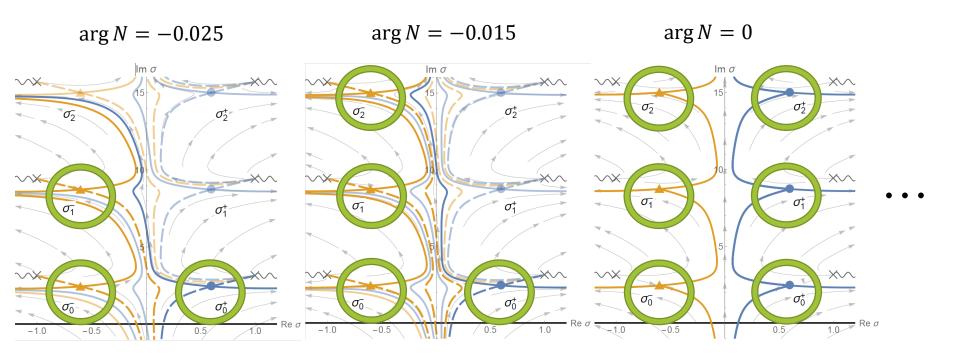
$$\lambda < \lambda_c$$



- No Stokes phenomenon
- Only the trivial saddle σ_0^+ contributes to the path integral

Lefschetz thimble structure (supercritical)

$$\lambda \geq \lambda_c$$



- Infinite number of Stokes phenomena occur around $rg N_f = 0$
- Infinite number of saddles σ_n^{\pm} contribute to the path integral

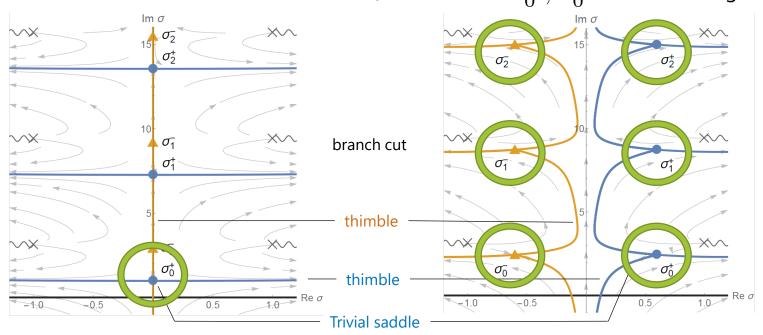
Phase transition and Lefschetz thimble structure

Summary

$$\lambda < \lambda_c$$

 $\lambda \geq \lambda_c$

- No Stokes phenomenon
- Infinite number of Stokes phenomena
- Only the trivial saddle σ_0^+ contributes Infinite number of saddles σ_n^\pm contribute (Two of which σ_0^+, σ_0^- survive the large-flavor limit)



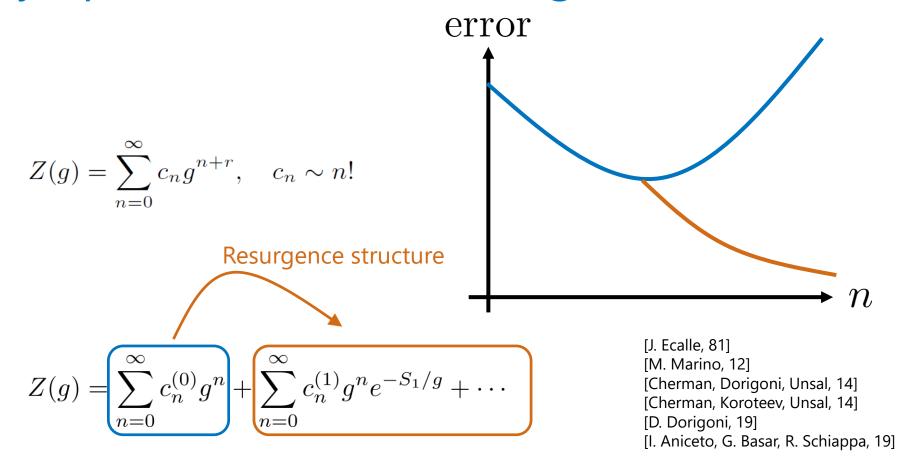
- Stokes and anti-Stokes phenomena occur at the same time
- The phase transition is reinterpreted from the view point of thimbles

Contents

✓ Motivations and Brief summary	(3)
✓ 2 nd order phase transition in SQED3 (review)	(4)
✓ Lefschetz thimble analysis	(7)
 Borel resummation 	(4)
• Lessons from SQED3	(3)
 Conclusion and future works 	(1)

Total: 22

Asymptotic series and resurgence structure



Resurgence theory:

the perturbative part knows the non-perturbative parts

Borel resummation

Resuming an asymptotic series

$$Z(g) = \sum_{n=0}^{\infty} c_n g^{n+r}, \quad c_n \sim n!$$
 Asymptotic series

[J. Ecalle, 81]

Lectures and reviews, e.g.

[M. Marino, 12]

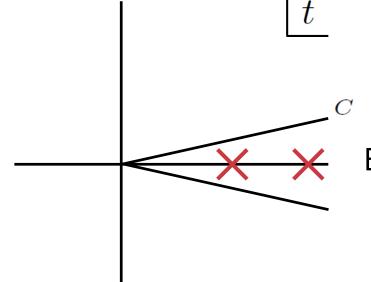
[D. Dorigoni, 19]

[I. Aniceto, G. Basar, R. Schiappa, 19]

$$SZ(g) = \int_C dt \ e^{-t/g} \mathcal{B} Z(t)$$
 Borel resummation

$$\mathcal{B}Z(t) = \sum_{n=0}^{\infty} \frac{c_n}{\Gamma(n+r)} t^{n+r-1}$$
 Borel transformation

Borel transformation may have Borel singularities



Borel singularities imply non-perturbative corrections!

Non-trivial saddle and Borel singularities

[Lipatov, 77]

$$Z(g) = \int \mathcal{D}\varphi \ e^{-S[\varphi]/g} \sim \sum_{n=0}^{\infty} c_n g^n$$

$$c_n = \frac{1}{2\pi i} \oint \frac{\mathrm{d}g}{g^{n+1}} \int \mathcal{D}\varphi \, e^{-S[\varphi]/g}$$

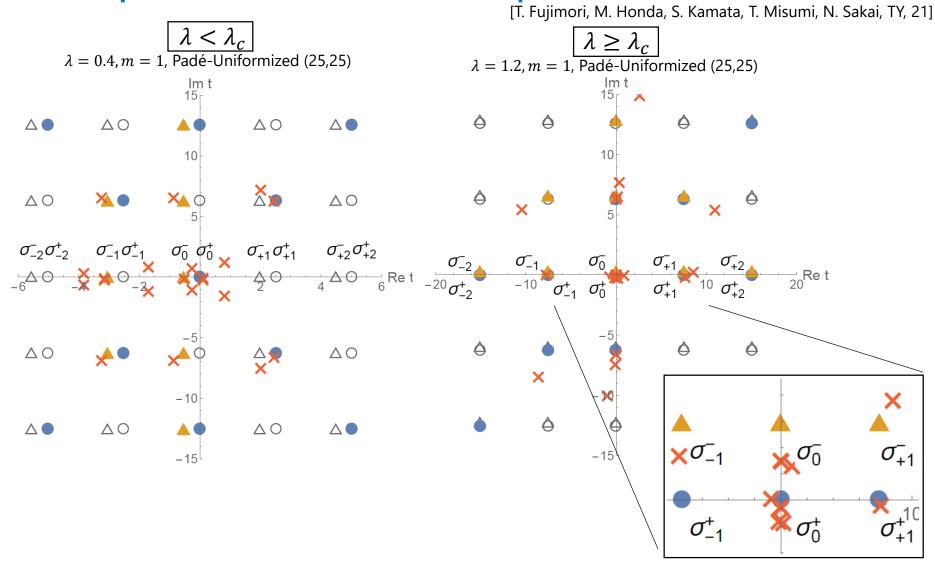
$$\sim e^{-S[\varphi_*]/g_* - (n+1)\ln g_*}$$

$$\sim \frac{n!}{(S[\varphi_*])^{n+1}}$$

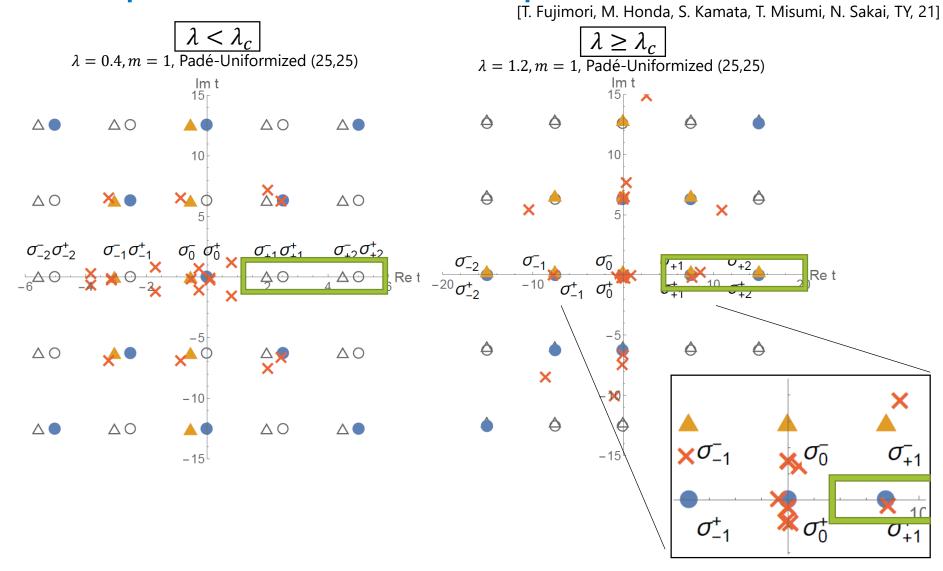
$$\mathcal{B}Z(t) \sim \sum_{n=0}^{\infty} \left(\frac{t}{S[\varphi_i]}\right)^n = \frac{1}{1 - \frac{t}{S[\varphi_i]}}$$

Non-trivial saddles are encoded in an asymptotic series

Borel plane structure (improved)

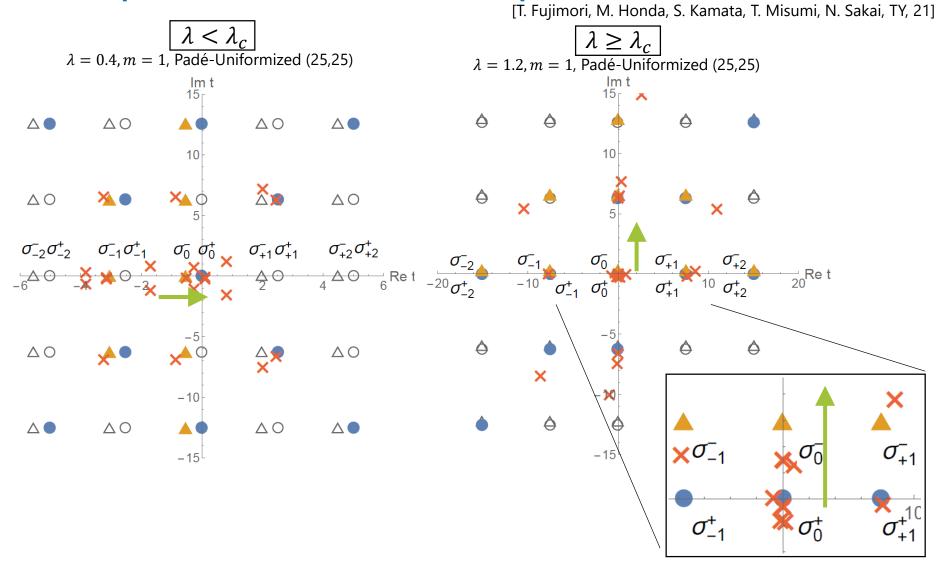


Borel plane structure (improved)



The Stokes phenomena are encoded as Borel non-summability

Borel plane structure (improved)



- The collision of saddles are encoded as collision of Borel singularities
- The anti-Stokes phenomenon is encoded as Borel singularities along the vertical axis

Contents

✓ Motivations and Brief summary	(3)
✓ 2 nd order phase transition in SQED3 (review)	(4)
✓ Lefschetz thimble analysis	(7)
✓ Borel resummation	(4)
• Lessons from SQED3	(3)
 Conclusion and future works 	(1)

Total: 22

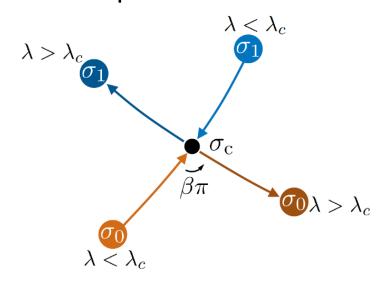
Collision of saddles

[T. Fujimori, M. Honda, S. Kamata, T. Misumi, N. Sakai, TY, 21]

Consider

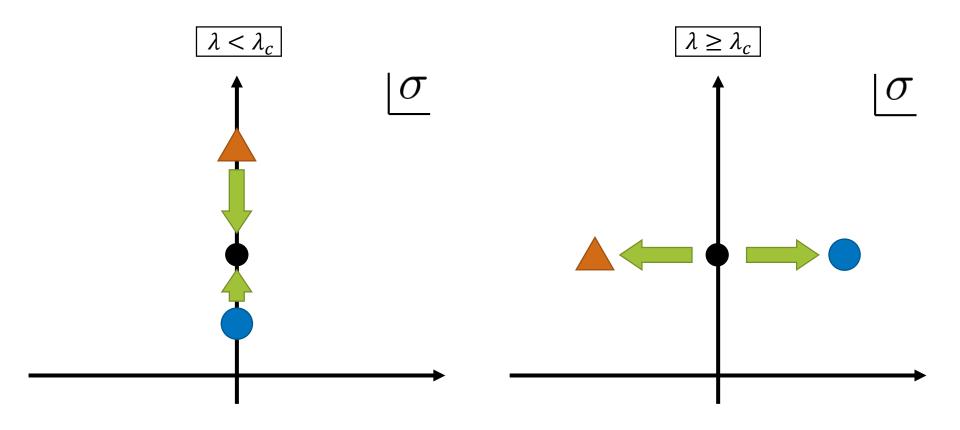
$$e^{-NF(\lambda)} = \int d\sigma \ e^{-N\tilde{S}(\lambda;\sigma)}$$

If the "action" is holomorphic, and n saddles collide as



Then, the "action" value at m-th saddle is $\tilde{S}_m \simeq c_0 + T_m(\delta \lambda)^{(n+1)\beta}$

 \longrightarrow Phase transition is of order $\lceil (n+1)\beta \rceil$



$$n=2, \beta\pi=\pi/2$$

 \longrightarrow Phase transition is of order $\lceil (2+1)/2 \rceil = 2$

The 2nd order phase transition corresponds to followings

Lefschetz thimble analysis:

- i. Contributing saddles jump as $\sigma_0^+ o \sigma_0^+, \sigma_0^-$
- ii. Two saddles collide with an angle $\pi/2$
- iii. Infinite number of Stokes phenomena associated with $\sigma_n^{\pm/2}$

Borel resummation:

- I. Two Borel singularities collide and line up along the vertical axis
- II. Two Borel singularities collide with an angle $\pi/2$
- III. Large-flavor expansion becomes Borel non-summable

Stokes and anti-Stokes phenomena at the same time

ccur

The 2nd order phase transition corresponds to followings

Lefschetz thimble analysis:

- Contributing saddles jump as $\sigma_0^+ \to \sigma_0^+, \sigma_0^-$ Two saddles collide with an angle $\pi/2$
- Infinite number of Stokes phenomena associa iii.

The order of phase transition is decoded from "scattering angle"

Borel resummation:

- Two Borel singularities collide and line up along the vertic
- Two Borel singularities collide with an angle $\pi/2$ II.
- Large-flavor expansion becomes Borel non-summable III.

The 2nd order phase transition corresponds to followings

Lefschetz thimble analysis:

- i. Contributing saddles jump as $\sigma_0^+ \to \sigma_0^+, \sigma_0^-$
- ii. Two saddles collide with an angle $\pi/2$
- iii. Infinite number of Stokes phenomena associated with $\sigma_{n>0}^\pm$ occur

Borel resummation:

- I. Two Borel singularities collide and line up alor
- II. Two Borel singularities collide with an angle π
- III. Large-flavor expansion becomes Borel non-summable

$$Z = \int_{-\infty}^{\infty} d\sigma \frac{e^{i\eta\sigma}}{\left[2\cosh\frac{\sigma+m}{2} \cdot 2\cosh\frac{\sigma-m}{2}\right]^{N_{f}}}$$

Due to SUSY

The 2nd order phase transition corresponds to followings

Lefschetz thimble analysis:

- i. Contributing saddles jump as $\sigma_0^+ o \sigma_0^+, \sigma_0^-$
- ii. Two saddles collide with an angle $\pi/2$
- iii. Infinite number of Stokes phenomena associated with $\sigma_{n>0}^\pm$ occur

Borel resummation:

- I. Two Borel singularities collide and line up along the vertical axis
- II. Two Borel singularities collide with an angle $\pi/2$
- III. Large-flavor expansion becomes Borel non-summable

They can be generalized as long as
$$e^{-NF(\lambda)}=\int \mathrm{d}\sigma\ e^{-N\tilde{S}(\lambda;\sigma)}$$

Contents

✓ Motivations and Brief summary	(3)
✓ 2 nd order phase transition in SQED3 (review)	(4)
✓ Lefschetz thimble analysis	(7)
✓ Borel resummation	(4)
✓ Lessons from SQED3	(3)
 Conclusion and future works 	(1)

Total: 22

Conclusion and future works

Question:

Is resurgence applicable to 2nd order phase transitions or more realistic QFTs?

Answer: resurgence is applicable!

2nd order phase transition = simultaneous Stokes and anti-Stokes phenomenon

- The order of phase transition is determined by a collision of saddles
- It is decoded from a perturbative series
 - Generalized to other systems

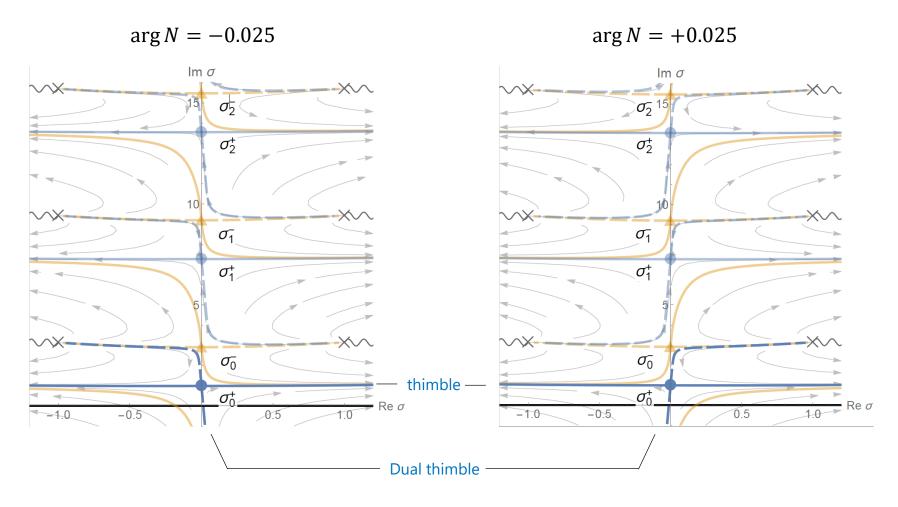
Future works:

- Relation to Lee-Yang zeros?
- Expansion with respect to other parameters?
- Physical meaning of the phase transition?

Backups

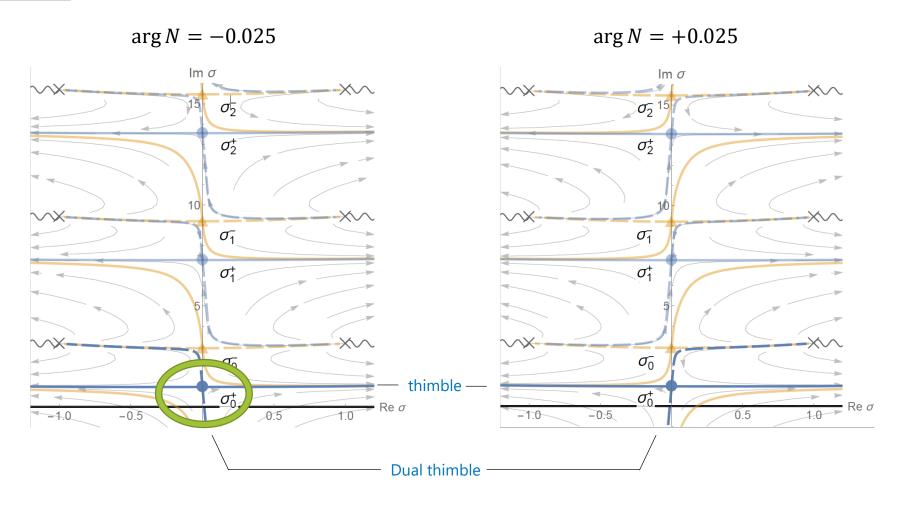
Lefschetz thimble structure (subcritical)

$$\lambda < \lambda_c$$



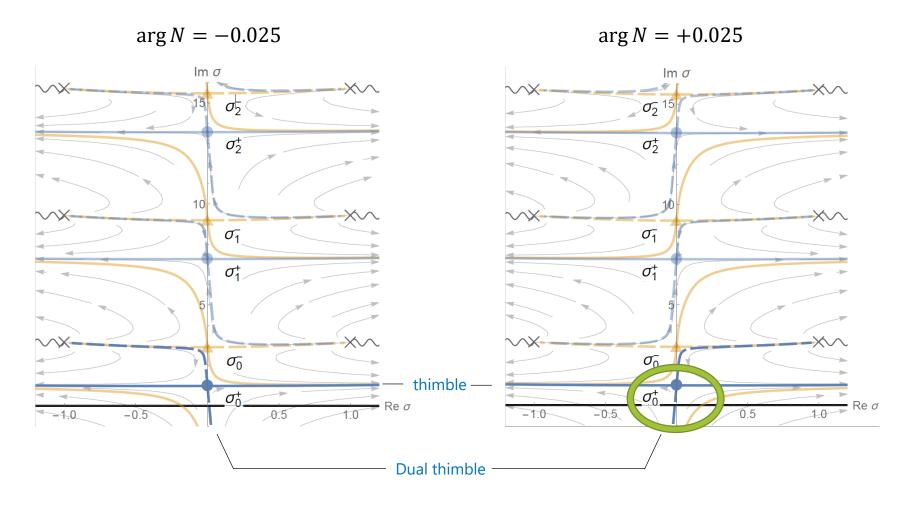
Lefschetz thimble structure (subcritical)

$$\lambda < \lambda_c$$



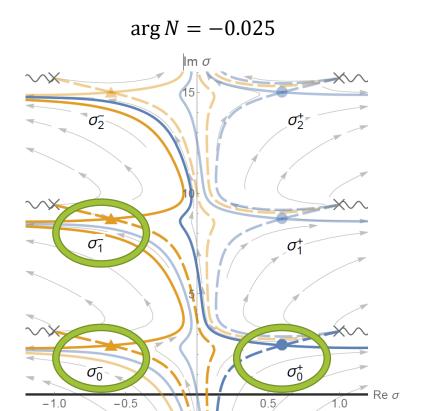
Lefschetz thimble structure (subcritical)

$$\lambda < \lambda_c$$

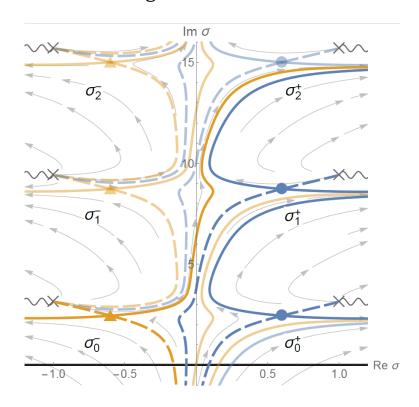


Lefschetz thimble structure (supercritical)

$$\lambda \geq \lambda_c$$

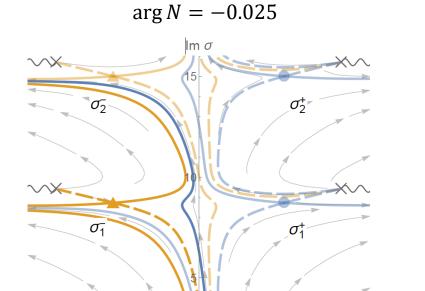


$$arg N = +0.025$$

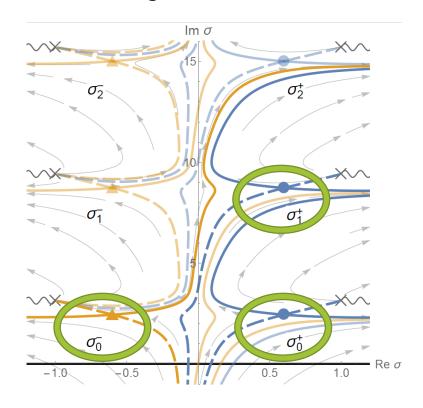


Lefschetz thimble structure (supercritical)

$$\lambda \geq \lambda_c$$



$$arg N = +0.025$$



Contents

- ✓ Motivations and Brief summary
- 2nd order phase transition in Sq
- Lefschetz thimble analysis
- Borel resummation
- Lessons from SQED3
- Conclusion and future works

Before these, let me provide *lightning introduction to resurgence*

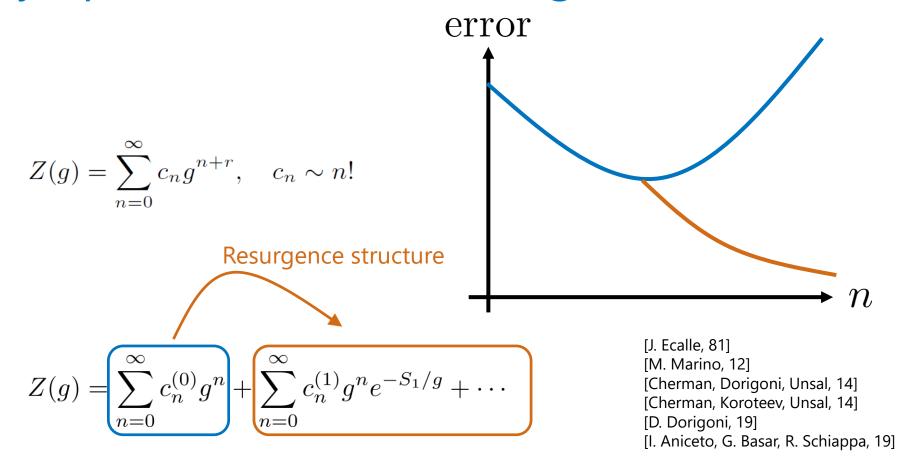
(11,

(3)

(1)

Total: 31

Asymptotic series and resurgence structure



Resurgence theory:

the perturbative part knows the non-perturbative parts

Example: 0dim Sine-Gordon model

Partition function:

$$Z(g) := \sqrt{\frac{\pi}{2g}} e^{-1/4g} I_0(1/4g) = \frac{1}{\sqrt{2\pi g}} \int_{-\pi/2}^{\pi/2} d\varphi \, e^{-\frac{1}{2g} \sin^2 \varphi} \left(-\frac{\pi}{2} < \pm \arg(1/4g) < \frac{3\pi}{2} \right)$$

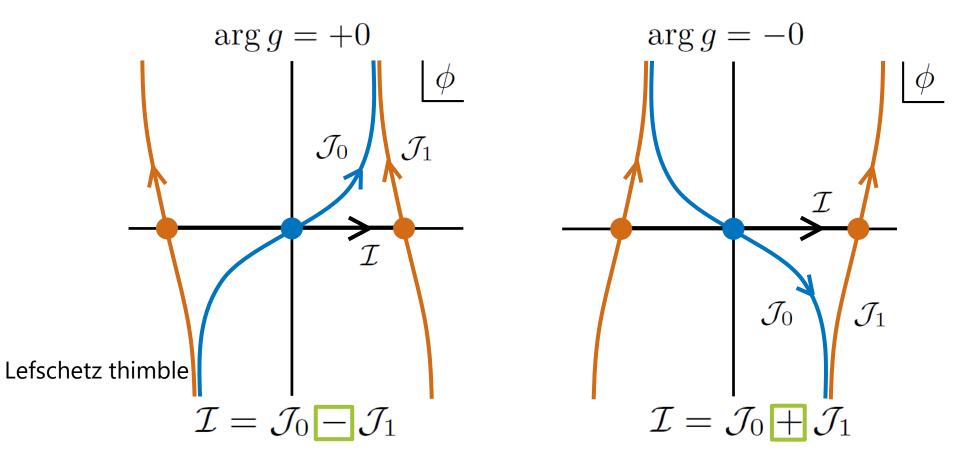
$$= \sum_{n=0}^{\infty} \frac{(+2)^n \Gamma(n+1/2)^2}{\Gamma(1/2)^2 \Gamma(n+1)} g^{n+1} \pm i e^{-1/2g} \sum_{n=0}^{\infty} \frac{(-2)^n \Gamma(n+1/2)^2}{\Gamma(1/2)^2 \Gamma(n+1)} g^{n+1}$$

Perturbative part

Non-perturbative part

Observation 1

$$Z(g) = \frac{1}{\sqrt{2\pi g}} \int_{-\pi/2}^{\pi/2} d\varphi \, e^{-\frac{1}{2g}\sin^2\varphi} = \sum_{n=0}^{\infty} c_n^{(0)} g^{n+1} \pm i e^{-1/2g} \sum_{n=0}^{\infty} c_n^{(1)} g^{n+1}$$



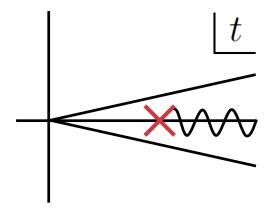
Observation 2

$$\sum_{n=0}^{\infty} c_n^{(0)} g^{n+1} \to \int_0^{\infty} dt \, e^{-t/g} \sum_{n=0}^{\infty} \frac{c_n^{(0)}}{\Gamma(n+1)} t^n$$

Borel resummation

$$= \int_0^\infty dt \, e^{-t/g} {}_2F_1\left(\frac{1}{2}, \frac{1}{2}, 1; 2t\right)$$

"Ambiguity" $\sim ie^{-1/2g}$



Recall

$$\sum_{n=0}^{\infty} \frac{(+2)^n \Gamma(n+1/2)^2}{\Gamma(1/2)^2 \Gamma(n+1)} g^{n+1} \pm \underbrace{ie^{-1/2g}} \sum_{n=0}^{\infty} \frac{(-2)^n \Gamma(n+1/2)^2}{\Gamma(1/2)^2 \Gamma(n+1)} g^{n+1}$$

Observation 3

$$c_n^{(0)} = \frac{(+2)^n \Gamma(n+1/2)^2}{\Gamma(1/2)^2 \Gamma(n+1)}$$

$$\sim \frac{2^n \Gamma(n)}{\Gamma(1/2)^2} \left[1 + \frac{-1/4}{n-1} + \frac{9/32}{(n-1)(n-2)} + \frac{-75/128}{(n-1)(n-2)(n-3)} + \cdots \right]$$

$$c_n^{(1)} = \frac{(-2)^n \Gamma(n+1/2)^2}{\Gamma(1/2)^2 \Gamma(n+1)}$$

$$c_0^{(1)} = 1 \quad c_1^{(1)} = 2^1 \left(\frac{-1}{4}\right), \quad c_2^{(1)} = 2^2 \left(\frac{9}{32}\right), \quad c_3^{(1)} = 2^3 \left(\frac{-75}{128}\right)$$

Resurgence theory

[J. Ecalle, 81]

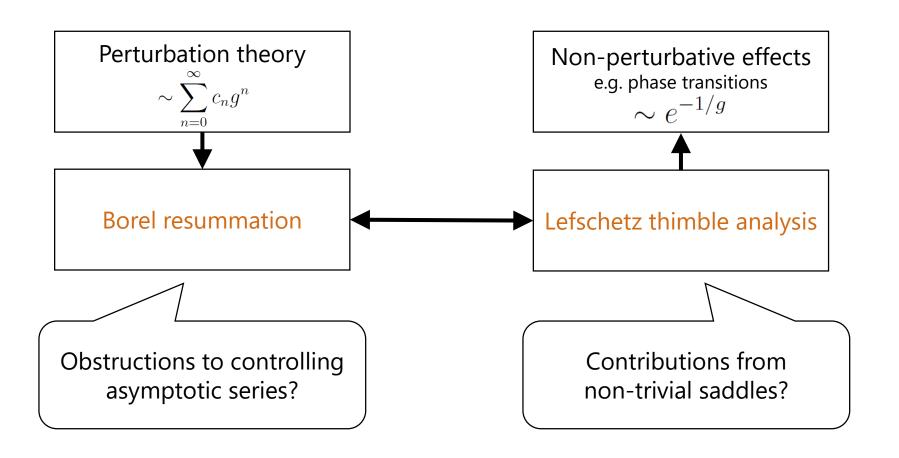
Lectures and reviews, e.g.

[M. Marino, 12]

[D. Dorigoni, 19]

[I. Aniceto, G. Basar, R. Schiappa, 19]

- One of the approaches to non-perturbative physics
- Decodes non-perturbative information from perturbation theory



Application to the "path integral"

[T. Fujimori, M. Honda, S. Kamata, T. Misumi, N. Sakai, TY, 21]

Partition function:

$$Z = \int_{-\infty}^{\infty} d\sigma \ e^{-S(\sigma)} \qquad S(\sigma) = N_f \left[-i\lambda\sigma + \ln(\cosh\sigma + \cosh m) \right]$$

Thimble/dual-thimble equations:

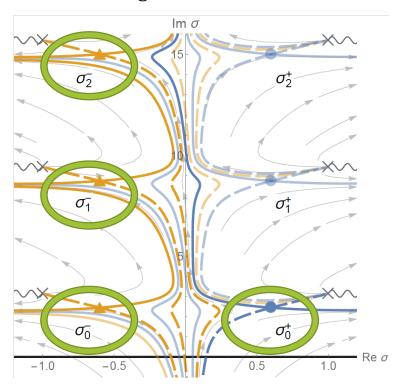
$$\mathcal{J}_{n}^{\pm}: \frac{d\sigma(t)}{dt} = +\frac{\overline{dS(\sigma)}}{d\sigma}, \quad \sigma(-\infty) = \sigma_{n}^{\pm}$$

$$\mathcal{K}_{n}^{\pm}: \frac{d\sigma(t)}{dt} = -\frac{\overline{dS(\sigma)}}{d\sigma}, \quad \sigma(-\infty) = \sigma_{n}^{\pm}$$

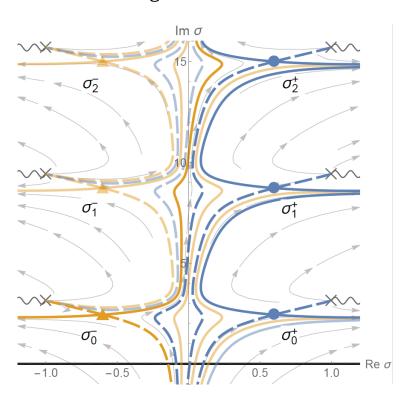
Lefschetz thimble structure (supercritical)

$$\lambda \geq \lambda_c$$

$$arg N = -0.015$$



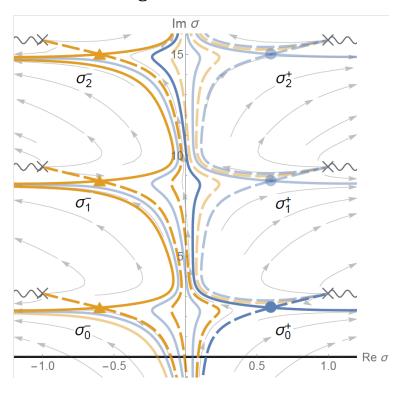
arg N = +0.015



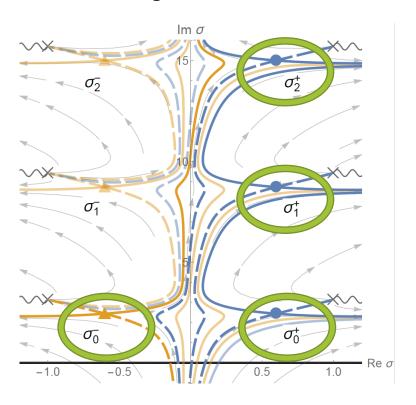
Lefschetz thimble structure (supercritical)

$$\lambda \geq \lambda_c$$

$$arg N = -0.015$$

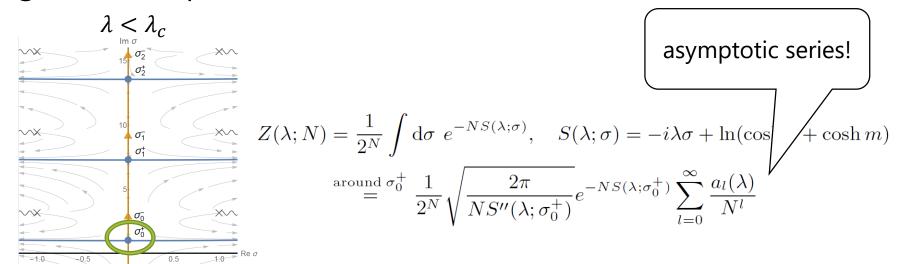


arg N = +0.015



What we do

Large-flavor expansion around the trivial saddle:



Borel resummation:

$$SZ(\lambda; N) = \frac{1}{2^N} \sqrt{\frac{2\pi}{NS''(\lambda; \sigma_0^+)}} e^{-NS(\lambda; \sigma_0^+)} \cdot N \int_C dt \ e^{-Nt} \sum_{l=0}^{\infty} \frac{a_l(\lambda)}{\Gamma(l+1)} t^l$$

Sub-questions in this part:

- Is the Borel plane structure consistent with the Lefschetz thimble structure?
- Can we decode the phase transition from the perturbative series?

But please wait (1/2): Borel-Padé approximation

Exact quantities:

$$F\left(\frac{1}{N_f}\right) = \sum_{\ell=0}^{\infty} \frac{a_\ell}{N_f^{\ell}}$$

asymptotic series

$$\mathcal{B}F(t) = \sum_{l=0}^{\infty} \frac{a_{\ell}}{\Gamma(\ell+1)} t^{\ell}$$

Borel transformation

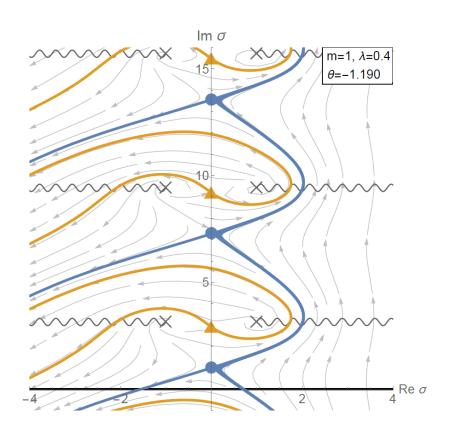
Approximate these from finite number of inputs

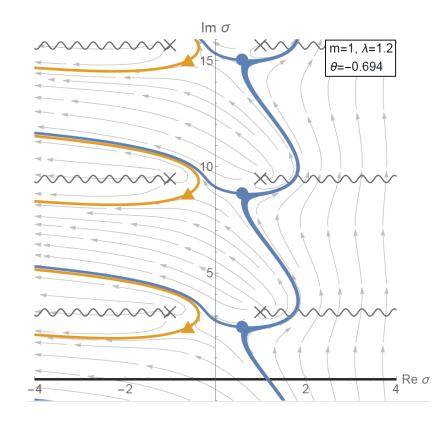
$$\mathcal{P}_{m,n}(t) = \frac{P_m(t)}{Q_n(t)}$$

Borel-Padé approximation

But please wait (2/2): Larger $\theta = \arg N_f$

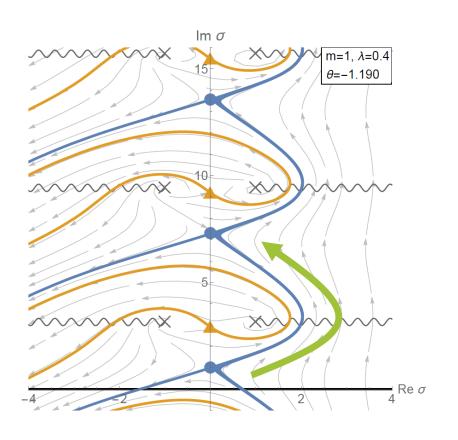
Stokes phenomena occur on different Riemann sheets

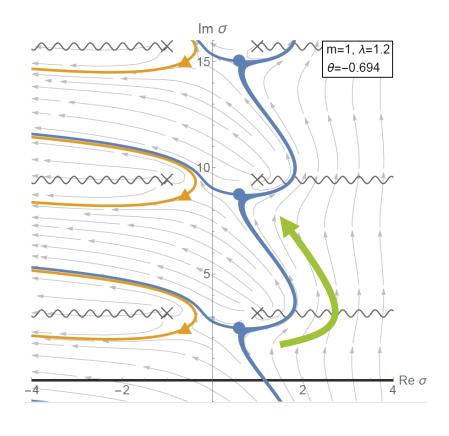




But please wait (2/2): Larger $\theta = \arg N_f$

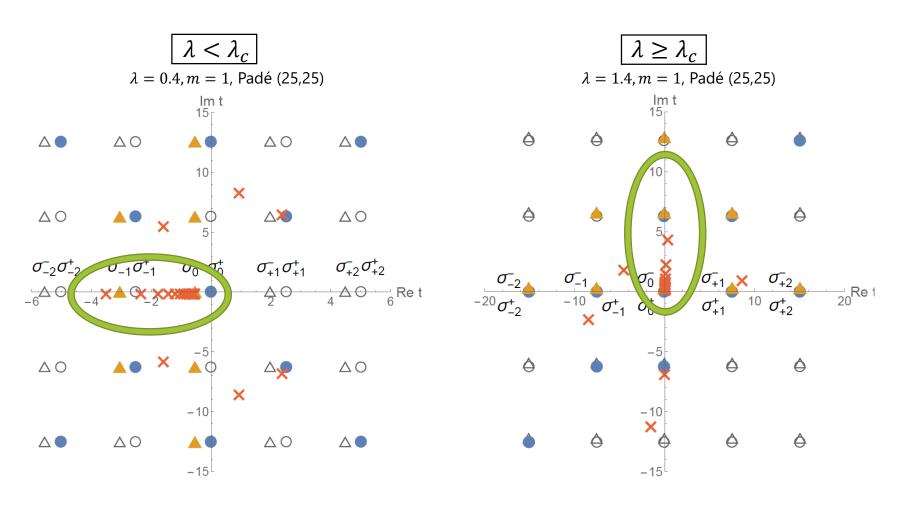
Stokes phenomena occur on different Riemann sheets





Borel plane structure

[T. Fujimori, M. Honda, S. Kamata, T. Misumi, N. Sakai, TY, 21]



Poles of the Padé approximant are consumed for branch cuts...

Improvement: Padé-Uniformized approximation

[Costin, Dunne, 20]

Uniformize the Borel t-plane by a map:

$$t \mapsto u(t) = -\ln\left(1 - \frac{t}{s}\right)$$

Branch cut singularity at t = s is eliminated

Perform the standard Padé approximation on the u-plane

$$\widetilde{\mathcal{B}F}(t) \simeq \mathcal{P}_{m,n}(u(t))$$

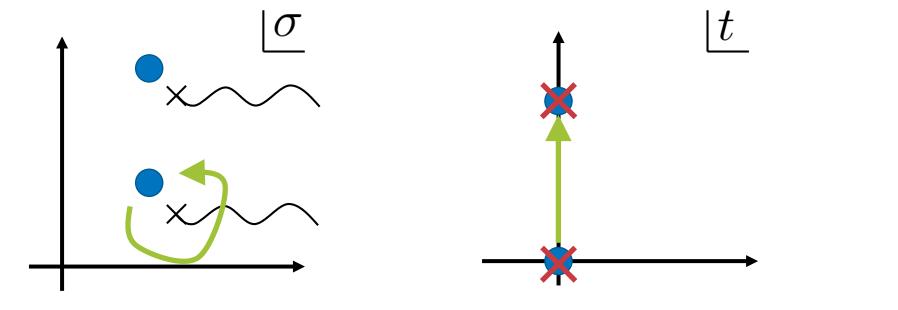
Analytical study for large λ

[T. Fujimori, M. Honda, S. Kamata, T. Misumi, N. Sakai, TY, 21]

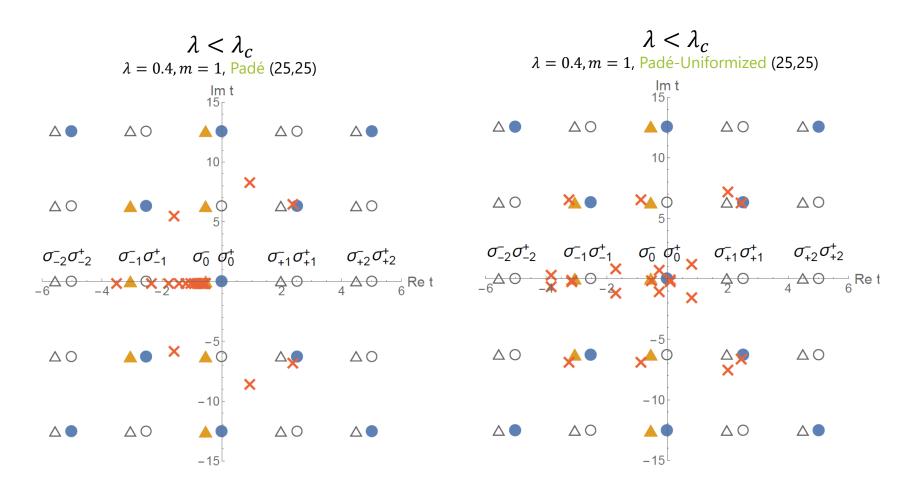
Lading contribution for large λ

$$F(N_f; \lambda) = \int_{-\infty}^{\infty} d\delta \sigma \ e^{-N_f(i\lambda\delta\sigma + \log(1 - i\lambda\delta\sigma))}$$
$$= \frac{1}{i\lambda} \int dt \ e^{-N_f t} \frac{W(-e^{t-1})}{1 + W(-e^{t-1})}$$

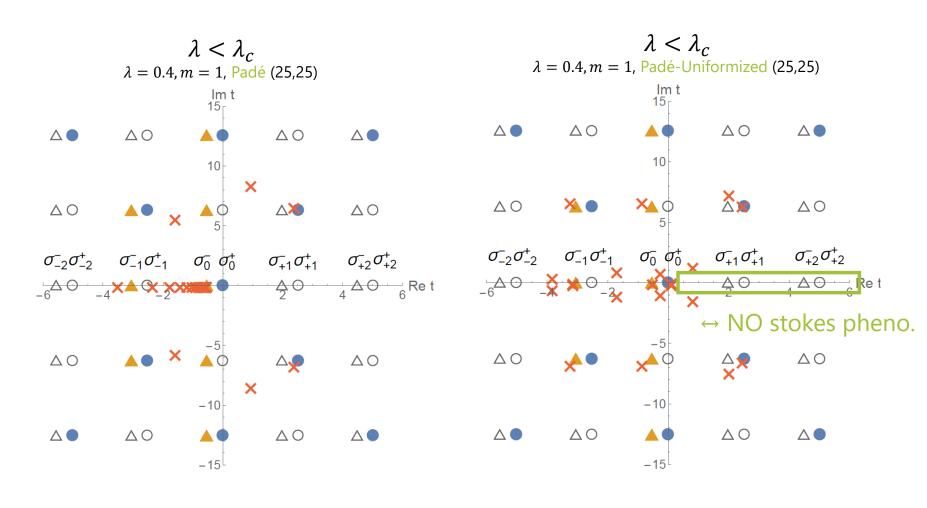
 σ -plane and Borel t-plane are directly related via $\delta \sigma = \frac{1}{i\lambda} \left(1 + W(-e^{t-1}) \right)$



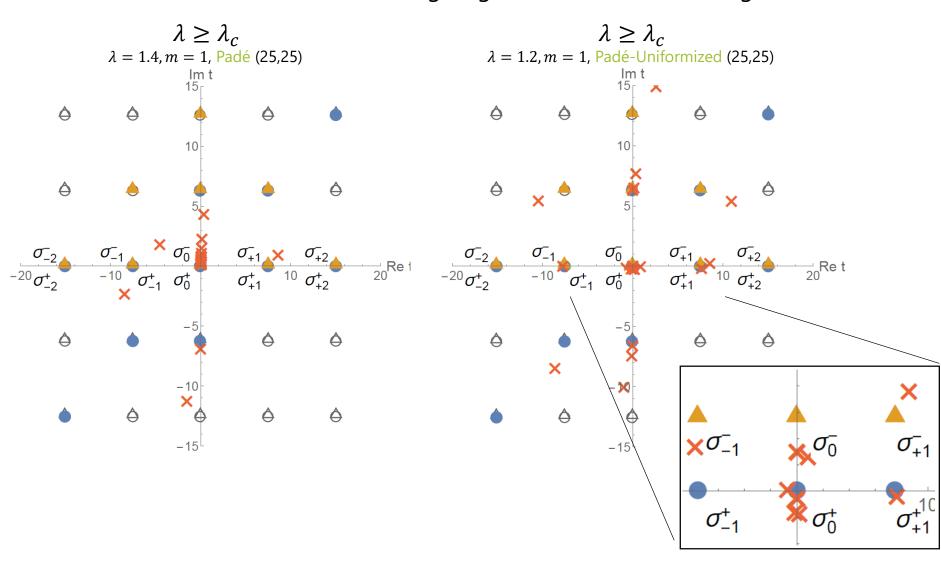
- The Borel plane structure is consistent with the Lefschetz thimble structure
- Still there are artifacts, and missing singularities far from the origin



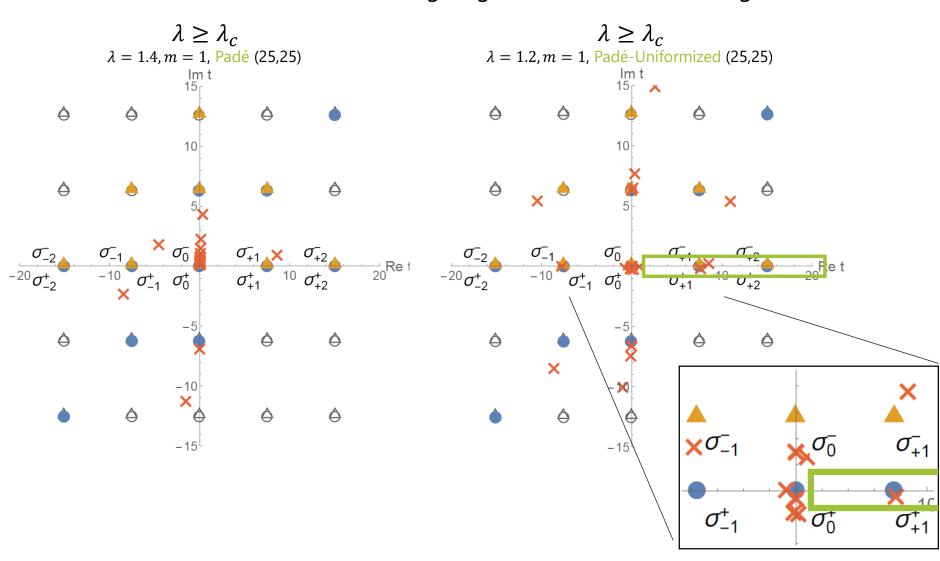
- The Borel plane structure is consistent with the Lefschetz thimble structure
- Still there are artifacts, and missing singularities far from the origin



- The Borel plane structure is consistent with the Lefschetz thimble structure
- Still there are artifacts, and missing singularities far from the origin



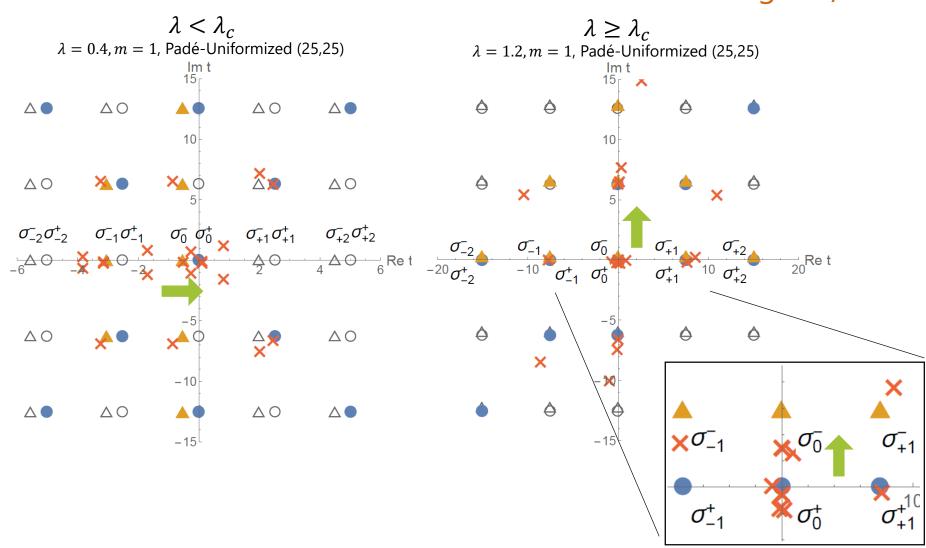
- The Borel plane structure is consistent with the Lefschetz thimble structure
- Still there are artifacts, and missing singularities far from the origin



The order of the phase transition

2nd order phase transition corresponds to

collision of two saddles with the reflection angle $\pi/2$



Lefschetz thimble analysis

Odim Sine-Gordon model

[Cherman, Dorigoni, Unsal, 14] [Cherman, Koroteev, Unsal, 14]

$$Z(g) = \frac{1}{(2\pi g)^{1/2}} \int_{-\pi/2}^{\pi/2} d\phi \ e^{-S(\phi)/g}, \quad S(\phi) = \frac{1}{2} \sin^2 \phi$$

Saddles and Lefschetz thimbles

$$0 = \frac{\mathrm{d}S(\phi)}{\mathrm{d}\phi} \Rightarrow \phi = 0, \pm \frac{\pi}{2}$$

Trivial saddle and non-trivial saddles

$$\mathcal{J}_i: \frac{\mathrm{d}\phi(t)}{\mathrm{d}t} = \overline{\frac{\mathrm{d}S}{\mathrm{d}\phi}}, \quad \phi(-\infty) = \phi_i \quad \operatorname{Im} S(\phi(t)) = \operatorname{const.}, \quad \operatorname{Re} S(\phi_i) \le \operatorname{Re} S(\phi(t))$$

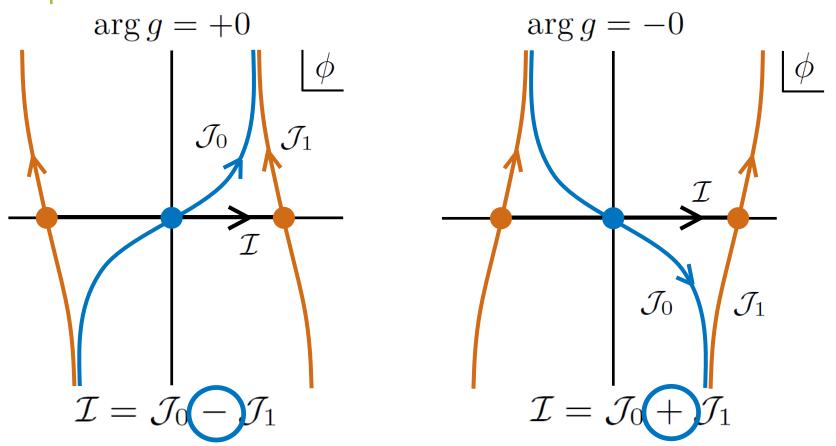
$$\mathcal{K}_i: \frac{\mathrm{d}\phi(t)}{\mathrm{d}t} = -\frac{\overline{\mathrm{d}S}}{\mathrm{d}\phi}, \quad \phi(-\infty) = \phi_i \quad \text{Im } S(\phi(t)) = \text{const.}, \quad \text{Re } S(\phi_i) \ge \operatorname{Re} S(\phi(t))$$

Lefschetz thimble analysis

Around $\arg g = 0$,

[Cherman, Dorigoni, Unsal, 14] [Cherman, Koroteev, Unsal, 14]

Stokes phenomenon associated with the trivial saddle



NO Stokes phenomenon associated with the non-trivial saddles

Perturbation theory around the trivial saddle diverges

$$Z(g) = \frac{1}{(2\pi g)^{1/2}} \int_{-\pi/2}^{\pi/2} d\phi \ e^{-\frac{1}{2g}\sin^2\phi}$$

$$\stackrel{\text{around } \phi=0}{=} e^{-S(0)/g} \cdot \frac{1}{g} \sum_{n=0}^{\infty} \frac{(-2)^n \Gamma(n+1/2)^2}{\Gamma(1/2)^2 \Gamma(n+1)} g^{n+1}$$

There is a Borel singularity (and a branch cut) around $\arg g = 0$

$$SZ(g) = \int_C dt \ e^{-t/g} \mathcal{B} Z(t)$$

$$= e^{-S(0)/g} \cdot \frac{1}{g} \int_C dt \ e^{-t/g} \sum_{n=0} \frac{2^n \Gamma(n+1/2)^2}{\Gamma(1/2)^2 \Gamma(n+1)^2} (+t)^n$$

$$= e^{-S(0)/g} \cdot \frac{1}{g} \int_C dt \ e^{-t/g} {}_2F_1\left(\frac{1}{2}, \frac{1}{2}, 1; +2t\right)$$

Perturbation theory around a non-trivial saddle diverges

$$Z(g) = \frac{1}{(2\pi g)^{1/2}} \int_{-\pi/2}^{\pi/2} d\phi \ e^{-\frac{1}{2g}\sin^2\phi}$$

$$\stackrel{\text{around } \phi = \pi/2}{=} i e^{-S(\pi/2)/g} \cdot \frac{1}{g} \sum_{n=0}^{\infty} \frac{(2)^n \Gamma(n+1/2)^2}{\Gamma(1/2)^2 \Gamma(n+1)} g^{n+1}$$

There is NO Borel singularity (nor branch cut) around $\arg g = 0$

$$SZ(g) = \int_C dt \ e^{-t/g} \mathcal{B} Z(t)$$

$$= i e^{-S(\pi/2)/g} \cdot \frac{1}{g} \int_C dt \ e^{-t/g} \sum_{n=0} \frac{2^n \Gamma(n+1/2)^2}{\Gamma(1/2)^2 \Gamma(n+1)^2} (-t)^n$$

$$= i e^{-S(\pi/2)/g} \cdot \frac{1}{g} \int_C dt \ e^{-t/g} {}_2 F_1 \left(\frac{1}{2}, \frac{1}{2}, 1, -2t\right)$$

Resurgence structure

[Cherman, Dorigoni, Unsal, 14] [Cherman, Koroteev, Unsal, 14]

The two types of ambiguities cancel

and the location of the Borel singularity agrees with $S\left(\frac{\pi}{2}\right) = 1/2$

$$SZ(g) = \underbrace{S \pm Z(g)}_{\text{around }\phi=0} \pm \underbrace{SZ(g)}_{\text{around }\phi=\pi/2}$$

$$= e^{-S(0)/g} \cdot \frac{1}{g} \int_{C^{\pm}} dt \ e^{-t/g} {}_{2}F_{1}\left(\frac{1}{2}, \frac{1}{2}, 1; \pm 2t\right)$$

$$\mp i e^{-\underbrace{S(\pi/2)}/g} \cdot \frac{1}{g} \int_{C} dt \ e^{-t/g} {}_{2}F_{1}\left(\frac{1}{2}, \frac{1}{2}, 1; \pm 2t\right)$$

$$= \operatorname{Re} \left. S_{\pm}Z(g) \right|_{\text{around }\phi=0}$$

Information of non-trivial saddles is encoded in perturbation theory around the trivial saddle

Large-flavor expansion

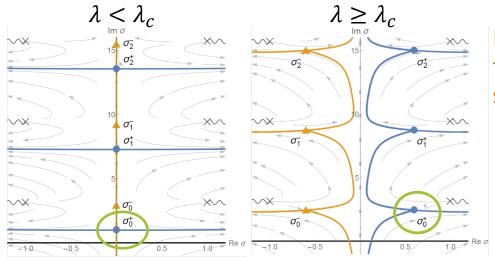
[Fujimori, Honda, Kamata, Misumi, Sakai, TY, to appear]

Consider the Borel resummation of 1/N expansion to see how thimbles' structure is encoded

$$Z(\lambda; N) = \frac{1}{2^N} \int d\sigma \ e^{-NS(\lambda; \sigma)}, \quad S(\lambda; \sigma) = -i\lambda\sigma + \ln(\cosh\sigma + \cosh m)$$

$$\stackrel{\text{around } \sigma_0^+}{=} \frac{1}{2^N} \sqrt{\frac{2\pi}{NS''(\lambda; \sigma_0^+)}} e^{-NS(\lambda; \sigma_0^+)} \sum_{l=0}^{\infty} \frac{a_l(\lambda)}{N^l}$$

$$SZ(\lambda; N) = \frac{1}{2^N} \sqrt{\frac{2\pi}{NS''(\lambda; \sigma_0^+)}} e^{-NS(\lambda; \sigma_0^+)} \cdot N \int_C dt \ e^{-Nt} \sum_{l=0}^{\infty} \frac{a_l(\lambda)}{\Gamma(l+1)} t^l$$



Does perturbation theory around the trivial saddle know non-trivial saddles and the phase transition?