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QFT on a lattice

v Quantum field theory (QFT) is a fundamental tool to describe various physical
phenomena

- We would like to solve the QFT to understand the physics and make a
theoretical prediction. One of the ways is to solve the path integral of
the QFT

¢/ Once we consider the QFT on a lattice, we can regard the path integral just as
a multiple integral

J xl;ld dp(x) eS8l S f nl;[d dop(n) e-Statld]

¢/ The QFT on a lattice provides us with a mathematically rigorous starting point
and we can investigate it based on the procedure of statistical physics
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Standard numerical approach for QFT on a lattice
v/ Monte Carlo (MC) simulation

- The MC is based on the probabilistic interpretation of the given Boltzmann
weight e~S¢!

- Lattice QCD is one of the most successful applications of the MC

v/ There are several difficulties in the MC simulation, though
© We encounter the sign problem when e~5I?] takes negative or complex value
* Bosons are easily dealt with the MC, but fermions are not

In the path integral formalism, fermions are described by the Grassmann
numbers, which obey the anti-commutation Y ¢ + ¢y = 0
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Different approach?

¢/ There are many systems suffering from the sign problem

- QCD at finite density

¢ Many unrevealed physics in such systems

* Thermodynamic limit (or zero-temperature limit) is almost inaccessible
w/ the standard MC approach

v We need different numerical methods which can give us insights for these
systems

- How about tensor network?



A quick overview of higher-dimensional TRG
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Tensor network & Lattice field theory

¢ A method to investigate quantum many-body system expressing an objective

function as a tensor contraction (= tensor network) Orus, APS Physics 1(2019)538-550
Banuls-Cichy, Rep. Prog. Phys. 83(2020)024401

Meurice-Sakai-Unmuth—Yockey, Rev. Mod. Phys. 94(2022)025005

Okunishi-Nishino-Ueda, J. Phys. Soc. Jap. 91(2022)062001

v TN method provides us with various ways to investigate lattice QFT

* Hamiltonian formalism

Describe a state vector as a TN, which is variationally optimized

Cf. DMRG, TEBD White, PRL69(1992)2863-2866, White, PRB48(1993)10345-10356
Vidal, PRL91(2003)147902, Vidal, PRL98(2007)070201

. . Cf. Various talks in this workshop
* Lagrangian formalism

Describe a path integral as a TN, which is approximately contracted

Cf. TRG, TNR, loop-TNR, GILT Levin-Nave, PRL99(2007
Evenbly-Vidal, PRL115(2015)180405, Evenbly, PRB95(2017

Yang-Gu-Wen, PRL118(2017
Hauru-Delcamp-Mizera, PRB97(2018

120601
045117
110504
045111
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Pros and Cons

v/ Tensor renormalization group (TRG) approximately contracts a given TN based on
the idea of real-space renormalization group

* No sign problem

* Thermodynamic limit

* Grassmann variables

* Path integral

- Higher dimension thand = 2

v/ Higher-dimensional TN computation is challenging

* Further algorithmic development is necessary

* Improvement of the TRG based on the removement of short-range correlations

* Lessons form other TN methods such as TTN, PEPS, isoTNS, etc Cf. L. Vanderstraeten, 9/26
Cf. F. Pollmann, 9/27
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Status of (3+1)D TN calculations

Hamiltonian formalism Lagrangian formalism

* Ising model sa+

- Staggered fermion w/ strongly coupled U(N) milde+
- Complex ¢* theory at finite density sa+

* Nambu—Jona-Lasinio model at finite density sa+

* Real ¢p* theory sa+

- Z, & 7.5 gauge-Higgs at finite density SA-Kuramashi

* QED at finite density magnifico+

v/ So far, the (3+1)D TN calculations have been driven by the Lagrangian formalism
w/ the TRG approach

v/ Development of parallel computing method specialized for individual algorithms

to reduce their execution time per process SA+, PoS(LATTICE2019)138
Yamashita-Sakurai, CPC278(2022)108423

v Application of ML techniques and/or GPU is a recent hot topic
Liao+, PRX9(2019)031041

R. G. Jha-Samlodia, CPC(2023)108941
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Procedure of TRG approach

1) Represent the path integral as a tensor network

- Lattice QFTs can be easily represented by TN

Cf. Y. Meurice, 9/15

Meurice-Sakai-Unmuth—Yockey, Rev. Mod. Phys. 94(2022)025005
Meurice, “Quantum Field Theory, A quantum computation approach”

------- ® o)
YA -
------- @ o)

2) Take contractions approximately

* Various algorithms are proposed to achieve this mission

* In 2D, we can also use other schemes to take contractions approximately
Cf. iTEBD for 2D classical Ising model: Orus-Vidal, PRB78(2008)155117
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Higher-order TRG (HOTRG)

v Applicable to any d-dimensional lattice

v/ # of tensors are reduced to half

Xie-Chen-Qin-Zhu-Yang-Xiang, PRB86(2012)045139

Memory Complexity
O(DZd) 0(D4d—1)

Iterating this CG n times, we can approximately contract 2™ tensors

(A)

|y_
X

Iteration

HOSVD
-

'Eifi}{
DD

Contraction

Sequential coarse-graining along with each direction

D: bond dimension



v/ Critical point is precisely located with relatively small bond dimension

Internal Energy U

Example: 3D Ising model w/ HOTRG

D =14 % o000
-1.0
LS o HOTRG |
Fitting curve (0=0.1023, T>T )
OOOO Fitting curve (a=0.1137, T<T ) 1
O
-2.0 ' : '
4.0 4.5 5.0

Temperature

5.5
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Xie-Chen-Qin-Zhu-Yang-Xiang, PRB86(2012)045139

Critical point

[

Method T.
HOTRG (D = 16, from U) 4511 544]
HOTRG (D = 16, from M) 4.511546
Monte Carlo"’ 4511523
Monte Carlo™ 4511525
Monte Carlo™ 4511516
Monte Carlo™ 4.511528
Series expansion™ 4511536
CTMRG'" 4.5788
TPVA" 4.5704
CTMRG™ 4.5393
TPVA'® 4.554
Algebraic variation*' 4.547
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Anisotropic TRG (ATRG)

v Applicable to any d-dimensional lattice

¢ More economic than the HOTRG

-

{)7 —O

o

Q

X
~ D
Txyx’y’ ~ i=1Axyin'y’i

ATRG considers the block-spin transformation within
lower-rank tensors. ( Memory: 0(D?%) - 0(D%*1)

)
J

(A)

Adachi-Okubo-Todo, PRB102(2020)054432

Memory Complexity
0(Dd+1) 0(D2d+1)

Iteration Contraction

# of tensors are reduced to half
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Canonical form in ATRG

v/ ATRG converts two adjacent tensors into a canonical form

- Canonical form is an important idea in MPS schollwéck, Annals of Physics 326(2011)96-192
Cf. F. Pollmann, 9/27

SVD SVD

v “Reduced density matrix” is simplified thanks to the canonical form
* Highly helpful in practical computations

e



Relative error of free energy
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Benchmarking w/ 2D Ising model

v HOTRG & ATRG improve the accuracy of the original (LN-)TRG at the same D
The exact solution is well reproduced

v ATRG shows better performance than the HOTRG at the same execution time

Comparison of three types of TRG . ) )
P P Relative error vs execution time
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Grassmann TRG approach

Gu-Verstraete-Wen, arXiv:1004.2563

v Any TRG algorithm can be applied for fermions
Fermionic path integral can be expressed as a tensor network generated by

Grassmann tensors Gu, PRB88(2013)115139

Shimizu-Kuramashi, PRD90(2014)014508

igigigee i1 iz, 03 Takeda-Yoshimura, PTEP2015(2015)043B01
Tnangng- = r /PRI Meurice, PoS LATTICE2018(2018)231
i1,i2,i3, Bao’s thesis, PhD, Uwaterloo

SA-Kadoh, JHEP10(2021)188

v/ A clear correspondence btw tensors and Grassmann tensors

_ Tensor Grassmann tensor

index integer Grassmann number

contraction IR [ [ didne™1 ...

eAlT)TlII}TH'Il = (f f dﬁndnne_ﬁnnn) exp[—\/ZITJnnn + \/Zﬁnlpnﬂi]
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Several public codes of Grassmann TRG

v Grassmann bond-weighted TRG https://github.com/akiyama-es/Grassmann-BTRG by SA

* Originally proposed for spin models

* Works also well for fermions
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Adachi-Okubo-Todo, PRB105(2022)L060402

SA, JHEP11(2022)030

Relative error

i : ! ! : T
O: w/ bond-weighting | -
[]: w/o bond-weighting E

O

Kk~ 122 -

O
K= 1.26

2d massless free Wilson fermion

ks

5f~D?* w/ k = 1.344 whenc = 1

100

D
Tagliacozzo+, PRB78(2008)024410
Pollmann+, PRL102(2009)255701

v GrassmannTN https://github.com/ayosprakob/grassmanntn by A. Yosprakob

* Python package for Grassmann TRG computations

Yosprakob, arXiv:2309.07557


https://github.com/akiyama-es/Grassmann-BTRG
https://github.com/ayosprakob/grassmanntn

TRG study of (3+1)D Z, & Z4 gauge-Higgs models

First application of TRG to (3+1)D LGT

SA-Kuramashi, JHEP05(2022)102
SA-Kuramashi, arXiv:2304.07934 (To appear in JHEP)
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4., gauge-Higgs model in the unitary gauge

§=—BXn2vspRe[U,(M)U,(n +V)U;(n+ p)U;(n)]
—N Zv[e“‘sv'da*(n) U,(n)o(n + V) + e #dag*(n)Uz:(n — V)o(n — 19)]

n+p] Uy(n +p) URaA:
Uy(n) A A U,(n+7)
7t > T+
Uy (n)

U,(n)(€ Z,): link variable living on edges
o(n)(€ Z,) : matter field living on sites
B: inverse gauge coupling

n: spin-spin coupling

u: chemical potential

v Unitary gauge fixing: *(n)U,(n)a(n + V) » U, (n)

§=—BXn2vs>pRe[U,(M)U,(n +V)U;(n+ p)U;(n)]
—21 ¥, Y [cosh(us, 4 )ReU, (n) + isinh(ué,, 4 )ImU, (n)]
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Motivation of studying Z,, gauge-Higgs model

v The simplest lattice gauge theory coupling to a matter field

- A good target to see whether the TRG is efficient for the (3+1)D lattice
gauge theory or not

v The model possesses the critical endpoint (CEP)

- QCD at finite temperature and density also has the CEP
Can we use the TRG to specify the precise location of CEP?

v We can consider the model at finite density

* We can investigate how the CEP moves by finite chemical potential
The Z, model is free from the sign problem but the Z3 model is not
Cf. TRG studies of gauge-Higgs models in 2D
Unmuth—Yockey+, PRD98(2018)094511, Bazavov+, PRD99(2019)114507, Butt+, PRD101(2020)094509

v We use the ATRG w/ parallel computation (slicing fundamental tensors)
SA+, PoS(LATTICE2019)138
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Phase diagram of the (3+1)D modelat u =0

Critical endpoint

We investigate the phase diagram along the
first-order line toward the critical endpoint

We evaluate the average link (L), whose
discontinuity vanishes at the critical endpoint

1 9,
L) = InZ
= arovaan™
15t order
I Higgs I
I Confinement I
L J
Triple point
st
1°* order Free Charge
®
(00

Cf. Fradkin-Shenker, PRD19(1979)3682
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Study of the (2+1)D modelat u =0

0.123f

First-order points seem
robust against D
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Comparison with the self-dual line

v All transition points are well located on the self-dual line

0.1265 \ T T T | T | T | T | T
0.1260 = O First-order transition point (TRG)| _|
_ T O Critical endpoint (Fit) |
0.1255+ \@\\ ---- Self-dual line n
. _ . _

0.1250 e - In tanh
1250 - = ——Intan n
- e n=Tgintanhf
1 0.1245 e |
0.1240 |- -
0.1235 -
I D =48 SN -
0.1230 |- -
0.1225 | | | | | | | | | | | | | T
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B
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(3+1)D model at vanishing density
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Status of the phase diagram near the CEP

v It seems that TRG and MC share a similar first-order lineat u = 0

v Revisiting the CEP by the modern MC simulation should be meaningful

0.30 | —
A Mean-field theory
025+ Bm Monte Carlo ]
e o 1
i ¢ TRG (n=1)
020 A ¢ TRG (u=2) |
L %e
N
®
Mo0.15F ® , .
M Triple point
«»
0.10 -
1 Creutz, PRD21(1980)1006
0.05F Pure-gauge
transition
1 | 1 | 1 | 1 | 1 | 1 yan\ .
09015 0.20 025 0.30 0235 0.40 045 Balian-Drouffe-Itzykson,

B PRD11(1975)2098
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(3+1)D Z3 model at vanishing density 1/2

v Comparison btw MC and TRG via the average plaquette (U) and its susceptibility

<U>;

I m=0.5
08}

= Good agreement just w/ D = 45 at finite-n regime

- The susceptibility of (U) is obtained by numerical difference in case of TRG

Monte Carlo

Gattringer-Schmidt, PRD86(2012)094506
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(3+1)D Z5 model at vanishing density 2/2

v Location of the transition point seems converging w.r.t D
- Relative error btw D = 44 and D = 50 is 0.019%

v A(L) becomes smaller when 8 becomes smaller as expected

D-dependence in the first-order transition point Average link@D = 50
0.340 | T T T T T T T T T T T T ‘ ] 1.0 ‘
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S 0335} . | |ooB=0415 ¥ o ]
o 7 A ogl |22 B=0416 ]
& e v B=0417
§ i 5 ] e B=0418 .
S 0330 s . =07 |>>p=0419 -
g B S e %0 | |+—+p=0.420
3 i o x—x [ =0.425
S I Z 0.6 Ry ]
Z o3sl- © = i
- i 0.5 -
— -5
N+ —n-=0(107>) .
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(3+1)D Z3 model at finite density

v Again, A(L) becomes smaller when 8 becomes smaller as expected

Average Link <L>

Average link@u = 1
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Average link@u = 2
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CEP in (3+1)D Z3 model at finite u
v CEP is determined via the similar fit to the Z, model
" Fitby A(L) = A(,B - ,Bc)p and A(L) = B(nc - 77)q
* According to the mean field theory,p = g = 0.5

- The simultaneous fit among different u suggests p = 0.46(2),q = 0.46(3)

p=1 p=2

0.4 LN L L L I LB B B L L L L L L L L L B 04 T T | T T T [ T T T [ 7T L L A A B

03F +H+ =

A<L>
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- CF{I)| | —— CF{I)| ]
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Phase diagram of Z,, gauge-Higgs model (n = 2,3)

v n-dependence in the resulting CEP is consistent w/ previous studies
Cf. U(1) gauge-Higgs studies, Baig-Clua, PRD57(1998)3902, Franzki+, PRD57(1998)6625
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Summary

v TRG is a typical TN algorithm, which enables us to perform TN contraction
approximately using the idea of RSRG

v TRG w/ parallel computation has been a good way to investigate higher-
dimensional QFT on a thermodynamic lattice

v Several public codes for Grassmann TRG

v The first application of TRG for (3+1)D LGT has been made
We have obtained the TRG estimates of CEP in Zo & Z3 gauge-Higgs
model at finite density
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Future Perspective

v A next interesting (challenging) target can be the (3+1)D QED

- Variational approach based on the tree TN for the (3+1)D lattice QED (L < 8)
Magnifico+, Nature Commun. 12(2021)1

v How can we approach D — o0? Cf. Finite-entanglement scaling:
Tagliacozzo+, PRB78(2008)024410
* This problem should be addressed Pollmann+, PRL102(2009)255701

Cf. L. Vanderstraeten, 9/26

v Although TRG is based on Lagrangian formalism, some problems are
shared with quantum computations based on Hamiltonian formalism

* TRG may give us insights from the viewpoint of classical computation and vice versa

* How can we deal with higher-dimensional non-abelian gauge theories with TN?
Cf. TRG approach for SU(N) gauge theory  Fukuma-Kadoh-Matsumoto, PTEP2021(2021)123B03

Hirasawa+, JHEP12(2021)011
Kuwahara-Tsuchiya, PTEP2022(2022)093B02

* Multi-flavor fermions? SA, PRD108(2023)034514
Yosprakob-Nishimura-Okunishi, arXiv:2309.01422



