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Concrete example of gauge/string duality



 

In the ’t Hooft limit:                  with      held fixed, planar 
SYM/free string contribution is dominant



 

The AdS/CFT correspondence is a strong/weak type duality


 

Gauge theory side: weak coupling analysis


 

String theory side: strong coupling analysis

AdS/CFT Correspondence
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Integrability in AdS/CFT


 

Planar               SYM and                      string theories have 
integrable structures



 

Integrability is a power tool to analyze the spectrum of 
both theories



 

Integrability also plays an important role in studying 
scattering amplitudes

Thermodynamic Bethe ansatz (TBA) appears



 

Motivation: With the help of integrability, we would like to 
find a formulation that connects weak and strong coupling 
analyses 

N = 4 AdS5 ×S5
Minahan, Zarembo ’02

Bena, Polchinski, Roiban ’03
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Alday-Maldacena Program


 

How to compute gluon scattering amplitudes at strong 
coupling by using AdS/CFT



 

There is a duality between gluon amplitudes and 
expectation values of null polygonal Wilson loops



 

The expectation value of Wilson loop can be computated 
by the area of minimal surface of open string

Alday, Maldacena ‘07

‘T-dual’ AdS/CFT

Wilson loop
Gluons

AdS bulk

Boundary





 

Strategy



 

It is hard to construct solutions with polygonal boundaries


 

Our goal is to know the area of minimal surface, not to 
construct solutions



 

Alday, Gaiotto and Maldacena proposed a set of integral 
equations which determines the minimal area of the 
hexagonal Wilson loop in AdS(5)

Start with classical strings in AdS

Solve equation of motion with
null polygonal boundary

Substitute a solution into action

Area of minimal surface

Solve a set of integral equations
(TBA equations)

Compute free energy
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String sigma-model in AdS(5)


 

Pohlmeyer reduction



 

Stokes phenomenon for solutions of Hitchin equations


 

Consider a solution in each Stokes sector


 

Define new functions            from such solutions


 

These Y’s satisfy some functional relations (Y-system)


 

We can rewrite Y-system as a set of integral equations


 

Such equations are of the form of Thermodynamic Bethe 
ansatz (TBA) equations



 

We studied the TBA equations for six-point case in detail

EoMs + Virasoro constraints → Hitchin equations



Y-system and TBA equations


 

Y-system:



 

TBA equations: 
²(θ) = 2|Z| cosh θ + K2 ∗ log(1 + e−²̃)

²̃(θ) = 2
√
2|Z| cosh θ +2K1 ∗ log(1 + e−²̃)

K1(θ) =
1

2π cosh θ
, K2(θ) =

√
2 coshθ

π cosh2θ

f ∗ g =
Z ∞
−∞

dθ 0f(θ − θ0)g(θ0)

²(θ) ≡ logY1(θ), ²̃(θ) ≡ logY2(θ)

Y +
1 Y

−
1 = 1 + Y2

Y +
2 Y

−
2 = (1 + μY1)(1 +μ−1Y1)

f± ≡ f
¡
θ ± πi

4

¢

+K1 ∗ log(1 + μe−²)(1 + μ−1e−²)

+K2 ∗ log(1 + μe−²)(1 + μ−1e−²)

Y1 Y2 Y3 = Y1
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Minimal Area


 

Although the area of the minimal surface is divergent, we 
can regularize it in a well understood way

A = Adiv + ABDS −R
R = R1 − |Z|2 −Afree

remainder function

R1 = −
1

4

3X
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Li2(1 − Uk)
cross ratios
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Afree =
1

2π

Z ∞
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dθ

µ
2|Z | coshθ log(1 + μe−²(θ))(1 +μ−1e−²(θ))

+2
√
2|Z | coshθ log(1 + e−²̃(θ))

¶
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Goal


 

Our goal is to know the remainder function as a function 
of the cross ratios



 

Three cross ratios are related to the Y-function



 

Thus we can relate the cross ratios to three parameters in 
TBA systems in principle



 

The TBA equations are easily solved numerically


 

In some special cases, we can obtain analytical results

(U1, U2, U3)↔ (|Z|,ϕ,μ)

Uk = 1 + Y2

µ
(2k − 1)πi

4
− iϕ

¶
(k = 1, 2, 3)



Exact Result at Massless Limit


 

TBA equations can be solved in the massless limit



 

In this limit, Y-functions are independent of
Functional relations → algebraic equations



 

The free energy is given by

Alday, Gaiotto, Maldacena ‘09
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In this limit, three cross ratios are all equal



 

We obtain the exact expression of the remainder function 

U1 = U2 = U3 = 4 cos2
µ
φ

3

¶

R(U,U,U) = −π
6
+
φ2

3π
− 3
4
Li2(1 − U)

U = 4 cos2
µ
φ

3

¶



Analysis near Massless Limit


 

We can also obtain analytical expression near
by using the CFT technique



 

Recall that wide classes of 2d massive integrable models 
can be regarded as mass deformations of CFTs



 

The coupling constant is exactly related to the mass of 
TBA system

|Z| ∼ 0

Zamolodchikov ‘87 

S = SCFT + λ

Z
d2x ε(x)

parafermion CFT in our case (n = 6)

∆ε = ∆̄ε =
1

3

Fateev ‘94 
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γ(x) ≡ Γ(x)

Γ(1 − x)
λ = (0.44975388. . . )|Z|4/3





 

Partition function



 

The free energy is perturbatively expanded as



 

Due to      -symmetry               , the terms with odd n vanish


 

The first non-trivial correction is n = 2 case

Z = h1i =
¿
exp

h
−λ

Z
d2x ε(x)

iÀ
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×
Z nY
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n!

evaluate by CFT action

ε→ −ε

Free Energy near CFT point





 

For n = 2, we can evaluate the correlation function exactly



 

The first correction of the free energy:



 

This result is in good agreement
with the numerical result!

hV (0)ε(1)ε(z2)V (∞)i0,connected = |1 − z2|−4
3 |z2|2φ3π



Remainder Function near CFT point


 

To compute the remainder function, we need to know the 
behavior of



 

Recall that



 

We assume that the Y-function is expanded as

R1 = −
1

4
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4
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The first and second coefficients take the following forms



 

The perturbative expansion of
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At present, we could not fix the function             , but it can 
be evaluated numerically



 

It should be fixed analytically


 

In summary, the remainder
function is expanded as
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Comment on Large Mass Limit


 

Large mass case:


 

The TBA equations can be solved approximately



 

Free energy:



 

Similarly we can evaluate 
the remainder function

|Z| À 1

modified Bessel fonction of the second kind

²(θ) = 2 |Z| coshθ+ (exponetial corrections)

²̃(θ) = 2
√
2|Z| coshθ+ (exponetial corrections)

Afree ≈ 2|Z|
π

h
(μ+ μ−1)K1(2|Z|) +

√
2K1(2

√
2|Z|)

i



Summary


 

Gluon scattering amplitude at strong coupling can be 
computed by the area of minimal surface with a null 
polygonal boundary



 

The problem to determine the area of such minimal surface 
is mapped to a set of integral equations (TBA equations)



 

We analyzed the TBA equations for six-point amplitudes in 
detail



 

We obtained the analytical expression of the area up to an 
unknown function



 

It is interesting to fix the analytic form of this unknown 
function



 

Analysis of TBA equations for general n-point amplitudes


 

Do TBA equations also appear if we consider    -corrections?
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