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1. Introduction

[Hawking radiation] with the thermal distribution at the Hawking temperature
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Hawking radiation is a universal phenomenon in a background space-time with
an event horizon.

Therefore it is plausible that the Hawking radiation can be derived from

e properties of the horizon,
null hypersurface, causal structure

e ‘‘universal’” effective theories near the horizon.



Considering matter fields in black hole backgrounds,
1. Two-dimensional effective theories appear near the horizon.

2. The Planck (Fermi-Dirac) distribution can be reconstructed from
[quantum anomalies] of the two-dimensional effective theory.

e gravitational anomaly, gauge anomaly
— Fluxes of energy, charge and angular momentum
from the Hawking radiations

[Robinson & Wilczek],[ Iso, H.U. & Wilczek]

e anomalous transformations of (higher-spin) currents under conformal
transformation
— reproduce the Planck (Fermi-Dirac) distribution

[Iso, Morita & H.U.]



[Reissner—Nordstrbm black hole}
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[Charged scalar fieldj

ds? = f(r)dt* —

S = [ doy=g[9" @, +icA) ¢ (0, — ieA) 6~ m?¢6 + V()]

Partial wave decomposition: ¢ = Zqﬁlm(t,r)Ylm(Q)

s =% / dtdr, r2(r.) | (0 = ieAr) | + 10r.6uml?
l,m

+F () (—m2|¢lm|2 + 0 D v<¢lm)> |

(r«=r+2MIn(r/2M — 1) )

Near horizon, potential term (I 4+ 1)/r2, mass term and interaction terms are
suppressed.

— Each partial wave mode behaves as d = 2 massless free field in (r —t)
section.



[Anomaly method]

Outgoing mode = right moving
Ingoing mode = left moving

Ingoing modes near the horizon are irrelevant for the
physics in exterior region.

So we first neglect these modes near the horizon.
The two-dimensional effective theory becomes chiral.

—= gauge and gravitational anomalies
— breakdown of gauge and general covariance

But the underlying theory is not anomalous.

Ingoing modes near the horizon cancel the anomalies and
do not contribute to the Hawking fluxes.

According to this scenario, we derived the fluxes of energy,
charge and angular momentum from Hawking radiation.
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This analysis has been applied to the Hawking radiations of matter fields in
e rotating black holes (BTZ, Kerr-Newman, Myers-Perry black hole)
e black holes with a cosmological constant
e dilatonic black holes
e non-extremal D1-D5 black hole

e Dblack ring



2. Higher-spin currents and thermal distribution

The flux of energy is a moment of the thermal distribution.
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Can the anomaly method reproduce the complete Planck distribution?

Here we show
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To generalize our method to higher-spin current, we need to know

(Higher-spin current)

e conservation laws

_ } ... Ward-Takahashi Identities for higher-spin currents
e anomalies

—= This is difficult. (though this is interesting.)

We bypass this problem by using the conformal field theory technique in the
effective field theory near the horizon.



[Energy flux from trace anomalyj

e General properties of 2-dim CFT (with central charge c)

conformal gauge:  ds? = 2wV dydu

The holomorphic quantity T,lfff”f)(u) is defined from the conservation equation
of the energy-momentum tensor 1), = §S/dg"” and trace anomaly

1
T(conf) = T, C 82 — Z(8, 2
(57 (1) = Tou0) + 5o (OB = 5(0u9)
Conformal transformation: (u,v) — (w(u),y(v))
T(conf)(w) — d_w -~ (T(conf)(u)_l_ c {’LU u})
W du w 247 -

where {w,u} is the Schwarzian derivative

w!" 3 /" 2
{w,u} = w2 (—)

2 \w

[We apply these relations to CFT around the horizon of BH.}




Kruskal coordinate

2M dr?
Schwarzschild metric: ds® = (1 — —) dt? — TQM — r2d?
T 1 — =
event horizon: r = 2M,
light-like coordinates:
u=t— 71, v =14 7. (re=r+2MIn(r/2M —1) )

Kruskal coordinates:

U= —4Me W/*M V = 4MeV/4M
2M
ds? = (1 _ —> dudv — r2d$Q°2
T
e—r/2M 5 )
= 2M dUdV — r2d
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[Schwarzschild BH]

light-like coordinate v — Kruskal coordinate U: U= —e "¢
(conf) . 1 (conf) C
i () = = (T8 (w) + 5 —{U,u)

Boundary conditions corresponding to the Unruh vacuum

e Regularity condition

Physical quantities in the Kruskal coordinate system should be regular at
the horizon.

= (TS __, tfinite
e No ingoing flux from the infinity (r — o)
— (TN 2 0
+ (The background geometry is static.)
The asymptotic flux is determined by the value of the Schwarzian derivative:

c c
T’r pm— Tuu - T’U’U ’rio - U’ = 2
(T7) = (Tu) = (T (U} =
- k?/48n  for boson, (¢ =1)
. dw w
0 2mePv F1

k2/96m for fermion, (c = 1/2)
9



[Generalization to higher-spin current]

e In flat d = 2 space-time, there are conserved symmetric traceless cur-
rents.

for example, 4-th rank current for a real scalar field:
Jwpe < (8 8,$8,0,05¢ — 120,0,$0,05¢ — 4 9,0 $O20,05¢

+8 §,,0%0,00005¢ — Guvgpe0 T POV P) + symm.

In general, one can construct even-rank current J,, ..,, for a real scalar
field. (odd-rank current = 0)

e In general curved backgrounds, (conformal gauge: ds? = 2e¥(“)dudv)

Juu(u,v) = (p-dependent terms) + J«")(y) ==  T. Morita’s talk

e Similarly to the case of (T"), (J(®")) is determined by [the regularity condition]
and [its transformation property under the conformal transformationj.

(JPMYy  ZF value of generalization of Schwarzian derivative
* dw w21

2mefv F 1

<= (2n — 1)-th moment of the Planck distribution : /
0
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[4—th rank cu rrent]

holomorphic part of the current
2 3
J,ftfmf) = = : 8uq5(92¢ : +—5 : 85q585q5 :

First, we consider the transformation property of : au¢a{j¢ cunder u — w(u).

3
2 €4>
Under u — w(u) :  dudp(u) = 9w (w)Buwd'™ (w(w))
Oupdip(u) : = w'w": 8¢9 (w) : +3(w’>2 L 0¢2) (w) -

+(w)* 1 9633 (w) : —m{’w Ut (1,3)

Regularization by the point splitting:

0,60%0(u) := lim (au¢(u +

generalization of the Schwarzian derivative:

nm

m\ 2 n\ 4 1\2,, .1 o g
{w,u}13) = 6% —20 (w—,> —45 (w_/> + 00l I 5ot v

W W (,w/)3 (w/)Q
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In the case of BH : w(u) = U = —e ¢
8u¢83¢(u) . = rWU?; 8U¢(U)8U¢(U) : +3R4U3 : 8U¢(U)a(2]¢(U) :

1
4rrd (U) a3 (U) . 4
+&*U" : Oy 05\ ———k
4807

[Regularity condition at U = O]

1
k*  +— Flux at the infinity
4807

= —(: QugpO () 1) =

Note: : 82¢02¢ : and : —0,¢902¢(u) : give the same contribution to the flux.

Reproduce the 3rd moment of the Planck distribution

(Jleony — 14 / L e
b 4807 QWG&J— 480W
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[General higher-spin currents]

It is sufficient to know the generalized Schwarzian derivatives for : 8,¢92" 1¢ :
in order to derive fluxes for the 2n-th rank currents.

[Conformal transformation of higher-spin currents]

Generating function

o0

0, Aub(u+a) = 3 L Dup () p(w)

n=0

Transformation : u — w(u)
1 0ud(1)Bud(u + a) 1= dyw(w)Buw(u + a) : O™ (w(w))Bwd™ (w(u + a)) : +A,(w,u)

Ap(w,u) is a generating function of the Schwarzian derivatives.

1 Oyw(u)d,w(u + a) 1
4 [w(w) — wlu+ @) | 4ma?

Ab(w7 ’U,) - -
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In the case of BH : w(u) = U = —e"

2
: 9p ' (U ()0 (U(u + a)) := e (%) [ BubuBud(u + a) : —Ay(U, u)]

[Regularity condition at the horizon]

(: Oup(u)Oud(u+a) ) = Ap(U,u)

B K2 1 1 Z( )an+1l€2(n+1) a2m
167sinh® 5% 4ma? 8r(n+1) (2n)!
B,, : Bernoulli number

n=0

[Hawking flux corresponding to 2n-th rank current]

B dw w?
- (—1 n—lau aQn—l -\ — n. 2n /
(- (=1) PO d(u) 1) = kT = SV

Reproduce the (2n — 1)-th moment of the Planck distribution
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[Physical meaning of A,(U, u)]

Ap(U,u) can be written as

Cdw @ w
Ap(U,u) = COS
(U, u) /O 2 cos(aw)

This is the temperature dependent part of a finite temperature green function
for (T0p(z)0p(xz + a))s
7

k2 4+ ie

2
(To(2)b ()5 = d’“(

1 .
2 —ik(z—y)
(2r)? + 270 (k )—65|‘*’| — 1) e

tortoise coordinate — Kruskal coordinate : U = —e™r4

<~ zero temperature — finite temperature with g =27 /k

Similar analysis can be done for fermionic cases.
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[Charged black hole]

U(1) gauge field : Aﬁ“) = @ =SS A((]“) diverges at the horizon.
T
A gauge which is suitable near the horizon
AgU) -9 + L = Ang) is regular at the horizon.
T T+

(u,A§U)> +— conformal and gauge transformations — <U, AgU)>

From relations between (: 9107 (u) 1) 4w and {: 107 (U(u)) :) awr, the moment
of the thermal distribution is derived,

‘N mn —_— OOdw n n
(O () g = /O 2 [ Ne(@) = ()" N ()]
No(w) = 1

_Q :
eﬁ(w T+)_|_1
x It is expected that similar analyses can be applied to various black holes.
rotating BH, ---
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3. Summary

e \We derived Hawking fluxes of the higher-spin currents by using the CFT
technique.

e These fluxes coincide with moments of the Planck (Fermi-Dirac) Distri-
bution.

— T he Planck distribution can be reconstructed from these
quantities.

e Generalizations of the Schwarzian derivative for the higher-spin currents
are obtained.
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[Higher—spin currents for fermion]

Generating function

(©.@)

D@ ta) =3 Do)

n=0

Conformal transformation v — w(w) : ¥ (u) = (Buw(w)) 2™ (w(w))
By a similar analysis to the one in the bosonic case,

CYp(uta):) = Ap(Uu)

G 1 i ong1 (1 =272 Bpr®" a7}
— — 12
2ma \ 2 sinh %% 4tn (2n — 1)!

n=0

[Hawking flux corresponding to 2n-th rank current]

,I:Qn—l (1 _ 21—2n)B > dw w2n—1
: 8271—1 - — n._ 2n /
< 2 ¢ u ’Qb(u) > St K < . S o + 1

Reproduce the (2n — 1)-th moment of the Fermi-Dirac Distribution
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