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THE INFORMATION PARADOX

This puzzle has spawned many audacious ideas, beginning with Hawking’s bold proposal that
unitarity fails in quantum gravity.

unitarity can be temporarily violated during the black hole evaporation process, accommodating

violations of monogamy of entanglement and the no-cloning principle, and allowing assumptions
(1), (2), and (3) to be reconciled

S. Lloyd and J. Preskill, JHEP 08 2014 126

(1) An evaporating black hole scrambles quantum information without destroying it.
(2) A freely falling observer encounters nothing unusual upon crossing the event horizon of a black hole.
(3) An observer who stays outside a black hole detects no violations of relativistic effective quantum field theory.



THE INFORMATION PARADOX

Violation of unitarity by Hawking radiation does not violate energy-momentum conservation

H. Nikolic(Boskovic Inst., Zagreb) Feb 15, 2015



THE INFORMATION PARADOX

This is the essence of the black hole information paradox (BHIP): unlike any other classical
or quantum system, black holes may not conserve information, thus violating unitarity.

Some physicists speculate that quantum gravity may actually be non-unitary

When this phenomenon is analyzed closer, we discover that it takes pure states to mixed
states, a violation of unitarity, a fundamental property of quantum physics.

The Black Hole Information Paradox
Stefano Antonini, John Martyn, Gautam Nambiar,14/10/2018



THE INFORMATION PARADOX

Unitarity? Non consistent with AdS/CFT

Joe Polchinski, Simons Symposium, Caneel Bay 2/5/13



Why unitarity cannot be violated??



MOTIVATIONS FOR UNITARITY

The "actual” guantum evolutions are reversible...
Information Is conserved...
The "actual” quantum state is pure...



What we learn at school

Quantum “Mechanics” (non relativistic)
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Unitarity in interacting QFT

The necessity for Faddeev—Popov ghosts follows from the
requirement that quantum field theories yield unambiguous, non-
singular solutions. This is not possible in the path integral
formulation when a gauge symmetry is present since there is no
procedure for selecting among physically equivalent solutions
related by gauge transformation. The path integrals overcount field
configurations corresponding to the same physical state; the
measure of the path integrals contains a factor which does not allow
obtaining various results directly from the action.

It is possible, however, to modify the action, such that methods such

as Feynman diagrams will be applicable by adding ghost fields
which break the gauge symmetry.

The ghost fields do not correspond to any real particles in
external states: they appear as virtual particles in Feynman
diagrams - or as the absence of gauge configurations. However,
they are a necessary computational tool to preserve unitarity.

Unitarity in quantum field theory?




Should the “actual” qguantum
evolution be reversible?

Should information be conserved?

s the “actual” qguantum state pure?



Should the “actual” m
evolution be re @q&)\e?
Should mform@@% be conserved?

al
SN
S th% ual” guantum state pure?



Quantum falsification tests




CONVENTIONS & NOTATIONS

Convenient rule of taking the trace Tr @ of the density matrix 0 € St(A) of system A as the
preparation probability p(Q) = Tr @ of the state Q (unit-trace Q deterministic states).

In such a way, for example, the trace Tr[7 o] will denote the joint probability of p-preparation
followed by the quantum operation 7 .

This convention makes possible to regard states and effects just as special cases of
transformations, from and to the trivial system I, respectively, with Hilbert space Hi = C



H Hilbert space over C

Bnd ™ (H) bounded positive operators over H

U(H) unitary group over H

T(H) trace-class operators over ‘H

T (H) trace-class positive operators over ‘H

TL,(H) positive sub-unit-trace operators over H

T, (H) positive unit-trace operators over H

CP< trace-non increasing completely positive map

CP= trace-preserving completely positive map

Conv(S) convex hull of S

Cone(S) conic hull of S

Cone<1(S) convex hull of {SU 0}

St(A) set of states of system A

St1(A) set of deterministic states of system A

Eff(A) set of effects of system A

Eff1(A) set of deterministic effects of system A

Trn(A — B) set of transformations from system A to system B

Trn1 (A — B) | set of deterministic transformations from system A to system B
Special cases
T(C)=C, T™(C)=R", TL,(C)=1[0,1], TL;(C)={1}
CP(T(H) = T(C)) = P(T(H) = T(C)) = {T [ E], E € Bnd " (H)}
CP(T(C) = T(H)) ( ( ) = T(H))=T"(H)

S(H)

CP<(T(C) = T(H))
) T[E], 0< E<I}

CP(T(H) = T(C) E{ ()




The falsification test

Definition 1 (Falsifier). The event F' is a falsitier of hypothesis Hyp if F' cannot happen for Hyp =
TRUE.

Accordingly we will call the binary test {F, F»} a falsification test for hypothesis Hyp, F»
denoting the inconclusive event.>

Practically one is interested in effective falsification tests {F), F; } which are not singleton—the
two singleton tests corresponding to F' =0 and F» = 0 being the inconclusive falsification test and
the logical falsification, respectively.

Suppose now that one wants to falsify a proposition about the state p € St(A) of system A. In
such case any effective falsification test can be achieved as a binary observation test of the form

(F,F5YCEff(A), Fr=Iy—F, F>0,F >0, (0.1)

where with the symbol F' (F7) we denote both the event and its corresponding positive operator.

A

@ {Ej }j€X>




Example of falsification test
Consider the proposition

Hyp: Suppp=K CHa, p€St(A), dim Ha > 2 (4.2)

where Supp p denotes the support of p. Then, any operator of the form
0<F<I,, SuppFCIKt (4.3)

would have zero expectation for a state p satistying Hyp (4.2), which means that occurrence of F'
would be a falsification of Hyp, namely

Tr[pF| >0 = Hyp = FALSE. (4.4)

In this example we can see how the falsification test is not dichotomic, namely the occurrence
of F»> does not mean that Hyp = TRUE, since F» occurs if Supp F» N K # 0. Eq. (4.3) provides the
most general falsification test of Hyp (4.2), and the choice Supp F' = Kt provides the most efficient
test since it maximises the falsification chance.



Unfalsifiability of purity of quantum states

Theorem 1 (Unfalsifiability of state-purity). There exists no test falsifying purity of an unknown state
of a given system A.
Proof. In order to falsify the hypothesis

Hyp: p € PurSt(A), (4.1)
we need a falsifier F' € Eff (A) satisfying
Tr[Fp] =0, Vp € PurSt(A), (4.2)

which means that

Vip € Ha : (W[F[) =0, (4.3)

namely F' =0, which means that the test is inconclusive. B

By the same argument one can easily prove the impossibility of falsifying purity even when
N > 1 copies of the state are available.



Unfalsifiability of atomicity of a transformation of a quantum system

Theorem 2 (Unfalsifiability of atomicity of a transformation). There exists no test falsifying atomicity
of an unknown transformation A € Trn(A — B).

Proof. The most general scheme for testing a property of a transformation 7 € Trn(A — B) is the
following

A

,7-B

(5.4)

We can use the maximally entangled state for R = |®)(®|, thus exploiting the Choi-Jamiotkowski
cone-isomorphism between transformations and bipartite states. One has

atomicity of T = purity of state (T @ Ig)R, (5.5)

and falsifying atomicity of 7 € Trn(A — B) is equivalent to falsifying purity of (7 ® Zg ) R, which
is impossible. B



Unfalsifiability of max-entanglement of a pure bipartite state

Theorem 3 (Unfalsifiability of max-entanglement of a pure bipartite state.). There exists no test
falsifying max-entanglement of a pure bipartite state.

Proof. Falsification of max-entanglement of state |®) (2| needs a falsifier F' € Eff (AB) satisfying
Tr|F|®)(®|] =0, V|P)(P| maximally entangled. (4.6)
In particular, since unitarity preserve max-entanglement, one has
Tr[F(U @ Ip)|P)(P|] =0, VU € Trn(A) unitary. (4.7)

Notice that the trace in Eq. 4.7 cannot be negative for any I’ and U/. It follows that its average over
the unitary group G = SU(d ) must be zero, corresponding to’

0= jG AU T [F(U ® Tp)|8) (@] = Tr[F(Iy © Tra[|8)(]])] = dx* Te[F(Ia @ )] = dy " Tr[F]

(4.8)
which implies that /' = 0, which contradicts the test effectiveness condition F' > 0.l



Unfalsifiability of unitarity of a quantum transformation

Theorem 4 (Unfalsifiability of unitarity of a transformation). There exists no test falsifying unitarity
of a transformation T € Trn(A).

Proof. The application of the operator to a fixed maximally-entangled state puts unitary
transformations in one-to-one correspondence with maximally entangled states. Thus, being able

to falsify maximal entanglement allows to falsify unitarity.



Unfalsifiability of unitary realization of a transformation

The impossibility of establishing the unitariety of transformation (Theorem 4) with input and
output systems under our control excludes the possibility of falsifying that a transformation is
actually achieved unitarily, according to the scheme

A B
A B
Ti = U :
F E
(o] Zi )
with {Z; } von Neuman measurement over the output environment E, and the input environment
F' is prepared in a state 0. Systems E, F, state o, measurement Z;, and unitary U/ are all not unique

and unknown, hence the testing resorts to falsifying unitarity of &/, which is impossible, not even
with control of input-output systems AF and BE.

(5.10)




Unfalsifiability of a mixed state being the marginalization of a pure one

Any purification pf the mixed state p € St(A) can be written in the following diagrammatic form

A

A | 1/2
p : (5.9)
G G N

e denoting the deterministic effect, corresponding to perform no-measurement on the system E,
and V being an isometry on the support of p. By writing V as V =U), with U unitary on E,
the proof follows in a way similar to Eq. 5.8. This excludes the possibility of falsifying that a
knowngly mixed state of a quantum system A actually is the marginal of a pure entangled state
with an environment system E. Moreover, the system E is unknown (we just know that it must
have dimension dg > dy ).




About minimal mathematical
axiomatization of QT



Customary mathematical axiomatisation of Quantum Theor

system A Ha
system composition AB HAa =Ha ® Hp
deterministic pure state o € PurSty(A) o=)|, v eHp, |Y|=1
reversible transf. U € RevTrn(A) Uo =Ulp)(p|UT, UeUA)

von Neumann-Liiders

transformation oc— Z,0:=7Z;,07; {Z;}iex C Bnd(Ha) PVM
Born rule p(i|y) = (| Zi|¢)
Theorems
trivial system I H1=C
deterministic states p € St1(A) = Conv(PurSty(A)) pE Til (Ha)
states p € St(A) = Cone< (PurStq(A)) pE Til (Ha)

Transformation as
unitary interaction

+ von Neumann A b A B ;
observable on “meter Ti :@ e U g 7 Tip=Trg[lU(p®@o)U' (I ® Z;)]
transformation T € Trn(A — B) T € CP<(T(Ha) — T(HB))
parallel composition | 71 € Trn(A —B), To € Trn(C—D) | T1 ® T2
sequential composition | 71 € Trn(A — B), T2 € Trn(B— C) | T2Th

effects

e € Eff(A) =Trn(A —1)

e(-)=Tra[E], 0<E<Iy

ec Eff1(A)=Trn1 (A — 1)

e="Trpa




Minimal mathematical axiomatisation of Quantum Theory

system A Ha
system composition AB Ha =Ha ® Hp
transformation T € Trn(A — B) T € CP<(T(Ha) — T(HB))
Born rule p(T)=TrT T eTrm(I—A)
Theorems
trivial system I H1=C
reversible transf. U=U-U" UecU(Ha)
determ. transformation T € Trn1 (A — B) T € CP=(T(Ha)— T(Hp))

parallel composition

71 € Trn(A — B), T2 € Trn(C — D)

T1® T2

sequential composition | 71 € Trn(A —B), T2 € Trn(B— C) | T2Th
states p€St(A)=Trn(I— A) pE TJ<F1 (Ha)
p€Sti(A)=Trn (I— A) p €T, (Ha)
p € St(I) =Trn(I = 1) p€|0,1]
p€St1(I)=Trn(I—1) p=1
effects e € Eff (A) =Trn(A — 1) €(-)=Tra[E], 0<E<Iy

e € Eff1 (A) =Trni (A — 1)

e="Trp

Transformations as
unitary interaction
+
von Neumann-Liiders

7))

Tip=Trg[U(p @ o)UT(Ig @ Z;)]




Quantum Theory:
no purification ontology

Commonplaces:

theory of “open systems”...

since “closed systems” (isolated
systems) are supposedly in a pure
state and undergo unitary
transformations

Unfalsifiable ontologies

Purification of quantum states
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Contrarily to the common belief

Quantum Theory is closed and logically consistent
without the purification ontology



Consequences:

Popular interpretations (many world’s, Rovelli’s, ...
are actually interpretations of a spurious postulate

They are still helpful tools for reasoning

The interpretation of the strict-theory is Copenhagen’s




Conclusion:

we cannot say: “information is conserved”
we can say: “things work as if information is conserved”



Purification
IS a powerful and elegant symmetry of the theory

It simplifies the theoretical evaluations, but ...



Quantum Theory

IS Intrinsically probabilistic and irreversible

We are stubbornly determinists
and believe that probability and irreversibility are due to
lack of knowledge



“This is more or less what | wanted to say”

Thank you for your attention



