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Introduction

Gauge-Higgs unification is very interesting scenario
because Higgs mass is calculable and predictive
regardless of the nonrenormalizable theory

There are various explicit calculations of Higgs mass:

@®5D QED on S”1 @1-loop Hatanaka-Inami-Lim
@5D Non-Abelian gauge theory on S™1/Z2 @1-loop
Gersdorff-Irges-Quiros
@ 6D Non-Abelian gauge theory on T72 @1-loop
Antoniadis-Benakli-Quiros
@®6D Scalar QED on 572 @1-loop Lim-Maru-Hasegawa
@®5D QED on S”1 @2-loop Maru-Yamashita



The reason for finiteness is the following

In the gauge-Higgs unification, Higgs is identified with
extra components of the higher dimensional gauge field

Higgs

The local mass term immediately is forbidden
by the higher dimensional local gauge invariance

%mZAS2 @ A > A+o.a(xy)

2
No local counter term m? d,
Finite mass is generated @1-loop A 1672R2
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Question:

Is there any other finite physical observable?l

If there is, natural o guess in the gauge-Higgs sector
of the SM

One of the candidates: S, T (& U) parameters
S:(H'W2H)B*,T:(H'D,H)(H'D"H)
Naively, we can expect them to be finite

similar to the Higgs mass
These parameters are important physical quantities

to test the SM and constrain the physics beyond the SM
(well-known that QCD-like technicolor is excluded)



In this work, we investigate the structure of divergence
for 1-loop contributions to S & T parameters
in the gauge-Higgs unification

Results: |

In 5D case, S & T are both finite
In more than 5D case, both divergent
= Natural from the power counting argument

However, the gauge-Higgs unification predicts

S-4cosOw T becomes finite in 6D cases

because S & T are related by the higher dim. gauge inv.
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Operator Analysis



S & T parameters are calculated
as the coefficients of dimension six operators

(H'W? H)B* forS,(H'D,H)(H'D“H) forT

in 4D sense

Higher dimensional gauge symmetry
can forbid these local operators
similar to Higgs mass ???

l
NO




In gauge-Higgs unification,
S & T parameters are "unified" due to higher dim gauge inv
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becomes finite even in more than 5D




Consider a minimal SU(3) gauge-Higgs model
compactified on M P x Sl/z2 with a triplet fermion

Although this model is NOT realistic,
® sin’g, =%(exp:sin26’W ~0.23)
e m=0m =M,

® 5SU(2) x U(1l) — U(1) by <As> assumed

Enough to investigate the divergence structure
for 1-loop contributions fo S & T parameters




Lagrangian |

L :—lTr'(FMNFMN )+i‘¥TM DM\P| o = (y,iy®)

Fun =0 Fy _aNFM_igD+1[AM’AN](M’N20’1’2’3’5)
D, =0,, —ig:A, (AM =A% 1%/2: 2% :Gell- Mann ma‘rr'ices)
V= (l/jl W, l//s)

Boundary conditions: I

+) [ =] wo (+:+) +Wor (=)
Wa (=) +War (+1)

(—,—) (—,—) (—I—,—I—)} Y (+’+)+W1R (_’_)
: +, b4
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Lagrangian |

1 L
L:—ETP(FMNFMN)H‘PFM Du¥| ™ =(y

Fun =0 Fy _aNFM_igD+1[AM’AN](M’N20’1’2’3’5)
D, =0,, —ig:A, (AM =A% 1%/2: 2% :Gell- Mann ma‘rr'ices)

Y= (l/jl Vs, l//s)

Boundary conditions: I
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Higgs is identified with O mode of As
(KK modes of A5 are absorbed into KK gauge bosons)
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Lagrangian |

L :—lTr'(FMNFMN )+i‘¥TM DM\P| o = (y,iy®)

Fun =0 Fy _aNFM_igD+1[AM’AN](M’N20’1’2’3’5)
D, =0,, —ig:A, (AM =A% 1%/2: 2% :Gell- Mann ma‘rr'ices)
V= (l/jl W, l//s)

Boundary conditions: I

Chiral fermions are easily obtained




4D effective Lagrangian in terms of mass eigenbasis
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Calculation of T-parameter



T-parameter is calculated from the mass squared difference

between neutral and charged W-bosons AM? = 5va/3 -0 va/il
" Z 7 Z4
5MV2V3 = N/\/< )‘\m +%< }v» ..A/\/< }v» +M< }v»
W 7 A Z4

0

Same as the quantum correction to the photon mass in QED I



Mode sum before Momentum integral
T=T, +T
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Finite value evaluation in 5D:
Momentum integral before the mode sum
2 &m 2

T(n¢o) — = (mﬁ > mz)

= 5m’ = m

@ Pole term vanishes because of Jj dt (1— 2t) =0
® O(m*)<(H'D,H)(H'DH)
o O(l/m,f) Decoupling nature of KK modes

o s O for m — O (CUSTOdiClI IimiT)



Calculation of S-parameter



; . h el 3
S-parameter is calculated from kinetic mixing of W ' & Bﬂ
e o 70 A 7
i1y, p°g,, +---=m< )wm +m< )wx + f\/w< )wm +m< )\mq. f\/w< )\/\4
o 7 7 iy 7

D=5 *E

(div) T O(sc)

2
9723025 D—lF(S_ZDjF(DZJrlj
(27Z'R)mD_3

@~ (4z)°T(52)D-3  T(D+1)

D - .
S(SC)Z%ZD/z(D—Z)L4_DI d p 13( sinh p _1j+ 13( sinh p _1]
(27)" | 2p”\cosh p—cose 40° \ cosh p—cosa

9 .1 1 D-4

1 { sinh \/p2+4t(1—t)052 1]

\/pz +4t(1-t)e’ | cosh \/,02 +4t(1-t)a’® —cos| (2t -1)c | )




Finite value of S in BD is calculated
by expanding in ferms of m/mn

$(5D)~ 7 i46[ mTzzs_;z(mR)z

n

3(27) 5 5

® [2 +1—18j§dtt (1—t)}< (log divergence)=0
2 nYVE! i v
o O(m)@(H WWZH]B

® O(l/mf) Decoupling nature of KK mode



In more than 5D

2
N = —7T

Divergence is indeed canceled in S - 2T
[S-4cosOwT —S-2T (SU(3) model)]



Finite value is calculated by doing the momentum integral
before the mode sum and expanding in terms of m/mn

Ist term in S and T indicates the log divergence
and is canceled in S - 2T



Comments |

1. In our model, only one extra spatial D 1
dimension is compactified as M~ xS /22

Our arguments of finiteness for 6D case is meaningless??
because it is not realistic

However, our argument with respect to UV divergence
is not affected by the shape of the compactified space
because it is the IR property not UV one

Finiteness of S -4 cosOw T holds true
even in 6D theory compactified on T"2/Z2, for example
although the finite value itself might be changed




2: For higher than 6 dimensions,
the coefficients of the gauge invariant operators
with mass dimensions > 6 diverge

S:(H'H) HW? HB"

T:(H'H) (H'D,H)(H'D*H) (n>1)

Divergences from these operators
= No prediction in more than 6D




Summary

L

@® We have investigated the divergence structure of
one-loop contributions to S & T parameters
in the gauge-Higgs unification scenario

@5 & T are finite in BD, but divergent in more than 5D
which are natural results from the power counting

@®In 6D case, S-4 cosOw T becomes finite
because S & T are related ("unified") = prediction!!

@Interesting to study these parameters in more realistic
gauge-Higgs unification models and obtain the predictions

@g-2 in the gauge-Higgs unification becomes finite
in any spacetime dimensions = Adachi's Talk




Substituting KK mode expansions
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and integrating out 5™ coordinate "y",
making a chiral rotation Wyp3 —>€ '”75/4%,2,3 to remove i ¥ 5,



we obtain 4D effective Lagrangian
i (n)

8
Lo =2 17”027 ) 0, | "
n=1
| ws"
W3+i J2w 0
SNE “ wo
B 1
e (2 A 0 | IE Ve VA I PR 2
2 V3 ")
0 0 2 g ”
\/5 yZi

m o o\

() o my om |y

0 -m m )yl

+ity#a,t, +b (i7#0, —m)b+—=(Ty*LbW, +5y“LtWﬂ‘)+%(t_7”Lt+57/”Lb)W;

J2
xfg(

ty“Lt+by“Lb— 2b7”Rb)

1 1
LEE(].—}/S), REE(].'F]/S),m =



Mixing occurs between SU(2) doublet component
& singlet component

Each of mass eigenvalues has a periodicity
with respect fo m

m +(m+ ;j m, +tm

Characteristic feature of gauge-Higgs unification

(c.f. \/mﬁ +m° for UED)



4: Perturbativity

Comparing n-loop graph to (n+1)-loop graph
in (D+1) dimensions, we find the ratio (/\:cutoff scale)

(n+1)-loop _ gp,A°"  _ go(22R)A”

n-loop (4ﬂ)[’2+1F(D2+1j (47z)D2+11“(D2+1j

For the perturbation to make sense,
the above ratio must be less than one

For example, D=4 case,
g, (27R)A

(47)"° T (5/2)

Cutoff scale A cannot be largely separated
from the compactification scale

<1= RA <127 :>A<(9(102)x%
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Im=1714A21GeV /'\

m, = 114...1000 GeV
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Combining the neutral and the charged W boson
contributions, we obtain KK mode contributions
to T-parameter as

2°2 & ( Dj m?+(1-2t)mm
A i dir| 2— T
. (477)[)/2 ‘M, nz‘"‘o [m,f +m? +2(1—2t)mnm]2 o
—m,m-+t(2m m+m?)
—3 +(m—-m);

[mﬁ +t(2mnm + mz)]z_D/2

This quantity vanishes in the limit m — O,
which corresponds to the custodial symmetry limit
in our model




: For higher than 6D, the coefficients of the gauge inv.
operators with mass dimensions > 6 diverge

S:(H'™H) HW? HB*

T:(H'™H) (H'D,H)(H'D*H) (n>1)

Divergences from these operators
= No prediction in more than 6D

. Brane localized terms spoil our results?? = No problem!
S:(H'H) H'W? HB* — AZ"AWS A B

T:(H'H) (H'D,H)(H'D*H)— A™"(AD,A)(AD*A)

@branes forbidden by the shift symmetry
A5 — As + d5d(xy)
which is still operative @branes




