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BPS configurations in M2-brane world-volume theory

Multiple M2-brane world-volume theory – ABJM, BLG models

Basu-Harvey (2004) – fuzzy funnel – M2-M5 intersection – BLG
model [Bagger-Lambart (2008), Gustavsson (2008)]

Fuzzy funnel, domain wall solutions in ABJM model [Terashima (2008),

Hanaki-Lin (2008)]

Vortex solutions [Arai-Montonen-Sasaki (2009), Kawai-Sasaki (2009),

Kim-Lee (2009), Kim-Kim-Kwon-Nakajima (2009), Auzz-Kumar (2009)]

Various M-theoretical objects in BLG model

More general BPS configurations are possible in ABJM model – Our work
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ABJM model [Aharony-Bergman-Jafferis-Maldacena (2008)]

.

Model

.

.

.

. ..

.

.

(2 + 1) dimensional superconformal Chern-Simons-Higgs model with
level (k,−k)

U(N) × U(N) gauge symmetry with gauge fields Aµ, Âµ

Matter fields Y A, ψA (A = 1, · · · , 4) bi-fundamental repr of the gauge
group, SU(4)R (anti) fundamental – Fluctuation along eight
transverse directions.

Action of the model,

L = LCS + Lkin + Lpot + Lferm

Three-dimensional N = 6 supersymmetry. Low-energy effective theory of
N coincident M2-branes probing C4/Zk orbifold. Dual to the M-theory on
AdS4 × S7/Zk at large-N.
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1/2 BPS conditions
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Projection conditions on SUSY parameters

γΞijϵj = ϵi , (i , j = 1, 2, · · · , 6), Trγ ⊗ Ξ = 0, (γ ⊗ Ξ)2 = 12 ⊗ 16

ϵi : N = 6 Majorana SUSY parameters. γ : 2 × 2 matrix with SO(2, 1)
spinor indices, Ξ : 6 × 6 matrix acting on SO(6)R vector indices.
In general, we find

γΞij =

{
γ0 ⊗ B

γ2 ⊗ C (m,n)

B ≡ ±

 iσ2

iσ2

iσ2

 , C (m,n) ≡
(

1m

−1n

)
, m + n = 6
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1/2 BPS equations

SUSY transformation of fermions

δψA =
(
γµDµY BδCA + ΥBC

A

)
(Γi )BC ϵi

ΥBC
A ≡ Y BY †

AY C +
1

2
δBA

(
Y CY †

DY D − Y DY †
DY C

)
− (B ↔ C )

with projection condition B leads to

.

.

. ..

. .

Vortex type
{

0 = D0Y
B(Γj)BABji + ΥBC

A (Γi )BC ,
0 = D1Y

B(Γi )BA − D2Y
B(Γj)BABji

while for C (m,n), we have

.

.

. ..

.

.

Fuzzy funnel type

{
0 = D2Y

B(Γj)BAC
(m,n)
ji + ΥBC

A (Γi )BC ,

0 = D0Y
B(Γi )BA − D1Y

B(Γj)BAC
(m,n)
ji

Also the Gauss’ law conditions should be satisfied
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Physical interpretation
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BPS conditions in eleven dimensions
Global symmetry SO(10, 1) =⇒ SO(2, 1) × SU(4)

11 dim M2-brane world-volume

ξ : 16 SUSY
Zk orbifold

=⇒ ϵ = Pξ : 12 SUSY,

Projection condition : Γ̂ξ = ξ
P

=⇒ BPS conditions in ABJM :

Γ̂012ξ = ξ Aϵ = ϵ, A ≡ P Γ̂P†,

Ãϵ = 0, Ã = P̃ Γ̂P†

M-theory objects =⇒ M-theory objects
intersect with M2-branes

Γ̂ =



Γ̂(0) ≡ Γ̂µ

Γ̂(2) ≡ 1

2
ωIJ Γ̂µIJ

Γ̂(4) ≡ 1

4!
ωIJKLΓ̂µIJKL

(µ = 0, 1, 2, I , J,K , L = 3, · · · , 10)
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Physical interpretation of the BPS equations
•Γ̂ = Γ̂(0)

From the condition A2 = 1, we can set Γ̂(0) = Γ̂2 by SO(2, 1)

.

.

. ..

.

.

{
Γ̂01ξ = ξ

Γ̂0134···10ξ = ξ

P
=⇒ A = γ2 ⊗ 16, Ã = 0

1/2 BPS condition in ABJM model

M-waves, M9-branes [Bergshoeff-Schaar (1999), M. de Roo (1997)]

0 1 2 3 4 5 6 7 8 9 10
M2 • • •
M9 • • • • • • • • • •

M-wave • •

Table: A possible configuration that corresponds to the condition.
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•Γ̂ = Γ̂(2)

SO(8)
Zk orbifold

=⇒ SU(4) × U(1) ∼ SO(6) × U(1)

ωIJ 28 62 ⊕ (150 ⊕ 10) ⊕ 6−2

f̃ : Γ̂ → Ã, Ker f̃ = 150 ⊕ 10

ω should belong to 150 ⊕ 10 – (1, 1)-type 2-forms ωAB̄ (Zk orbifold
invariant)

Γ̂ =
1

2
ωIJ Γ̂0IJ , (ωIJdx I ∧ dxJ = ωAB̄dyA ∧ dȳ B̄)

Shin Sasaki (Tokyo Institute of Technology) BPS equations in ABJM model 2010. July. 20 @ YITP 12 / 28



Introduction - Motivation, ABJM model 1/2 BPS conditions Physical interpretation BPS conditions with lower SUSYs Conclusions and discussions

.

.

. ..

.

.

{
1
2ωIJ Γ̂0IJξ = ξ
1
6! ω̃IJKLMN Γ̂0IJKLMNξ = −ξ

=⇒ A = γ0 ⊗ B, Ã = 0,
1/2 BPS condition in ABJM model

ω̃ = ∗ω on C4/Zk

M2-branes, KK-monopoles.

0 1 2 3 4 5 6 7 8 9 10
M2 • • •
M2 • • •
KK • • • • • • •

Table: Intersecting M2-branes and KK-monopoles.
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•Γ̂ = Γ̂(4)

SO(8)
Zk orbifold

=⇒ SU(4) × U(1) ∼ SO(6) × U(1)

ωIJKL 35 ⊕ 35′ 14 ⊕ (62 ⊕ 102) ⊕ (10 ⊕ 150 ⊕ 200)

⊕(6−2 ⊕ 10−2) ⊕ 1−4

Ker f̃ = 14 ⊕ 102 ⊕ (10 ⊕ 150 ⊕ 200) ⊕ 10−2 ⊕ 1−4

We find

.

.

. ..

.

.

Γ̂(4) =
1

4!
ωIJKLΓ̂2IJKL, ω ̸∈ 62 ⊕ 6−2

=⇒ A = γ2 ⊗ C (m,n), Ã = 0,
1/2 BPS condition in ABJM model

M-theory objects – M5-branes
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ω(6,0) =
1

16
dyA ∧ dyB ∧ dȳA ∧ dȳB ,

ω(5,1) =
1

64

[
JABJC̄ D̄ − δAC̄δBD̄ + δAD̄δBC̄

]
dyA ∧ dyB ∧ dȳ C̄ ∧ dȳ D̄ ,

ω(4,2) =
1

4
dy1 ∧ dy3 ∧ dȳ1 ∧ dȳ3,

ω(3,3) = Re dy̌1 ∧ Re dy̌2 ∧ Re dy̌3 ∧ Re dy̌4,

M5-branes specified by the volume form ω(m,n) preserving N = (m, n)
SUSY in (1 + 1) dimensions.

0 1 2 3 4 5 6 7 8 9 10
M2 • • •
M5 • • • • • •
M5 • • • • • •

Table: M2-M5 configuration : (m, n) = (4, 2).
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BPS conditions with lower SUSYs
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M2-M2 intersections with angles

v I
1, v

I
2 (I = 3, · · · , 10) : M2-brane directions. 11 dim projector is given by

Γ̂ =
1

2
(v I

1v
J
2 − v I

2v
J
1 )Γ0IJ

Define a matrix which specifies M2-brane configurations

ΛM2 ≡


u1
1 u1

2

u2
1 u2

2

u3
1 u3

2

u4
1 u4

2

 =⇒
GL(2,R),SU(4)


0 0
0 0

i sin θ 0
cos θ i


11 dim projector for this matrix is

Γ̂ = Γ̂0(sin θ Γ̂8 + cos θ Γ̂9)Γ̂10
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Corresponding ABJM projector is A = γ0 ⊗ Ξ and Ã = γ0 ⊗ Ξ̃ with

Ξ = −gT diag( iσ2 , iσ2 , i cos θσ2 ) g , Ξ̃ =

(
0 0 0 0 − sin θ 0
0 0 0 0 0 sin θ

)
g (1)

g ∈ SO(6)R

Aϵ = ϵ, Ãϵ = 0 =⇒ 4 SUSY among 12 SUSY (1/3 BPS condition)

0 1 2 3 4 5 6 7 8 9 10
M2 • • •
M2 • ◦

sin θ
◦

cos θ
•

Table: 1/3 BPS configuration of intersecting M2-branes.

θ = 0, π =⇒ 4 SUSY (1/3 BPS) is enhanced to 6 SUSY (1/2 BPS).
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M2-M5 intersections with angles

Γ̂ ∼ 1

4!
ϵabcdv I

av
J
b vK

c vL
d Γ̂01IJK

ΛM2 ≡


u1
1 u1

2 u1
3 u1

4

u2
1 u2

2 u2
3 u2

4

u3
1 u3

2 u3
3 u3

4

u4
1 u4

2 u4
3 u4

4

 =⇒
GL(2,R),SU(4)


1 i cos θ1 0 0
0 sin θ1 0 0
0 0 1 i cos θ2
0 0 0 sin θ2


ABJM projector A = γ0 ⊗ Ξ, Ã = γ0 ⊗ Ξ̃ with

Ξ = gT diag
(
1 , 1 , cos(θ1 − θ2) , cos(θ1 + θ2) ,−1,−1

)
g ,

Ξ̃ =

(
0 0 − sin(θ1 − θ2) 0 0 0
0 0 0 sin(θ1 + θ2) 0 0

)
g
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4 SUSY among 12 SUSY is preserved (1/3 BPS condition).

0 1 2 3 4 5 6 7 8 9 10
M2 • • •
M5 • • • ◦

cos θ1

◦
sin θ1

• ⋄
cos θ2

⋄
sin θ2

Table: 1/3 BPS configuration of M2/M5-branes.

Either θ1 ± θ2 = 0, π =⇒ 4 SUSY is enhanced to 5 SUSY
(5/12 BPS condition)

Both θ1 ± θ2 = 0, π =⇒ 4 SUSY is enhanced to 6 SUSY
(1/2 BPS condition)
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M2-M2 intersections with lower SUSY
Consider the ABJM projection

γ0 ⊗ Ξ(I ,J) = P Γ̂0IJP
†

Impose multiple conditions

(−γ0 ⊗ Ξ(5,6))ϵ = ϵ, (γ0 ⊗ Ξ(9,10))ϵ = ϵ

with

Ξ(5,6) = −diag(−iσ2,−iσ2, iσ2), Ξ(9,10) = −diag(iσ2, iσ2, iσ2)

These conditions keep 4 SUSY among 12 SUSY (1/3 BPS condition)

0 1 2 3 4 5 6 7 8 9 10
M2 • • •
M2 • • •
M2 • • •

Table: 1/3 BPS intersecting M2-branes.
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Additional conditions can be imposed

(γ0 ⊗ Ξ(7,8))ϵ = ϵ, Ξ(7,8) = −diag(iσ2,−iσ2,−iσ2).

These keep 2 SUSY among 12 SUSY (1/6 BPS condition)

0 1 2 3 4 5 6 7 8 9 10
M2 • • •
M2 • • •
M2 • • •
M2 • • •
M2 • • •

Table: 1/6 BPS intersecting M2-branes.
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M2-M5 intersections with lower SUSY

M2, M5-branes share x1-direction. Projection

γ2Ξijϵj = ϵi , Ξ = diag(1, · · · , 1︸ ︷︷ ︸
m

,−1, · · · ,−1︸ ︷︷ ︸
n

, ∗6−m−n), (m + n ≤ 6)

This preserves N = (m, n) SUSY from the viewpoint of (1 + 1) dimensions
(x0, x1).

Shin Sasaki (Tokyo Institute of Technology) BPS equations in ABJM model 2010. July. 20 @ YITP 23 / 28



Introduction - Motivation, ABJM model 1/2 BPS conditions Physical interpretation BPS conditions with lower SUSYs Conclusions and discussions

Ξ =

(
1 ∗5

)

keeping N = (m, n) = (1, 0) SUSY (1/12 BPS condition)

0 1 2 3 4 5 6 7 8 9 10
M2 • • •
M5 • • • • • •
M5 • • • • • •
M5 • • • • • •
M5 • • • • • •
M5 • • • • • •
M5 • • • • • •
M5 • • • • • •

Table: An example of N = (1, 0) BPS configuration. The Hodge-dual branes are
omitted.
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Ξ =

(
12 ∗4

)

This keeps N = (2, 0) SUSY – (1/6 BPS condition).

0 1 2 3 4 5 6 7 8 9 10
M2 • • •
M5 • • • • • •
M5 • • • • • •
M5 • • • • • •

Table: N = (2, 0) BPS configuration. The Hodge-dual branes are omitted.
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Conclusion and discussions

Conclusions in this talk

1 We find n/12 (n = 1, · · · , 5) BPS conditions in N = 6 ABJM model

2 Maps from eleven-dimensional projection conditions to the BPS
conditions in ABJM model is analyzed

3 Configurations of M-theory objects are studied

4 Reduction to type IIA – brane configurations with D2-branes are
studied

Future research

Existence of solutions

Explicit solutions

Dynamics of various M-theory objects

etc..
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N Residual symmetry Intersecting branes

6 SU(3) × U(1)2 M2, KK-monopoles
6 SU(4) M2, M9, M-waves
6 SU(2) × SU(2) × U(1)2 M5
5 SU(2) × SU(2) M5 with angles
4 U(1)3 M5 with angles
4 SU(2) × U(1)2 M2, KK-monopoles
4 SU(2) × U(1)2 M2 with angles
3 SO(3) M2 ending on M5
2 SU(2) × SU(2) × U(1)2 M2, KK-monopoles
2 U(1) × U(1) M2 ending on M5
1 SU(2) × SU(2) M2 ending on M5, M9, M-waves

n + m Spin(n) × Spin(m) × Spin(6 − n − m) M5, M9, M-waves

Table: Classification of the BPS equations in the number of preserved
supercharges, the symmetry of BPS equations and the corresponding
M-theoretical objects. N is the number of preserved supercharges.
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