Quantum Master Equation for QED in Exact RG

— 基研研究会 (近畿大学), Aug. 10, 2007 —

Yuji Igarashi, Katsumi Itoh, and Hidenori Sonoda^a

Faculty of Education, Niigata University

^a Department of Physics, Kobe University

Abstract

厳密くりこみ群:ゲージ対称性をどう扱うか

- 正則化で(一見)破れたゲージ対称性に対するWT恒等式の導出
- 反場の導入とBRS変換の nilpotency の回復 ⇒ ゲージ対称性の維持
- Polchinski 方程式とBRS 対称性

Motivation : One of the most important subjects in ERG

How to realize (gauge) symmetries, naively not compatible with reg. scheme?

- Two different approaches:
 - 1) finding symmetry preserving reg. (Morris et al. '00-)
 - 2) using "broken Ward-Takahashi identities" or "modified Slavnov-Taylor identities"

for \bullet S: generator of connected cutoff Green functions

or \bullet Γ : generator of its 1PI part

to control symmetry breaking effects

(Becchi '93, Ellwanger, Bonini et al.. '94-, Morris et al. '00-, Freire et al. '01-)

Does exact symmetry exist in the latter approach?

- \diamondsuit A generic argument: Batalin-Vilkovisky (BV) antifield formalism the presence of local (as well as global) symmetries \Leftrightarrow Quantum Master Equation (QME) $\Sigma_{\phi,\phi^*}=0$ (for S)
 - A general argument, $\Sigma_{\phi,\phi^*}=0$ for cutoff- removed action $\Rightarrow \Sigma_{\Phi,\Phi^*}=0$ for Wilson action. (Igarashi, Itoh and So '01)
 - QME: hard to solve.
 - So far, it was shown for lattice chiral symmetry Ginsparg-Wilson relation \equiv QME, and solved it for self-interacting fermions.
 - How about gauge theory ?
 - WT identity for Wilson action $S[\phi]$ in QED discussed by Sonoda: suitable for study of its exact BRS symmetry (cf. Becchi, Bonini-D'Attanasio-Marchesini for pure YM)
 - ullet BRS tr. depends on the Wilson action $S[\phi]$
 - $\delta S[\phi] + \delta \mathcal{D}\phi = 0$
 - $\delta^2 \neq 0$ (absence of nilpotency)

♦ We discuss, in this talk,

- 1) Path-integral derivation of WT identity for the Wilson action ($\Sigma_{\Phi} = 0$). (following Becchi, Bonini *et al.*)
- 2) Extension to the QME $(\Sigma_{\Phi,\Phi^*} = 0)$ \Rightarrow Non-trivial antifields dependence in our master action
- 3) A proof of BRS inv. of the Polchinski eq. using "quantum BRS tr." $(\delta_Q^2=0)$.

♦ Publications

On QED and ERG

- · H.Sonoda, hep-th/0703167
- · Y.Igarashi, K.Itoh, and H. Sonoda, PTP 118 (2007) 121

Related papers

- \cdot PTP **106** (2000) 149 (hep-th/0101101) \rightarrow presence of symmetries along RG flow
- \cdot PL **B526** (2002) 164 (hep-th/0111112) \rightarrow global symmetry
- · PL B535 (2002) 363: NP B640(2002)95 (hep-lat/0206006)
 - → Lattice chiral symmetry in fermionic interacting theories

Ward-Takahashi (WT) identity for the Wilson action

♦ Consider generic gauge-fixed theory described by

$$\mathcal{Z}_{\phi}[J] = \int \mathcal{D}\phi \exp\left(-\mathcal{S}[\phi] + J \cdot \phi\right), \qquad J \cdot \phi = J_A \phi^A$$
 $\mathcal{S}[\phi] = \frac{1}{2}\phi \cdot D \cdot \phi + \mathcal{S}_I[\phi], \qquad \phi \cdot D \cdot \phi = \phi^A D_{AB} \phi^B$

and introduce momentum cutoff function

$$K(p/\Lambda) \approx \left\{ \begin{array}{ll} 1 & \quad \text{for } p^2 < \Lambda^2 \\ 0 & \quad \text{for } p^2 > \Lambda^2 \end{array} \right.$$

to decompose ϕ with propagator $D^{-1}(p)$

- \Rightarrow IR fields Φ with $K(p)D^{-1}(p)$ \oplus UV field χ with $(1-K(p))D^{-1}(p)$
- ullet To this end, insert gaussian integral for new fields $heta^A$ (cf. Wetterich, Bonini $et\ al.$, Morris)

$$\int \mathcal{D}\theta \exp{-\left\{\frac{1}{2}\left(\theta - J(1-K)D^{-1}\right) \cdot \frac{D}{K(1-K)} \cdot \left(\theta - (-)^J D^{-1}(1-K)J\right)\right\}} = const$$

Introducing new set of fields: $\phi^A = \Phi^A + \chi^A$, $\theta^A = (1 - K)\Phi^A - K\chi^A$,

we obtain $\mathcal{Z}_{\phi}[J] = N_J Z_{\Phi}[J]$, where regularized theory described by

$$Z_{\Phi}[J] = \int \mathcal{D}\Phi \exp\left(-S[\Phi] + J \cdot K^{-1}\Phi\right)$$

$$S[\Phi] \equiv \frac{1}{2}\Phi \cdot K^{-1}D \cdot \Phi + S_{I}[\Phi] \qquad \text{(Wilson action)}$$

$$\exp\left(-S_{I}[\Phi]\right) \equiv \int \mathcal{D}\chi \exp\left(-\left(\frac{1}{2}\chi \cdot (1-K)^{-1}D \cdot \chi + S_{I}[\Phi + \chi]\right)\right)$$

$$N_{J} = \exp\left(-\frac{1}{2}\left((-)^{J}J \cdot K^{-1}(1-K)D^{-1} \cdot J\right) \qquad \left((-)^{J}J = (-)^{\epsilon_{A}}J^{A}\right)$$

 \diamondsuit Assume gauge-fixed action $\mathcal{S}[\phi]$ to be inv. under BRS tr. $\delta\phi^A=R^A[\phi]~\lambda$

$$\delta \mathcal{S} = \frac{\partial^r \mathcal{S}}{\partial \phi^A} \delta \phi^A = \Sigma_{\phi} \ \lambda = 0, \qquad \Sigma_{\phi} \equiv \frac{\partial^r \mathcal{S}}{\partial \phi^A} R^A[\phi] \qquad (\lambda : \text{anti-commuting const.})$$

The invariance of the part. func. under $\phi^{A\prime}=\phi^A+\delta\phi^A$,

$$\mathcal{Z}_{\phi'}[J] = \mathcal{Z}_{\phi}[J] + \int \mathcal{D}\phi(-\delta\mathcal{S} + J \cdot \delta\phi) \exp(-\mathcal{S}[\phi] + J \cdot \phi) = \mathcal{Z}_{\phi}[J]$$

This gives the standard WT identity for \mathcal{Z}_{ϕ} (BRS inv. of $\mathcal{D}\phi$ assumed):

$$\langle \Sigma_{\phi} \rangle_{\phi} = \mathcal{Z}_{\phi}^{-1}[J] \int \mathcal{D}\phi \ \Sigma_{\phi} \exp\left(-\mathcal{S}[\phi] + J \cdot \phi\right)$$

$$= \mathcal{Z}_{\phi}^{-1}[J] \int \mathcal{D}\phi J_{A} R^{A}[\phi] \exp\left(-\mathcal{S}[\phi] + J \cdot \phi\right)$$

$$= \mathcal{Z}_{\phi}^{-1}[J] \cdot J_{A} R^{A} \left[\partial^{l}/\partial J\right] \mathcal{Z}_{\phi}[J] = 0$$

 \diamondsuit Find the WT op. Σ_{Φ} using the relation $\mathcal{Z}_{\phi}[J] = N_J Z_{\Phi}[J]$:

$$\mathcal{Z}_{\phi}^{-1}[J]J_{A}R^{A} \left[\partial^{l}/\partial J\right] \mathcal{Z}_{\phi}[J] = Z_{\Phi}^{-1}[J]N_{J}^{-1}J_{A}R^{A} \left[\partial^{l}/\partial J\right] N_{J}Z_{\Phi}[J]$$
$$= Z_{\Phi}^{-1}[J] \int \mathcal{D}\Phi \ \Sigma_{\Phi} \ \exp\left(-S[\Phi] + J \cdot K^{-1}\Phi\right) = \langle \Sigma_{\Phi} \rangle_{\Phi}$$

to obtain the WT identity for regularized theory Z_{Φ} . (Becchi, Bonini et al.)

Derivation of WT identity in QED (cf. Sonoda hep-th/0703167)

 \diamondsuit Consider QED with $\phi^A=\{A_\mu,B,c,\bar{c},\psi,\bar{\psi}\}$ and $J_A=\{J_\mu,J_B,J_c,J_{\bar{c}},J_\psi,J_{\bar{\psi}}\}$.

The action $S[\phi] = \phi \cdot D \cdot \phi/2 + S_I[\phi]$ is given by

$$\frac{1}{2}\phi^{A}D_{AB}\phi^{B} = \int_{k} \left[\frac{1}{2}A_{\mu}(-k)(k^{2}\delta_{\mu\nu} - k_{\mu}k_{\nu})A_{\nu}(k) + \bar{c}(-k)ik^{2}c(k) - B(-k)(ik_{\mu}A_{\mu}(k) + \frac{\alpha}{2}B(k)) \right] + \int_{p} \bar{\psi}(-p)(\not p + im)\psi(p)$$

$$\mathcal{S}_{I}[\phi] = -e \int_{p, k} \bar{\psi}(-p - k) \not A(k)\psi(p)$$

It is inv. under the BRS tr.

$$\delta A_{\mu}(k) = -ik_{\mu} c(k), \quad \delta \bar{c}(k) = iB(k), \quad \delta c(k) = \delta B(k) = 0$$

$$\delta \psi(p) = -ie \int_{k} \psi(p-k) c(k), \quad \delta \bar{\psi}(-p) = ie \int_{k} \bar{\psi}(-p-k) c(k)$$

This fixes $J_A R^A \left[\partial^l / \partial J \right] \equiv J \cdot R$ and the factor N_J :

$$\ln N_J = \int_p \left(\frac{1-K}{K}\right)(p)J_{\psi}(-p)\frac{1}{\not p + im}J_{\bar{\psi}}(p) + \cdots$$

♦ Now compute

$$\begin{split} \mathcal{Z}_{\phi}^{-1}[J] \; (J \cdot R) \; \mathcal{Z}_{\phi}[J] &= Z_{\Phi}^{-1}[J] N_J^{-1} \; (J \cdot R) \; N_J Z_{\Phi}[J] \\ &= \langle \Sigma_{\Phi} \rangle_{\Phi} = 0 \; \text{to find} \; \Sigma_{\Phi}. \end{split}$$

(We use the same notation for the IR fields: $\Phi^A = \{A_\mu, B, c, \bar{c}, \psi, \bar{\psi}\}$.)

- A Nontrivial deformation from the standard WT identity generated by
 - 1) the presence of N_J
 - 2) the scale factor K^{-1} in $J \cdot K^{-1}\Phi$ and in $\Phi \cdot K^{-1}D \cdot \Phi/2$.

In particular, we have bilinear source terms in $\mathcal{Z}_{\phi}^{-1}(J \cdot R)_{\mathrm{matter}} \mathcal{Z}_{\phi}$:

$$J_{\psi}\cdots J_{\bar{\psi}} \to \exp(S)\frac{\partial}{\partial\bar{\psi}}\cdots\frac{\partial}{\partial\psi}\exp(-S) \to \left\langle \frac{\partial S}{\partial\bar{\psi}}\cdots\frac{\partial S}{\partial\psi} - \frac{\partial}{\partial\bar{\psi}}\cdots\frac{\partial}{\partial\psi}S \right\rangle_{\Phi}$$

We obtain

$$\Sigma_{\Phi} = \int_{k} \left\{ \frac{\partial S}{\partial A_{\mu}(k)} (-ik_{\mu})c(k) + \frac{\partial^{r}S}{\partial \bar{c}(k)} iB(k) \right\}$$

$$-ie \int_{p, k} \left\{ \frac{\partial^{r}S}{\partial \psi(p)} \frac{K(p)}{K(p-k)} \psi(p-k) - \frac{K(p)}{K(p+k)} \bar{\psi}(-p-k) \frac{\partial^{l}S}{\partial \bar{\psi}(-p)} \right\} c(k)$$

$$-ie \int_{p, k} \left\{ \frac{\partial^{l}S}{\partial \bar{\psi}(-p+k)} \frac{\partial^{r}S}{\partial \psi(p)} - \frac{\partial^{l}\partial^{r}S}{\partial \bar{\psi}(-p+k)\partial \psi(p)} \right\} U(-p, p-k) c(k)$$

The matrix U (regularized both in IR and UV regions) is given by

$$U(-p, p - k) = \frac{1 - K(p - k)}{\not p - \not k + im} K(p) - \frac{1 - K(p)}{\not p + im} K(p - k)$$

 \diamondsuit We may put the quadratic functional derivative term $(\partial S/\partial \psi)(\partial S/\partial \bar{\psi})$ as

$$\left[\frac{\partial^r S}{\partial \psi(p)} c(k) \left\{ \frac{K(p)}{K(p-k)} \psi(p-k) - U(-p, p-k) \frac{\partial^l S}{\partial \bar{\psi}(-p+k)} \right\} \right]$$

to define BRS tr. for the fields Φ^A :

$$\delta A_{\mu}(k) = -ik_{\mu} c(k), \quad \delta \bar{c}(k) = iB(k), \quad \delta c(k) = \delta B(k) = 0$$

$$\delta \psi(p) = ie \int_{k} c(k) \left\{ \frac{K(p)}{K(p-k)} \psi(p-k) - U(-p, p-k) \frac{\partial^{l} S}{\partial \bar{\psi}(-p+k)} \right\}$$

$$\delta \bar{\psi}(-p) = ie \int_{k} \frac{K(p)}{K(p+k)} \bar{\psi}(-p-k) c(k)$$

Then, Σ_{Φ} takes the form

$$\Sigma_{\Phi} = \frac{\partial^r S}{\partial \Phi^A} \delta \Phi^A + ie \frac{\partial^l \partial^r S}{\partial \bar{\psi} \partial \psi} c U$$

The last term can be interpreted as the Jacobian factor associated with $\psi(p) \to \psi(p) + \delta \psi(p)$.

- Remarks on the BRS tr. described above
 - 1) It depends on Wilson action $S[\Phi]$: $U(\partial S/\partial \bar{\psi})$ c term in $\delta \psi$.
 - 2) It is not unique: We may modify $\delta \bar{\psi}$ instead of $\delta \psi$ or both.
 - 3) It is not nilpotent: $\delta^2 \psi \neq 0$.

How do we construct nilpotent BRS tr. where the contribution from nontrivial Jacobian factor is included?

BV formalism and the QME in QED

 \diamondsuit For gauge fixed BRS inv. action $S_0[\phi]$, $\delta S_0 = \frac{\partial^r S_0}{\partial \phi^A} \delta \phi^A = 0$

introduce "extended" action

$$S[\phi, \phi^*] = S_0[\phi] + \phi_A^* \delta \phi^A$$
 $(\phi_A^* : \text{anti-fields for fields } \phi^A)$

• "canonical structure" defined by the anti-bracket

$$(X, Y) = \frac{\partial^r X}{\partial \phi^A} \frac{\partial^l Y}{\partial \phi_A^*} - \frac{\partial^r X}{\partial \phi_A^*} \frac{\partial^l Y}{\partial \phi^A}$$

Then, $\delta X=(X,\ S)$, so that (classical) BRS inv. of the action is expressed by the classical master equation

$$(S, S) = 0$$

♣ For the partition function $\int \mathcal{D}\phi \mathcal{D}\phi^* \exp{-S[\phi,\phi^*]}$, consider the change of variables with anti-commuting const. λ

$$\phi^A \to \phi^A + (\phi^A, S)\lambda = \phi^A + \frac{\partial^l S}{\partial \phi_A^*}\lambda, \qquad \phi_A^* \to \phi_A^* + (\phi_A^*, S)\lambda = \phi^A - \frac{\partial^l S}{\partial \phi^A}\lambda$$

- 1) change of the action $S \to S + (S, S) \cdot \lambda$
- 2) change of the measure $\log(\mathcal{D}\phi\mathcal{D}\phi^*) \to \log(\mathcal{D}\phi\mathcal{D}\phi^*) 2\Delta S \cdot \lambda$ where $\Delta \equiv (-)^{A+1} \frac{\partial^r}{\partial \phi^A} \frac{\partial^r}{\partial \phi_A^*}$

The part func. remains inv. if the action $S[\phi]$ obeys the QME

$$\Sigma_{\{\phi,\phi^*\}} \equiv \frac{1}{2}(S, S) - \Delta S = 0$$
 $(S[\phi] \Rightarrow S_M[\phi] : \text{master action})$

- ♦ Remarks on the anti-fields:
- 1) to be eliminated at final stage in the path-integral, e.g., $\int \mathcal{D}\phi \mathcal{D}\phi^* \delta(\phi^*)$
- 2) structure of the gauge algebra related degrees in power series expansion w.r.t. antifields

\diamondsuit Construction of master action S_M for regularized QED

We begin with an extended action being linear in the anti-fields

$$S_{\text{lin}}[\Phi, \Phi^*] = S[\Phi] + \int_{k} \left\{ A_{\mu}^*(-k)ik_{\mu}c(k) + \bar{c}^*(-k)iB(k) \right\}$$

$$+ie \int_{p, k} \psi^*(-p)c(k) \left\{ \frac{K(p)}{K(p-k)} \psi(p-k) - U(-p, p-k) \frac{\partial^{l}S}{\partial \bar{\psi}(-p+k)} \right\}$$

$$+ie \int_{p, k} \bar{\psi}(-p-k)c(k) \frac{K(p)}{K(p+k)} \bar{\psi}^*(p)$$

We find

$$\frac{1}{2}(S_{\rm lin}, S_{\rm lin}) - \Delta S_{\rm lin} \propto c \ c \ \psi^* \ U \ U \times ({\rm functional \ derivative \ terms})$$

Add suitable quadratic term $\propto (\psi^*)^2$ to $S_{\rm lin}$ to find $S_{\rm quad}$, and repeat the same game.

This proceeds infinitely many times, but the infinite series takes the form

$$\sum_{n} (-ie\psi^* cU)^n \left(\frac{\partial}{\partial \bar{\psi}}\right)^n S,$$

which is nothing but the Taylor expansion of the action where $\bar{\psi}$ is replaced by $\bar{\psi} \to \bar{\psi} - ie\psi^*c~U$.

 \diamondsuit Let us introduce shifted fields $\hat{\Phi}^A=\{A_\mu,\ B,\ c,\ \bar{c},\ \psi,\ \bar{\psi}-ie\psi^*c\ U\}.$ Then, we can show

$$S_{M}[\Phi, \Phi^{*}] = S[\hat{\Phi}] + \int_{k} \left\{ A_{\mu}^{*}(-k)ik_{\mu}c(k) + \bar{c}^{*}(-k)iB(k) \right\}$$
$$+ ie \int_{p, k} \left\{ \psi^{*}(-p-k)c(k) \frac{K(p+k)}{K(p)} \psi(p) + \bar{\psi}(-p-k)c(k) \frac{K(p)}{K(p+k)} \bar{\psi}^{*}(p) \right\}$$

satisfies the QME $\Sigma_{\{\Phi,\Phi^*\}} = \left(S_M,\ S_M\right)/2 - \Delta S_M = 0.$

♦ Remarks

$$\bullet \ \Delta S_M = \frac{\partial^2 S_M}{\partial \psi \partial \psi^*} \to \frac{\partial^2 S_M}{\partial \psi \partial \bar{\psi}} \ c \ U$$

- ullet This term is regularized both in IR and UV regions because of U.
- \clubsuit Using the divergence op. Δ , we define quantum BRS tr. (Lavrov-Tyutin) for any X, which is nilpotent because of $\delta_Q S_M = \Sigma_{\{\Phi,\Phi^*\}} = 0$:

$$\delta_Q X \equiv (X, S_M) - \Delta X$$

$$\delta_Q^2 X = (X, \Sigma_{\{\Phi, \Phi^*\}}) = 0$$

BRS invariance of the Polchinski equation

Two important equations in ERG:

- 1) QME that controls symmetries
- 2) the Polchinski equation, the flow equation.
- \diamondsuit We have obtained the Polchinski eq. for master action $S_M[\Phi,\Phi^*]$.

Here we show its BRS invariance. Under the change of cutoff Λ

$$\partial_t \Sigma_{\{\Phi,\Phi^*\}} = (\partial_t S_M, S_M) - \Delta \partial_t S_M = \delta_Q \ \partial_t S_M = 0,$$

$$(\partial_t \equiv \Lambda \partial_\Lambda)$$

which implies $\partial_t S_M = -\delta_Q G$.

Actually, G is the generator of the canonical transformation that generates the flow.

The concrete form of G

$$G = G_1 + G_2 + G_3$$

$$G_1 \equiv \int_k A^*_{\mu}(-k) \left[\frac{1}{2} \frac{\dot{K}(k)}{k^2} \left(\delta_{\mu\nu} - (1 - \alpha) \frac{k_{\mu}k_{\nu}}{k^2} \right) \frac{\partial S_M}{\partial A_{\nu}(-k)} \right.$$

$$\left. + \frac{\dot{K}(k)}{k^2} i k_{\mu} \left(\frac{\partial S_M}{\partial B(-k)} - i \bar{c}^*(k) \right) \right]$$

$$G_2 \equiv -\int_k \frac{\dot{K}(k)}{K(k)} \left[A^*_{\mu}(-k) A_{\mu}(k) + B^*(-k) B(k) + \bar{c}^*(-k) \bar{c}(k) \right.$$

$$\left. + \psi^*(-k) \psi(k) + \bar{\psi}(k) \bar{\psi}^*(-k) \right]$$

$$G_3 \equiv \int_{\mathcal{P}} \psi^*(-p) \frac{\dot{K}(p)}{\not p + i m} \left[\frac{\partial^l S_M}{\partial \bar{\psi}(-p)} + \frac{i e}{K(p)} \int_k c(k) K(p - k) \bar{\psi}^*(p - k) \right]$$

Summary

- \diamondsuit We gave another derivation of WT identity for QED discussed by Sonoda It is a gauge-fixed version of the QME: $\Sigma_{\{\Phi,\Phi^*\}}|_{\Phi^*\to 0}=\Sigma_\Phi=0$
- \diamondsuit Non-trivial anti-fields dependence in our master action, $S_M(\bar{\psi}-ie\psi^*\ c\ U)$.
- ♦ Start with BV formalism from the beginning.

For the partition function with ϕ^* as a source to the transformation $\delta \phi = R[\phi]$,

$$\mathcal{Z}_{\phi}[J,\phi^*] \equiv \int D\phi e^{-S[\phi]-\phi^*\cdot\delta\phi+J\cdot\phi}$$

we find the relation, $-\partial_{\phi^*}^l \mathcal{Z}_{\phi}[J,\phi^*] = R[\partial_J^l] \cdot \mathcal{Z}_{\phi}[J,\phi^*]$

- that can be solved for QED to give the master action S_M' .
- S_M and S_M' are related via a canonical tr. (uniqueness of master action up to canonical tr.)
- \diamondsuit Subject for future: QME for QCD \qquad (Becchi, Bonini $et \; al. \; \oplus \; \mathsf{Sonoda})$