# Classification of BPS Objects in $\mathcal{N} = 6$ Chern-Simons Matter Theory

arXiv:1007.1588 [hep-th]

#### Shin Sasaki

(Tokyo Institute of Technology)

with T. Fujimori (Pisa), K. Iwasaki (Titech, Kyoto), Y. Kobayashi (Titech)

#### 2010. July. 20 @ YITP

## Introduction

#### BPS configurations in M2-brane world-volume theory

Multiple M2-brane world-volume theory – ABJM, BLG models

- Basu-Harvey (2004) fuzzy funnel M2-M5 intersection BLG model [Bagger-Lambart (2008), Gustavsson (2008)]
- Fuzzy funnel, domain wall solutions in ABJM model [Terashima (2008), Hanaki-Lin (2008)]
- Vortex solutions [Arai-Montonen-Sasaki (2009), Kawai-Sasaki (2009), Kim-Lee (2009), Kim-Kim-Kwon-Nakajima (2009), Auzz-Kumar (2009)]
- Various M-theoretical objects in BLG model

More general BPS configurations are possible in ABJM model - Our work

#### ABJM model [Aharony-Bergman-Jafferis-Maldacena (2008)]

#### Model

- (2+1) dimensional superconformal Chern-Simons-Higgs model with level (k, -k)
- U(N) imes U(N) gauge symmetry with gauge fields  $A_{\mu}, \hat{A}_{\mu}$
- Matter fields Y<sup>A</sup>, ψ<sub>A</sub> (A = 1, · · · , 4) bi-fundamental repr of the gauge group, SU(4)<sub>R</sub> (anti) fundamental Fluctuation along eight transverse directions.

Action of the model,

$$\mathcal{L} = \mathcal{L}_{CS} + \mathcal{L}_{kin} + \mathcal{L}_{pot} + \mathcal{L}_{ferm}$$

Three-dimensional  $\mathcal{N} = 6$  supersymmetry. Low-energy effective theory of N coincident M2-branes probing  $\mathbf{C}^4/\mathbf{Z}_k$  orbifold. Dual to the M-theory on  $AdS_4 \times S^7/\mathbf{Z}_k$  at large-N.

#### 1 Introduction - Motivation, ABJM model

- 2 1/2 BPS conditions
- 3 Physical interpretation
- 4 BPS conditions with lower SUSYs
- 5 Conclusions and discussions

## 1/2 BPS conditions

#### Projection conditions on SUSY parameters

$$\gamma \Xi_{ij} \epsilon_j = \epsilon_i$$
,  $(i, j = 1, 2, \cdots, 6)$ ,  $\operatorname{Tr} \gamma \otimes \Xi = 0$ ,  $(\gamma \otimes \Xi)^2 = \mathbf{1}_2 \otimes \mathbf{1}_6$ 

 $\epsilon_i : \mathcal{N} = 6$  Majorana SUSY parameters.  $\gamma : 2 \times 2$  matrix with SO(2,1) spinor indices,  $\Xi : 6 \times 6$  matrix acting on  $SO(6)_R$  vector indices. In general, we find

$$\gamma \Xi_{ij} = \begin{cases} \gamma_0 \otimes B \\ \gamma_2 \otimes C^{(m,n)} \end{cases}$$

$$B \equiv \pm \left( \begin{array}{c|c} i\sigma_2 & & \\ \hline & i\sigma_2 & \\ \hline & & i\sigma_2 \end{array} \right), \quad C^{(m,n)} \equiv \left( \begin{array}{c|c} \mathbf{1}_m & \\ \hline & & \\ \hline & & -\mathbf{1}_n \end{array} \right), \quad m+n=6$$

### 1/2 BPS equations

SUSY transformation of fermions

$$\begin{split} \delta\psi_{A} &= \left(\gamma^{\mu}D_{\mu}Y^{B}\delta^{C}_{A} + \Upsilon^{BC}_{A}\right)(\Gamma_{i})_{BC}\epsilon_{i} \\ \Upsilon^{BC}_{A} &\equiv Y^{B}Y^{\dagger}_{A}Y^{C} + \frac{1}{2}\delta^{B}_{A}\left(Y^{C}Y^{\dagger}_{D}Y^{D} - Y^{D}Y^{\dagger}_{D}Y^{C}\right) - (B\leftrightarrow C) \end{split}$$

with projection condition B leads to

### 1/2 BPS equations

SUSY transformation of fermions

$$\begin{split} \delta\psi_{A} &= \left(\gamma^{\mu}D_{\mu}Y^{B}\delta^{C}_{A} + \Upsilon^{BC}_{A}\right)(\Gamma_{i})_{BC}\epsilon_{i} \\ \Upsilon^{BC}_{A} &\equiv Y^{B}Y^{\dagger}_{A}Y^{C} + \frac{1}{2}\delta^{B}_{A}\left(Y^{C}Y^{\dagger}_{D}Y^{D} - Y^{D}Y^{\dagger}_{D}Y^{C}\right) - (B \leftrightarrow C) \end{split}$$

Vortex type 
$$\begin{cases} 0 = D_0 Y^B(\Gamma_j)_{BA} B_{ji} + \Upsilon^{BC}_A(\Gamma_i)_{BC}, \\ 0 = D_1 Y^B(\Gamma_i)_{BA} - D_2 Y^B(\Gamma_j)_{BA} B_{ji} \end{cases}$$

while for  $C^{(m,n)}$ , we have

## 1/2 BPS equations

SUSY transformation of fermions

$$\begin{split} \delta\psi_A &= \left(\gamma^{\mu} D_{\mu} Y^B \delta^C_A + \Upsilon^{BC}_A\right) (\Gamma_i)_{BC} \epsilon_i \\ \Upsilon^{BC}_A &\equiv Y^B Y^{\dagger}_A Y^C + \frac{1}{2} \delta^B_A \left(Y^C Y^{\dagger}_D Y^D - Y^D Y^{\dagger}_D Y^C\right) - (B \leftrightarrow C) \end{split}$$

Vortex type 
$$\begin{cases} 0 = D_0 Y^B(\Gamma_j)_{BA} B_{ji} + \Upsilon^{BC}_A(\Gamma_i)_{BC}, \\ 0 = D_1 Y^B(\Gamma_i)_{BA} - D_2 Y^B(\Gamma_j)_{BA} B_{ji} \end{cases}$$

Fuzzy funnel type 
$$\begin{cases} 0 = D_2 Y^B(\Gamma_j)_{BA} C_{ji}^{(m,n)} + \Upsilon^{BC}_A(\Gamma_i)_{BC}, \\ 0 = D_0 Y^B(\Gamma_i)_{BA} - D_1 Y^B(\Gamma_j)_{BA} C_{ji}^{(m,n)} \end{cases}$$

#### Also the Gauss' law conditions should be satisfied

## Physical interpretation

#### BPS conditions in eleven dimensions Global symmetry $SO(10, 1) \Longrightarrow SO(2, 1) \times SU(4)$

| 11 dim                                         |                                                            | M2-brane world-volume                                                                                 |
|------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| ξ : 16 SUSY                                    | $\mathbf{Z}_k \stackrel{\text{orbifold}}{\Longrightarrow}$ | $\epsilon = P\xi$ : 12 SUSY,                                                                          |
| Projection condition : $\hat{\Gamma}\xi = \xi$ | $\stackrel{P}{\Longrightarrow}$                            | BPS conditions in ABJM :                                                                              |
| $\hat{\Gamma}_{012}\xi = \xi$                  |                                                            | ${\cal A}\epsilon=\epsilon,{\cal A}\equiv P\hat{\sf \Gamma}P^{\dagger}$ ,                             |
|                                                |                                                            | $	ilde{\mathcal{A}}\epsilon=0,	ilde{\mathcal{A}}=	ilde{\mathcal{P}}\hat{\Gamma}\mathcal{P}^{\dagger}$ |
| M-theory objects                               | $\implies$                                                 | M-theory objects                                                                                      |
|                                                |                                                            | intersect with M2-branes                                                                              |

BPS conditions in eleven dimensions Global symmetry  $SO(10, 1) \Longrightarrow SO(2, 1) \times SU(4)$ 

| 11 dim                                         |                                                            | M2-brane world-volume                                                                                 |
|------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| ξ : 16 SUSY                                    | $\mathbf{Z}_k \stackrel{\text{orbifold}}{\Longrightarrow}$ | $\epsilon = P\xi$ : 12 SUSY,                                                                          |
| Projection condition : $\hat{\Gamma}\xi = \xi$ | $\stackrel{P}{\Longrightarrow}$                            | BPS conditions in ABJM :                                                                              |
| $\hat{\Gamma}_{012}\xi = \xi$                  |                                                            | ${\cal A}\epsilon=\epsilon,{\cal A}\equiv P\hat{\sf \Gamma}P^{\dagger}$ ,                             |
|                                                |                                                            | $	ilde{\mathcal{A}}\epsilon=0,	ilde{\mathcal{A}}=	ilde{\mathcal{P}}\hat{\Gamma}\mathcal{P}^{\dagger}$ |
| M-theory objects                               | $\implies$                                                 | M-theory objects                                                                                      |
|                                                |                                                            | intersect with M2-branes                                                                              |
| $( \hat{-} (0) \hat{-}$                        |                                                            |                                                                                                       |

$$\hat{\Gamma} = \begin{cases} \hat{\Gamma}^{(0)} \equiv \hat{\Gamma}_{\mu} \\ \hat{\Gamma}^{(2)} \equiv \frac{1}{2} \omega_{IJ} \hat{\Gamma}_{\mu IJ} \\ \hat{\Gamma}^{(4)} \equiv \frac{1}{4!} \omega_{IJKL} \hat{\Gamma}_{\mu IJKL} \end{cases} \quad (\mu = 0, 1, 2, \ I, J, K, L = 3, \cdots, 10)$$

## Physical interpretation of the BPS equations $\hat{\Gamma} = \hat{\Gamma}^{(0)}$

From the condition  $\mathcal{A}^2=1$ , we can set  $\hat{\Gamma}^{(0)}=\hat{\Gamma}_2$  by SO(2,1)

$$\begin{cases} \hat{\Gamma}_{01}\xi = \xi & \xrightarrow{P} & \mathcal{A} = \gamma_2 \otimes \mathbf{1}_6, \ \tilde{\mathcal{A}} = 0 \\ \hat{\Gamma}_{0134\dots10}\xi = \xi & \xrightarrow{P} & 1/2 \text{ BPS condition in ABJM model} \end{cases}$$

# Physical interpretation of the BPS equations $\hat{\Gamma} = \hat{\Gamma}^{(0)}$

From the condition  $\mathcal{A}^2=1,$  we can set  $\hat{\Gamma}^{(0)}=\hat{\Gamma}_2$  by SO(2,1)

$$\begin{cases} \hat{\Gamma}_{01}\xi = \xi & \xrightarrow{P} \quad \mathcal{A} = \gamma_2 \otimes \mathbf{1}_6, \ \tilde{\mathcal{A}} = 0 \\ \hat{\Gamma}_{0134\cdots 10}\xi = \xi & \xrightarrow{P} \quad 1/2 \text{ BPS condition in ABJM model} \end{cases}$$

M-waves, M9-branes [Bergshoeff-Schaar (1999), M. de Roo (1997)]



Table: A possible configuration that corresponds to the condition.

 $\bullet \hat{\Gamma} = \hat{\Gamma}^{(2)}$ 

$$\begin{array}{c|c|c|c|c|c|c|c|c|}\hline & SO(8) & \stackrel{\mathbf{Z}_k \text{ orbifold}}{\Longrightarrow} & SU(4) \times U(1) \sim SO(6) \times U(1) \\\hline & \omega_{IJ} & \mathbf{28} & \mathbf{6}_2 \oplus (\mathbf{15}_0 \oplus \mathbf{1}_0) \oplus \mathbf{6}_{-2} \\\hline \end{array}$$

$$\tilde{f}:\hat{\Gamma}\to\tilde{\mathcal{A}},\quad \mathrm{Ker}\;\tilde{f}=\mathbf{15}_0\oplus\mathbf{1}_0$$

 $\omega$  should belong to  $\mathbf{15}_0 \oplus \mathbf{1}_0 - (1, 1)$ -type 2-forms  $\omega_{A\bar{B}}$  ( $\mathbf{Z}_k$  orbifold invariant)

$$\hat{\Gamma} = \frac{1}{2} \omega_{IJ} \hat{\Gamma}_{0IJ}, \quad (\omega_{IJ} dx^I \wedge dx^J = \omega_{A\bar{B}} dy^A \wedge d\bar{y}^{\bar{B}})$$

$$\begin{cases} \frac{1}{2}\omega_{IJ}\hat{\Gamma}_{0IJ}\xi = \xi \\ \frac{1}{6!}\tilde{\omega}_{IJKLMN}\hat{\Gamma}_{0IJKLMN}\xi = -\xi \end{cases} \implies \begin{array}{l} \mathcal{A} = \gamma_0 \otimes B, \ \tilde{\mathcal{A}} = 0, \\ 1/2 \text{ BPS condition in ABJM model} \end{cases}$$

 $ilde{\omega} = *\omega$  on  $\mathbf{C}^4/\mathbf{Z}_k$ 

$$\begin{cases} \frac{1}{2}\omega_{IJ}\hat{\Gamma}_{0IJ}\xi = \xi \\ \frac{1}{6!}\tilde{\omega}_{IJKLMN}\hat{\Gamma}_{0IJKLMN}\xi = -\xi \end{cases} \implies \begin{array}{c} \mathcal{A} = \gamma_0 \otimes B, \ \tilde{\mathcal{A}} = 0, \\ 1/2 \text{ BPS condition in ABJM model} \end{cases}$$

 $\tilde{\omega} = *\omega$  on  $\mathbf{C}^4/\mathbf{Z}_k$ M2-branes, KK-monopoles.



Table: Intersecting M2-branes and KK-monopoles.

 $\bullet \hat{\Gamma} = \hat{\Gamma}^{(4)}$ 

$$\begin{array}{c|c} SO(8) & \stackrel{\mathbf{Z}_k \text{ orbifold}}{\Longrightarrow} & SU(4) \times U(1) \sim SO(6) \times U(1) \\ \hline \omega_{IJKL} & \mathbf{35} \oplus \mathbf{35'} & \mathbf{1}_4 \oplus (\mathbf{6}_2 \oplus \mathbf{10}_2) \oplus (\mathbf{1}_0 \oplus \mathbf{15}_0 \oplus \mathbf{20}_0) \\ & \oplus (\mathbf{6}_{-2} \oplus \overline{\mathbf{10}}_{-2}) \oplus \mathbf{1}_{-4} \end{array}$$

 $\operatorname{Ker} \tilde{f} = \mathbf{1}_4 \oplus \mathbf{10}_2 \oplus (\mathbf{1}_0 \oplus \mathbf{15}_0 \oplus \mathbf{20}_0) \oplus \overline{\mathbf{10}}_{-2} \oplus \mathbf{1}_{-4}$ 

We find

$$\hat{\Gamma}^{(4)} = \frac{1}{4!} \omega_{IJKL} \hat{\Gamma}_{2IJKL}, \ \omega \notin \mathbf{6}_2 \oplus \mathbf{6}_{-2}$$
$$\implies \begin{array}{l} \mathcal{A} = \gamma_2 \otimes C^{(m,n)}, \quad \tilde{\mathcal{A}} = 0, \\ 1/2 \text{ BPS condition in ABJM model} \end{array}$$

M-theory objects – M5-branes

$$\begin{split} \omega^{(6,0)} &= \frac{1}{16} dy^A \wedge dy^B \wedge d\bar{y}_A \wedge d\bar{y}_B, \\ \omega^{(5,1)} &= \frac{1}{64} \big[ \mathcal{J}_{AB} \mathcal{J}_{\bar{C}\bar{D}} - \delta_{A\bar{C}} \delta_{B\bar{D}} + \delta_{A\bar{D}} \delta_{B\bar{C}} \big] dy^A \wedge dy^B \wedge d\bar{y}^{\bar{C}} \wedge d\bar{y}^{\bar{D}}, \\ \omega^{(4,2)} &= \frac{1}{4} dy^1 \wedge dy^3 \wedge d\bar{y}^1 \wedge d\bar{y}^3, \\ \omega^{(3,3)} &= \operatorname{Re} d\check{y}^1 \wedge \operatorname{Re} d\check{y}^2 \wedge \operatorname{Re} d\check{y}^3 \wedge \operatorname{Re} d\check{y}^4, \end{split}$$

M5-branes specified by the volume form  $\omega^{(m,n)}$  preserving  $\mathcal{N} = (m, n)$  SUSY in (1 + 1) dimensions.

## BPS conditions with lower SUSYs

### M2-M2 intersections with angles

 $v_1^{\,\prime},v_2^{\,\prime}$  (I = 3,  $\cdots$  ,10) : M2-brane directions. 11 dim projector is given by

$$\hat{\mathsf{\Gamma}} = rac{1}{2}(v_1^{\,\prime}v_2^{\,\prime} - v_2^{\,\prime}v_1^{\,\prime})\mathsf{\Gamma}_{0^{\,\prime}}$$

Define a matrix which specifies M2-brane configurations

$$\Lambda_{M2} \equiv \begin{pmatrix} u_1^1 & u_2^1 \\ u_1^2 & u_2^2 \\ u_1^3 & u_2^3 \\ u_1^4 & u_2^4 \end{pmatrix} \xrightarrow{GL(2,\mathbf{R}),SU(4)} \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ i \sin \theta & 0 \\ \cos \theta & i \end{pmatrix}$$

11 dim projector for this matrix is

$$\hat{\Gamma} = \hat{\Gamma}_0 (\sin \theta \, \hat{\Gamma}_8 + \cos \theta \, \hat{\Gamma}_9) \hat{\Gamma}_{10}$$

Corresponding ABJM projector is  $A = \gamma_0 \otimes \Xi$  and  $\tilde{A} = \gamma_0 \otimes \tilde{\Xi}$  with

$$\Xi = -g^{T} \operatorname{diag}(i\sigma_{2}, i\sigma_{2}, i\cos\theta\sigma_{2})g, \widetilde{\Xi} = \begin{pmatrix} 0 & 0 & 0 & -\sin\theta & 0\\ 0 & 0 & 0 & 0 & \sin\theta \end{pmatrix}g$$

 $g \in SO(6)_R$ 

Corresponding ABJM projector is 
$$A = \gamma_0 \otimes \Xi$$
 and  $\tilde{A} = \gamma_0 \otimes \tilde{\Xi}$  with

$$\Xi = -g^{\mathsf{T}} \operatorname{diag}(i\sigma_2, i\sigma_2, i\cos\theta\sigma_2)g, \widetilde{\Xi} = \begin{pmatrix} 0 & 0 & 0 & 0 & -\sin\theta & 0\\ 0 & 0 & 0 & 0 & \sin\theta \end{pmatrix}g$$

 $g \in SO(6)_R$ 

 $\mathcal{A}\epsilon = \epsilon, \ \tilde{\mathcal{A}}\epsilon = 0 \Longrightarrow 4 \text{ SUSY among 12 SUSY } (1/3 \text{ BPS condition})$ 

|    | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8           | 9       | 10 |
|----|---|---|---|---|---|---|---|---|-------------|---------|----|
| M2 | ٠ | ٠ | ٠ |   |   |   |   |   |             |         |    |
| M2 | • |   |   |   |   |   |   |   | .0          | 0       | ٠  |
|    |   |   |   |   |   |   |   |   | sın $	heta$ | ∣ cos θ |    |

Table: 1/3 BPS configuration of intersecting M2-branes.

 $\theta = 0, \pi \implies$  4 SUSY (1/3 BPS) is enhanced to 6 SUSY (1/2 BPS).

M2-M5 intersections with angles

$$\hat{\Gamma} \sim \frac{1}{4!} \epsilon^{abcd} v_a^I v_b^J v_c^K v_d^L \hat{\Gamma}_{01IJK}$$

$$\Lambda_{\rm M2} \ \equiv \ \begin{pmatrix} u_1^1 & u_2^1 & u_3^1 & u_4^1 \\ u_1^2 & u_2^2 & u_3^2 & u_4^2 \\ u_1^3 & u_2^3 & u_3^3 & u_4^3 \\ u_1^4 & u_2^4 & u_3^4 & u_4^4 \end{pmatrix} \xrightarrow{\cong} GL(2,\mathbf{R}), SU(4) \begin{pmatrix} 1 & i\cos\theta_1 & 0 & 0 \\ 0 & \sin\theta_1 & 0 & 0 \\ 0 & 0 & 1 & i\cos\theta_2 \\ 0 & 0 & 0 & \sin\theta_2 \end{pmatrix}$$

ABJM projector  $\mathcal{A}=\gamma_0\otimes\Xi,\ \tilde{\mathcal{A}}=\gamma_0\otimes\tilde{\Xi}$  with

$$\Xi = g^{T} \operatorname{diag}(1, 1, \cos(\theta_{1} - \theta_{2}), \cos(\theta_{1} + \theta_{2}), -1, -1) g,$$
  

$$\widetilde{\Xi} = \begin{pmatrix} 0 & 0 & -\sin(\theta_{1} - \theta_{2}) & 0 & 0 & 0 \\ 0 & 0 & 0 & \sin(\theta_{1} + \theta_{2}) & 0 & 0 \end{pmatrix} g$$

4 SUSY among 12 SUSY is preserved (1/3 BPS condition).



Table: 1/3 BPS configuration of M2/M5-branes.

Either  $\theta_1 \pm \theta_2 = 0, \pi \implies 4$  SUSY is enhanced to 5 SUSY (5/12 BPS condition) Both  $\theta_1 \pm \theta_2 = 0, \pi \implies 4$  SUSY is enhanced to 6 SUSY (1/2 BPS condition)

#### M2-M2 intersections with lower SUSY Consider the ABJM projection

$$\gamma_0 \otimes \Xi^{(I,J)} = P \hat{\Gamma}_{0IJ} P^{\dagger}$$

Impose multiple conditions

## M2-M2 intersections with lower SUSY

Consider the ABJM projection

$$\gamma_0 \otimes \Xi^{(I,J)} = P \hat{\Gamma}_{0IJ} P^{\dagger}$$

Impose multiple conditions

$$(-\gamma_0\otimes \Xi^{(5,6)})\epsilon = \epsilon, \quad (\gamma_0\otimes \Xi^{(9,10)})\epsilon = \epsilon$$

with

$$\Xi^{(5,6)} = -\text{diag}(-i\sigma_2, -i\sigma_2, i\sigma_2), \quad \Xi^{(9,10)} = -\text{diag}(i\sigma_2, i\sigma_2, i\sigma_2)$$

## M2-M2 intersections with lower SUSY

Consider the ABJM projection

$$\gamma_0 \otimes \Xi^{(I,J)} = P \hat{\Gamma}_{0IJ} P^{\dagger}$$

Impose multiple conditions

$$(-\gamma_0\otimes \Xi^{(5,6)})\epsilon = \epsilon, \quad (\gamma_0\otimes \Xi^{(9,10)})\epsilon = \epsilon$$

with

$$\Xi^{(5,6)} = -\text{diag}(-i\sigma_2, -i\sigma_2, i\sigma_2), \quad \Xi^{(9,10)} = -\text{diag}(i\sigma_2, i\sigma_2, i\sigma_2)$$

These conditions keep 4 SUSY among 12 SUSY (1/3 BPS condition)

|    | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
|----|---|---|---|---|---|---|---|---|---|---|----|
| M2 | ٠ | ٠ | ٠ |   |   |   |   |   |   |   |    |
| M2 | ٠ |   |   |   |   | • | • |   |   |   |    |
| M2 | ٠ |   |   |   |   |   |   |   |   | • | •  |
|    |   |   |   |   |   |   |   |   |   | ' |    |

Table: 1/3 BPS intersecting M2-branes.

Additional conditions can be imposed

$$(\gamma_0 \otimes \Xi^{(7,8)})\epsilon = \epsilon, \ \Xi^{(7,8)} = -\operatorname{diag}(i\sigma_2, -i\sigma_2, -i\sigma_2).$$

Additional conditions can be imposed

$$(\gamma_0\otimes \Xi^{(7,8)})\epsilon = \epsilon, \ \Xi^{(7,8)} = -\mathrm{diag}(i\sigma_2, -i\sigma_2, -i\sigma_2).$$

These keep 2 SUSY among 12 SUSY (1/6 BPS condition)



Table: 1/6 BPS intersecting M2-branes.

#### M2-M5 intersections with lower SUSY

M2, M5-branes share  $x^1$ -direction. Projection

$$\gamma_2 \Xi_{ij} \epsilon_j = \epsilon_i, \quad \Xi = \operatorname{diag}(\underbrace{1, \cdots, 1}_{m}, \underbrace{-1, \cdots, -1}_{n}, *_{6-m-n}), \quad (m+n \le 6)$$

This preserves  $\mathcal{N} = (m, n)$  SUSY from the viewpoint of (1+1) dimensions  $(x^0, x^1)$ .

$$\Xi = \left( \begin{array}{c|c} 1 \\ \hline \\ \hline \\ \hline \\ \end{array} \right)$$



keeping  $\mathcal{N} = (m, n) = (1, 0)$  SUSY (1/12 BPS condition)



Table: An example of  $\mathcal{N} = (1,0)$  BPS configuration. The Hodge-dual branes are omitted.

10

9



$$\Xi = \left( \begin{array}{c|c} \mathbf{1}_2 \\ \hline \\ \hline \\ \hline \\ \hline \\ \end{array} \right)$$

This keeps  $\mathcal{N} = (2,0)$  SUSY – (1/6 BPS condition).

|    | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
|----|---|---|---|---|---|---|---|---|---|---|----|
| M2 | ٠ | ٠ | ٠ |   |   |   |   |   |   |   |    |
| M5 | ٠ | ٠ |   | • | ٠ |   |   |   |   | • | ٠  |
| M5 | ٠ | ٠ |   |   |   | • | ٠ |   |   | • | ٠  |
| M5 | ٠ | ٠ |   |   |   |   |   | • | ٠ | • | ٠  |

Table:  $\mathcal{N} = (2,0)$  BPS configuration. The Hodge-dual branes are omitted.

## Conclusions and discussions

## Conclusion and discussions

Conclusions in this talk

- **1** We find n/12 ( $n = 1, \dots, 5$ ) BPS conditions in  $\mathcal{N} = 6$  ABJM model
- 2 Maps from eleven-dimensional projection conditions to the BPS conditions in ABJM model is analyzed
- 3 Configurations of M-theory objects are studied
- Reduction to type IIA brane configurations with D2-branes are studied

Future research

- Existence of solutions
- Explicit solutions
- Dynamics of various M-theory objects

etc..

| $\mathcal{N}$ | Residual symmetry                           | Intersecting branes          |
|---------------|---------------------------------------------|------------------------------|
| 6             | $SU(3)	imes U(1)^2$                         | M2, KK-monopoles             |
| 6             | <i>SU</i> (4)                               | M2, M9, M-waves              |
| 6             | $SU(2) 	imes SU(2) 	imes U(1)^2$            | M5                           |
| 5             | SU(2) 	imes SU(2)                           | M5 with angles               |
| 4             | $U(1)^{3}$                                  | M5 with angles               |
| 4             | $SU(2)	imes U(1)^2$                         | M2, KK-monopoles             |
| 4             | $SU(2)	imes U(1)^2$                         | M2 with angles               |
| 3             | <i>SO</i> (3)                               | M2 ending on M5              |
| 2             | $SU(2)	imes SU(2)	imes U(1)^2$              | M2, KK-monopoles             |
| 2             | U(1)	imes U(1)                              | M2 ending on M5              |
| 1             | SU(2)	imes SU(2)                            | M2 ending on M5, M9, M-waves |
| n+m           | Spin(n) 	imes Spin(m) 	imes Spin(6 - n - m) | M5, M9, M-waves              |

Table: Classification of the BPS equations in the number of preserved supercharges, the symmetry of BPS equations and the corresponding M-theoretical objects.  $\mathcal{N}$  is the number of preserved supercharges.