

Accelerated String and Unruh effect in holographic confining gauge theory

work in progress

talker:田港 朝貴(九州大学) collaborators: 郷六 一生(福岡工業大学) 石原 雅文(九州大学) 久保 幸貴(九州大学)

Unruh effect

Unruh effect [Unruh '76]

The detector accelerating with a constant acceleration in the Minkowski space-time would observe a **thermal bath**.

Unruh temperature (Rindler temperature)

$$T_{Unruh} = \frac{a}{2\pi}$$

a : constant acceleration

Introduction

<u>Rindler coordinates</u> (Comoving frame)

$$ds^{2} = -dt^{2} + dx^{2} + dy^{2} + dz^{2}$$

$$\int t = a^{-1}e^{a\xi} \sinh a\tau$$

$$x = a^{-1}e^{a\xi} \cosh a\tau$$

$$(\text{Rindler transformation})$$

$$ds^{2} = e^{2a\xi} \left(-d\tau^{2} + d\xi^{2}\right) + dy^{2} + dz^{2}$$

$$LR$$

$$CDK$$

$$CDK$$

$$CDK$$

Unruh effect

Why Unruh effect?

A crucial rule in our understanding that the particle contents or vacuum of a theory depend on an observer.

Introduction

The phenomenon of particle emission from black holes and cosmological horizons.

Experimentally interesting. (Extreme Light Infrastructure, ELI (Europe))

In the view of gauge/gravity correspondence,

The properties of thermal effect in curved space-time.

- Hawking temperature vs. Unruh temperature [Paredes, et al '09]
- Phase transition ex)chiral symmetry [Hirayama, et al '10] confinement-deconfinement

• The relation between thermodynamics and gravity theory

Dynamics of accelerated string and radiation by Unruh effect.

Heavy quark energy loss in quark-gluon plasma (QGP)

Unruh effect has very fruitful physics !

(1)Introduction

(2)Model set-up : **Deformed** AdS (**dAdS**) for confinement

(3)Accelerating string and in curved space-time
 ■ In the case of AdS background (review)
 ■ In the case of dAdS background

(4)Unruh effect in Rindler coordinates

Wilson loop and quark-antiquark potential

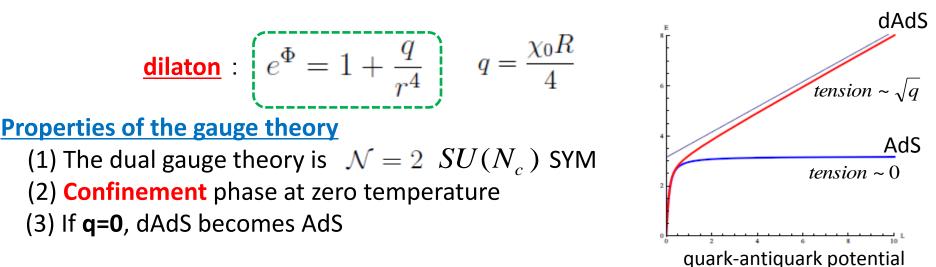
Drag force and friction constant (and Einstein relation)

Model set-up

[Liu and Tseytlin '99] [Ghoroku and Yahiro '04]

A background for confinement is derived by including the R-R scalar $~\mathcal{X}$

$$S = \frac{1}{2\kappa^2} \int d^{10}x \sqrt{-g} \left(R - \frac{1}{2} (\partial \Phi)^2 + \frac{1}{2} e^{2\Phi} (\partial \chi)^2 + \frac{1}{4 \cdot 5!} F_5^2 \right)$$


The ansatz for supersymmetry : $\chi = -e^{-\Phi} + \chi_0$

Deformed AdS background

The solution is given as follows

4/12

$$ds_{10}^{2} = e^{\Phi/2} \left(\frac{r^{2}}{R^{2}} \left(-dt^{2} + d\vec{x}^{2} \right) + \frac{R^{2}}{r^{2}} dr^{2} + R^{2} d\Omega_{5}^{2} \right)$$

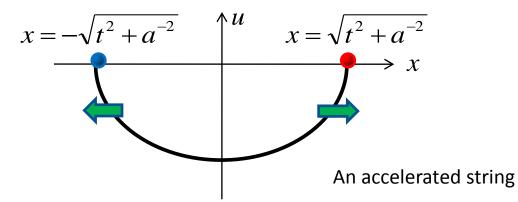
5/12

Uniformly accelerated string

In the case of AdS [Xiao '08]

AdS₅ space-time

$$ds_{AdS}^{2} = R^{2} \left[u^{2} \left(-dt^{2} + d\vec{x}^{2} \right) + \frac{du^{2}}{u^{2}} \right] \qquad \qquad u = \frac{r}{R^{2}}$$


Here we define $X^{\mu}(\tau, \sigma)$ as a map from the string world-sheet. We choose a static gauge by setting $(\tau, \sigma) = (t, u)$.

$$X^{\mu}(\tau,\sigma) = (t, u, x(t, u), 0, 0)$$

From Nambu-Goto action, we can find the exact solution of equation of motion

$$x^2 - t^2 = a^{-2} - u^{-2}$$

Since the solution becomes $x^2 - t^2 = a^{-2}$ at boundary $u \to \infty$, we can regard the constant of integration a as accelerating constant in the dual CFT.

Uniformly accelerated string

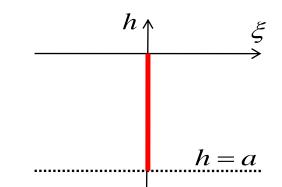
Rindler transformation for AdS [Xiao '08]

$$ds_{AdS}^{2} = R^{2} \left[u^{2} \left(-dt^{2} + d\vec{x}^{2} \right) + \frac{du^{2}}{u^{2}} \right]$$

$$\int x = \sqrt{a^{-2} - u^{-2}} e^{a\xi} \cosh a\tau$$

 $\int_{a=0}^{a=1} t = \sqrt{a^{-2} - u^{-2}} e^{a\xi} \sinh a\tau \quad (\text{<u>Rindler transformation</u>})$ $u = he^{-a\xi}$

$$ds_{Rindler}^{2} = R^{2} \left[-(h^{2} - a^{2})d\tau^{2} + h^{2}(d\xi^{2} + e^{-2a\xi}[dy^{2} + dz^{2}]) + \frac{dh^{2}}{h^{2} - a^{2}} \right]$$


Some profiles in Rindler coordinates

-Accelerated string with a in AdS is static at $\xi = 0$ and its shape forms straight line.

reflection of scale independence

- The vacuum contains an event horizon at h = a.
- Unruh temperature

$$T_{Unruh} = \frac{a}{2\pi}$$

Static string in Rindler coordinates.

6/12

Uniformly accelerated string

Rindler transformation for dAdS

$$ds_{dAdS}^{2} = e^{\Phi/2} R^{2} \left[u^{2} \left(-dt^{2} + d\bar{x}^{2} \right) + \frac{du^{2}}{u^{2}} \right] \qquad e^{\Phi} = 1 + \frac{q}{u^{4}}$$

$$\int_{a}^{a} \left[x = \sqrt{a^{-2} - u^{-2}} e^{a\xi} \cosh a\tau + \frac{1}{2} \sqrt{a^{-2} - u^{-2}} e^{a\xi} \sinh a\tau + \frac{1}{2} \sqrt{a^{-2} - u^{-2}} e^{a\xi} \sinh a\tau + \frac{1}{2} e^{-a\xi} \right] \qquad (\text{Rindler transformation})$$

$$ds_{Rindler}^{2} = e^{\Phi/2} R^{2} \left[-(h^{2} - a^{2}) d\tau^{2} + h^{2} \left(d\xi^{2} + e^{-2a\xi} \left[dy^{2} + dz^{2} \right] \right) + \frac{dh^{2}}{h^{2} - a^{2}} \right] \qquad e^{\Phi} = 1 - \frac{1}{2} e^{\Phi}$$

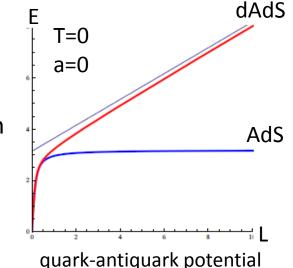
Some profiles in Rindler coordinates • Accelerated string with a in this case is static at $\xi = 0$ at boundary, and its shape forms curved line. • reflection of scale (dilation) dependence • The vacuum contains an event horizon at h = a. • Unruh temperature $T_{Unruh} = \frac{a}{2\pi}$ Static string in Rindler coordinates.

8/12

quark-antiquark potential

The quark-antiquark potential is derived from a Wilson loop in gauge theory $\langle W \rangle \sim e^{-V_{q\bar{q}}\int dt}$

On the other hand, Wilson loop in the dual gravity represents as


$$\langle W \rangle \sim e^{-S}$$

in terms of the Nambu-Goto action

$$S = -T_0 \int d\tau d\sigma \sqrt{-\det g_{ab}}$$

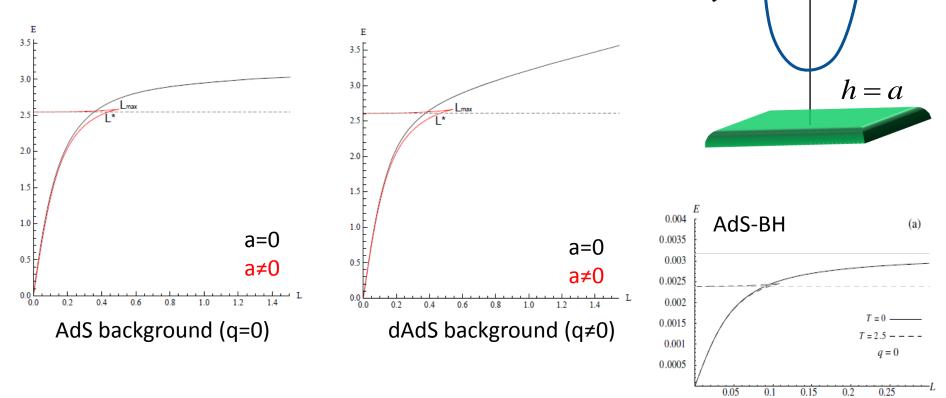
Here we calculate the quark-anti quark potential in dAdS space-time and Rindler coordinates.

We would see a **difference of thermal effect** between **Unruh temperature** and **Hawking temperature**.

Wilson loop

9/12

Wilson loop


h

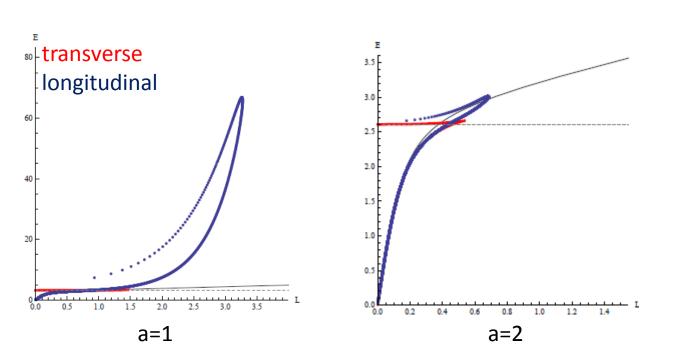
L/2

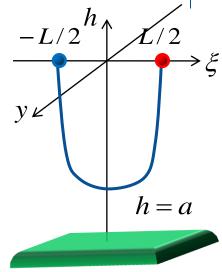
String stretched to transverse direction

Here we show some quark-antiquark potential of U-shaped string stretched to transverse direction to accelerated direction ξ .

We find the maximum value of L at finite acceleration. This is reflection of **the screening of the color** force as seen in at high Hawking temperature. [Ghoroku et al '05]

10/12


Wilson loop


String stretched to longitudinal direction

Here we show some quark-antiquark potential of U-shaped string stretched to longitudinal direction to ξ in dAdS.

We find the maximum value of L at finite acceleration. This is reflection of **the screening of the color**.

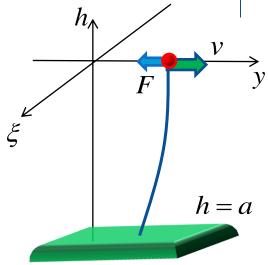
But, the value of energy increases exponentially at Large L. This behavior is not seen in the both cases of Hawking temperature and AdS space-time.

11/12

Introduction

Drag force and the friction constant

We study drag force along transverse direction to ξ in Rindler vacuum.


A trailing string is given by

$$y = vt + \eta(h)$$

From the Nambu-Goto action in non-relativistic limit,

$$F = -T_0 \sqrt{u_*^4 R^4 + \frac{q}{R^4}} v = -\gamma v$$

F : drag forceγ : friction constant

We also find the **friction constant in Rindler coordinates** might be equivalent to **energy loss from accelerated string in original space-time**. $\wedge u$

$$P_{radiation} = T_0 \sqrt{u_*^4 R^4 + \frac{q}{R^4}} = \gamma \qquad \text{timelike} \qquad u = u_*$$
spacelike
$$P_{radiation}$$

Summary

• We discuss the Unruh effect in the deformed AdS background for the dual gauge theory that realized confinement phase.

Wilson loop in Rindler coordinates

- It represents deconfinement phase and color screening.
- Strings stretched to the transverse direction to the accelerating direction
 Its behavior is very similar to Hawking temperature.
- Strings stretched to the longitudinal direction to the acceleration direction
 Its behavior is different from Hawking temperature.
 This property is not seen in AdS case.

Drag force and the friction constant

We calculate the **drag force** and the **friction constant** on the quark moving with a constant velocity in the hot gluons. It also represents the **friction constant might be equivalent to the energy loss of accelerated string** in original background.