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Research motivation



QFT on a lattice

✔ Quantum field theory (QFT) is a fundamental tool to describe various physical 
phenomena

✔ Once we consider the QFT on a laEce, we can regard the path integral just as 
a mul-ple integral

✔ The QFT on a laEce provides us with a mathema-cally rigorous star-ng point 
and we can inves*gate it based on the procedure of sta*s*cal physics

1/28

# $
!∈ℝ!

d𝜙 𝑥 e$%['] → # $
)∈*!

d𝜙 𝑛 e$%"#$[']

・We would like to solve the QFT to understand the physics and make a 
theore-cal predic-on. One of the ways is to solve the path integral of 
the QFT



Standard numerical approach for QFT on a lattice

・ The MC is based on the probabilistic interpretation of the given Boltzmann 
weight e$%[']

・We encounter the sign problem when e!"[$] takes nega-ve or complex value

・Bosons are easily dealt with the MC, but fermions are not
In the path integral formalism, fermions are described by the Grassmann
numbers, which obey the an--commuta-on 𝜓𝜙 + 𝜙𝜓 = 0
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✔ There are several difficul-es in the MC simula-on, though

・ Lattice QCD is one of the most successful applications of the MC

✔Monte Carlo (MC) simula-on



Different approach?

✔ Many unrevealed physics in such systems

・ Thermodynamic limit (or zero-temperature limit) is almost inaccessible 
w/ the standard MC approach

✔ We need different numerical methods which can give us insights for these 
systems
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✔ There are many systems suffering from the sign problem

・ QCD at finite density

・ How about tensor network?



A quick overview of higher-dimensional TRG



Tensor network & La=ce field theory
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✔ A method to inves*gate quantum many-body system expressing an objec*ve 
func*on as a tensor contrac*on (= tensor network)

✔ TN method provides us with various ways to inves-gate laEce QFT

・Hamiltonian formalism

・Lagrangian formalism

Orús, APS Physics 1(2019)538-550
Bañuls-Cichy, Rep. Prog. Phys. 83(2020)024401

Meurice-Sakai-Unmuth–Yockey, Rev. Mod. Phys. 94(2022)025005
Okunishi-Nishino-Ueda, J. Phys. Soc. Jap. 91(2022)062001

Describe a state vector as a TN, which is varia*onally op*mized

Describe a path integral as a TN, which is approximately contracted

Cf. DMRG, TEBD White, PRL69(1992)2863-2866, White, PRB48(1993)10345-10356
Vidal, PRL91(2003)147902, Vidal, PRL98(2007)070201

Cf. TRG, TNR, loop-TNR, GILT Levin-Nave, PRL99(2007)120601
Evenbly-Vidal, PRL115(2015)180405, Evenbly, PRB95(2017)045117

Yang-Gu-Wen, PRL118(2017)110504
Hauru-Delcamp-Mizera, PRB97(2018)045111

Cf. Various talks in this workshop



Pros and Cons
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・Lessons form other TN methods such as TTN, PEPS, isoTNS, etc

✔ Tensor renormaliza-on group (TRG) approximately contracts a given TN based on 
the idea of real-space renormaliza-on group

✔ Higher-dimensional TN computa*on is challenging 

・No sign problem

・Thermodynamic limit 

・Grassmann variables

・Higher dimension than 𝒅 = 𝟐

・Further algorithmic development is necessary 

・Improvement of the TRG based on the removement of short-range correlaAons

・Path integral

Cf. L. Vanderstraeten, 9/26
Cf. F. Pollmann, 9/27



Status of (3+1)D TN calculations 
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Hamiltonian formalism Lagrangian formalism

・QED at finite density Magnifico+

・Ising model SA+
・Staggered fermion w/ strongly coupled U(N) Milde+
・Complex 𝜙+ theory at finite density SA+
・Nambu—Jona-Lasinio model at finite density SA+
・Real 𝜙+ theory SA+
・ℤ, & ℤ- gauge-Higgs at finite density SA-Kuramashi

✔ So far, the (3+1)D TN calcula-ons have been driven by the Lagrangian formalism 
w/ the TRG approach

✔ Development of parallel compu*ng method specialized for individual algorithms
to reduce their execu-on -me per process

Yamashita-Sakurai, CPC278(2022)108423
SA+, PoS(LATTICE2019)138

✔ Applica*on of ML techniques and/or GPU is a recent hot topic
Liao+, PRX9(2019)031041

R. G. Jha-Samlodia, CPC(2023)108941



Procedure of TRG approach
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1) Represent the path integral as a tensor network

2) Take contrac*ons approximately 

𝑍 →

・In 2D, we can also use other schemes to take contracAons approximately 
・Various algorithms are proposed to achieve this mission

Cf. iTEBD for 2D classical Ising model: Orús-Vidal, PRB78(2008)155117

・Lattice QFTs can be easily represented by TN 
Meurice-Sakai-Unmuth–Yockey, Rev. Mod. Phys. 94(2022)025005

Meurice, “Quantum Field Theory, A quantum computagon approach”

Cf. Y. Meurice, 9/15



Higher-order TRG (HOTRG)

(B)

(C)

(A)

HOSVD

ContractionIteration

𝑫: bond dimension
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𝑈 𝑈.

Sequential coarse-graining along with each direction

/𝑥

/𝑦

✔ # of tensors are reduced to half
Itera?ng this CG 𝒏 ?mes, we can approximately contract 𝟐𝒏 tensors

✔ Applicable to any 𝑑-dimensional laMce

Xie-Chen-Qin-Zhu-Yang-Xiang, PRB86(2012)045139

Memory Complexity

𝑂 𝐷,0 𝑂 𝐷+0$1



Example: 3D Ising model w/ HOTRG

COARSE-GRAINING TENSOR RENORMALIZATION BY . . . PHYSICAL REVIEW B 86, 045139 (2012)
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FIG. 7. (Color online) Graphical representation for the determi-
nation of the bond density matrix ρ(n)

zw,xy from the environment tensor
E

(n+2)
lrf bud in three dimensions.

the Monte Carlo result.27 Our result for the specific heat agrees
with the Monte Carlo one. At the critical temperature, Tc =
4.511544, the internal energy is found to be Uc = −0.995592
for D = 14. This value of Uc, as shown in Table I, also agrees
well with other published data.

From the temperature dependence of the specific heat
around the critical point, one can estimate the critical exponent
of the specific heat with the formula,

C ∼ t−α, (16)

where t = |1 − T/Tc|. However, as the specific heat data are
obtained simply from the numerical derivative of the internal
energy, the accuracy of the specific heat data is much less than
that of the internal energy, especially around the critical point.
This causes a big error in the determination of the exponent α
with the above formula. This problem can be solved by directly
evaluating this exponent from the temperature dependence of
the internal energy. From the temperature integration of the
specific heat, it is simple to show that the internal energy
should exhibit the following critical behavior:

U = Uc + at + bt1−α, (17)

FIG. 8. (Color online) The internal energy and the specific heat
for the 3D Ising model obtained by the HOTRG with D = 14.
The Monte Carlo result (black curve) obtained from an empirical
fit formula given in Ref. 27 is shown for comparison.

TABLE I. Comparison of the internal energy at the critical
temperature Uc for the 3D Ising model obtained by different methods.

Method Uc

HOTRG (D = 16) − 0.990842(3)
Series expansion30 − 0.991(1)
Series expansion31 − 0.9902(1)
Series expansion32 − 0.99218(15)
Monte Carlo27 − 0.990604(4)
Monte Carlo33 − 0.9904(8)
Monte Carlo34 − 0.990(4)

where a and b are unknown parameters which can be
determined by fitting.

Figure 9 shows the fitting curves for the internal energy
around the critical point obtained with Eq. (17). The critical
exponent is found to be α = 0.1023 and 0.1137 for the tem-
perature higher and lower than the critical value, respectively.
These values of the critical exponent are consistent with the
result obtained from the series expansion,28 0.104, and the
Monte Carlo calculation,29 0.111.

Figure 10 shows the temperature dependence of the sponta-
neous magnetization M obtained by the HOTRG with D = 14.
Our data agree well with the Monte Carlo results.35 From the
singular behavior of M , we find that the critical temperature
Tc = 4.511615 for D = 14. Furthermore, by fitting the data of
M in the critical regime with the formula,

M ∼ tγ , (18)

we find that the exponent γ = 0.3295, consistent with the
Monte Carlo29 (0.3262) and series expansion36 (0.3265)
results.

Figure 11 shows the critical temperature Tc determined
from the singular points of the internal energy as well as the
magnetization for D up to 16. The values of Tc obtained from
these two quantities agree with each other. For D = 16, Tc

obtained from the internal energy and the magnetization are
4.511544 and 4.511546, respectively. The relative difference
is less than 10−6. But Tc does not vary monotonically with

FIG. 9. (Color online) The internal energy (D = 14) and its fitting
curves with Eq. (17) around the critical point for the 3D Ising model.
α is the critical exponent for the specific heat.

045139-5

Critical point
𝐷 = 14
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✔ Cri?cal point is precisely located with relaNvely small bond dimension

Xie-Chen-Qin-Zhu-Yang-Xiang, PRB86(2012)045139



Anisotropic TRG (ATRG)

(B)(A)

(C)

ContractionIteration

SVD
&

HOSVD

# of tensors are reduced to half

𝑇!2!%2% ≈ ∑3415 𝐴!23𝐵!%2%3

ATRG considers the block-spin transformation within 
lower-rank tensors. ( Memory: 𝑂 𝐷&' → 𝑂 𝐷'() )

/𝑥

/𝑦

Adachi-Okubo-Todo, PRB102(2020)054432
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✔ Applicable to any 𝑑-dimensional laMce

✔ More economic than the HOTRG

Memory Complexity

𝑂 𝐷061 𝑂 𝐷,061



Canonical form in ATRG
✔ ATRG converts two adjacent tensors into a canonical form

Schollwöck, Annals of Physics 326(2011)96-192

SVDSVD

・ Canonical form is an important idea in MPS

11/28

✔ “Reduced density matrix” is simplified thanks to the canonical form
・Highly helpful in practical computations

Cf. F. Pollmann, 9/27
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Levin-Nave TRG
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Benchmarking w/ 2D Ising model
12/28

Comparison of three types of TRG 
w/ 𝐷 = 24
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𝛽 = 𝛽!

Rela-ve error vs execu-on -me

✔ ATRG shows beHer performance than the HOTRG at the same execu?on ?me

✔ HOTRG & ATRG improve the accuracy of the original (LN-)TRG at the same 𝐷
The exact soluNon is well reproduced



Grassmann TRG approach
13/28

✔ Any TRG algorithm can be applied for fermions
Fermionic path integral can be expressed as a tensor network generated by 
Grassmann tensors

Gu-Verstraete-Wen, arXiv:1004.2563

𝒯"!"""#⋯ = $
$!,$",$#,⋯

𝑇$!$"$#⋯𝜂&
$!𝜂'

$"𝜂(
$#⋯

Tensor Grassmann tensor

index integer Grassmann number

contraction Σ$⋯ ∫ ∫ d�̅�d𝜂e)*""⋯

✔ A clear correspondence btw tensors and Grassmann tensors

Gu, PRB88(2013)115139
Shimizu-Kuramashi, PRD90(2014)014508

Takeda-Yoshimura, PTEP2015(2015)043B01
Meurice, PoS LATTICE2018(2018)231

Bao’s thesis, PhD, Uwaterloo
SA-Kadoh, JHEP10(2021)188 

e$%𝝍𝒏𝝍𝒏"𝝁 = ∫ ∫ d�̅�'d𝜂'e(%)$)$ exp − 𝐴+𝝍𝒏𝜂' + 𝐴�̅�'𝝍𝒏+𝝁



!(") !(")

"(")
#(")

Several public codes of Grassmann TRG

SA, JHEP11(2022)030

Adachi-Okubo-Todo, PRB105(2022)L060402

2d massless free Wilson fermion

○: w/ bond-weighHng
□: w/o bond-weighgng
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✔ Grassmann bond-weighted TRG h?ps://github.com/akiyama-es/Grassmann-BTRG by SA

𝜅 ≈ 1.26

𝜅 ≈ 1.22

𝛿𝑓~𝐷'+ w/ 𝜅 = 1.344 when 𝑐 = 1 Tagliacozzo+, PRB78(2008)024410 
Pollmann+, PRL102(2009)255701

・ Originally proposed for spin models

・Works also well for fermions

✔ GrassmannTN h?ps://github.com/ayosprakob/grassmanntn by A. Yosprakob

Yosprakob, arXiv:2309.07557・ Python package for Grassmann TRG computations

https://github.com/akiyama-es/Grassmann-BTRG
https://github.com/ayosprakob/grassmanntn


TRG study of (3+1)D ℤ𝟐 & ℤ𝟑 gauge-Higgs models

SA-Kuramashi, arXiv:2304.07934 (To appear in JHEP)

SA-Kuramashi, JHEP05(2022)102

First applica-on of TRG to (3+1)D LGT



ℤ# gauge-Higgs model in the unitary gauge

✔ Unitary gauge fixing: 𝜎∗ 𝑛 𝑈8 𝑛 𝜎 𝑛 + �̂� ↦ 𝑈8(𝑛)

𝑈, 𝑛 (∈ ℤ-): link variable living on edges
𝜎 𝑛 ∈ ℤ- : maNer field living on sites
𝛽: inverse gauge coupling
𝜂: spin-spin coupling
𝜇: chemical potenAal

𝑛 𝑛 + �̂�

𝑛 + 1𝜌 𝑛 + �̂� + 1𝜌

𝑈!(𝑛)

𝑈!(𝑛 + 1𝜌)

𝑈"(𝑛 + �̂�)𝑈"(𝑛)

𝑆 = −𝛽∑)∑89:Re[𝑈8 𝑛 𝑈: 𝑛 + �̂� 𝑈8∗ 𝑛 + /𝜌 𝑈:∗ 𝑛 ]

−𝜂 ∑)∑8 e;<*,!𝜎∗ 𝑛 𝑈8 𝑛 𝜎 𝑛 + �̂� + e$;<!,,𝜎∗ 𝑛 𝑈8∗ 𝑛 − �̂� 𝜎(𝑛 − �̂�)

𝑆 = −𝛽∑)∑89:Re[𝑈8 𝑛 𝑈: 𝑛 + �̂� 𝑈8∗ 𝑛 + /𝜌 𝑈:∗ 𝑛 ]

−2𝜂 ∑)∑8 cosh 𝜇𝛿8,+ Re𝑈8 𝑛 + isinh 𝜇𝛿8,+ Im𝑈8 𝑛

15/28



MoVvaVon of studying ℤ# gauge-Higgs model

✔ The simplest laTce gauge theory coupling to a maUer field

✔ The model possesses the cri*cal endpoint (CEP) 

・ A good target to see whether the TRG is efficient for the (3+1)D lattice 
gauge theory or not

・ QCD at finite temperature and density also has the CEP
Can we use the TRG to specify the precise location of CEP?

✔ We can consider the model at finite density
・ We can inves-gate how the CEP moves by finite chemical poten-al

The ℤ𝟐 model is free from the sign problem but the ℤ𝟑 model is not

16/28

Cf. TRG studies of gauge-Higgs models in 2D
Unmuth–Yockey+, PRD98(2018)094511, Bazavov+, PRD99(2019)114507, Bun+, PRD101(2020)094509

✔ We use the ATRG w/ parallel computa-on (slicing fundamental tensors) 
SA+, PoS(LATTICE2019)138



Phase diagram of the (3+1)D model at 𝜇 = 0
We investigate the phase diagram along the 
first-order line toward the critical endpoint

𝜂

𝛽

Higgs 

Free Charge

Confinement

0 ∞

Critical endpoint 

Triple point 

𝐿 =
1

𝑑 + 1 𝑉
𝜕

𝜕(2𝜂) ln 𝑍

We evaluate the average link 𝑳 , whose 
discon?nuity vanishes at the cri?cal endpoint

1st order

1st order
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Cf. Fradkin-Shenker, PRD19(1979)3682
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Study of the (2+1)D model at 𝜇 = 0

with 𝐷 ≤ 48, 𝜂! − 𝜂" = 𝑂(10"#)

First-order points seem 
robust against 𝑫

Bond dimension

Δ 𝐿 = 𝐴 𝛽 − 𝛽# $Δ 𝐿 = 𝐵 𝜂# − 𝜂 %
MC 

Somoza+, 
PRX11(2021)041008

𝛽> ≈ 0.701

TRG 
this work

𝛽> = 0.70051(7)
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✔ All transi*on points are well located on the self-dual line
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(3+1)D model at vanishing density

Difference btw 𝐷 = 48 and 
𝐷 = 52 is about 0.057%

with 𝐷 ≤ 52, 𝜂! − 𝜂" = 𝑂(10"$)

Mean-field
Brezin-Drouffe, 

NPB200(1982)93
𝛽> , 𝜂> = (0.22, 0.205)

MC on 𝑉 = 8+
Creutz,

PRD21(1980)1006

𝛽> , 𝜂>
= (0.22(3), 0.24(2))

TRG w/ 𝐷 = 52
this work

𝛽> , 𝜂>
= (0.3051 2 , 0.1784(2))

Δ 𝐿 = 𝐵 𝜂# − 𝜂 %

Δ 𝐿 = 𝐴 𝛽 − 𝛽# $

Bond dimension
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✔ It seems that TRG and MC share a similar first-order line at 𝝁 = 𝟎

✔ Revisi-ng the CEP by the modern MC simula-on should be meaningful
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observe that the results from the dual simulation and the
conventional approach match very well. However, since at
! ¼ 0:1 and vanishing chemical potential " the influence
of the Higgs field seems to be small, we consider a second,
larger value of !.

The results for hUi and #U at ! ¼ 0:5 and " ¼ 0:0 are
shown in Fig. 5. We now observe quite a change in the
behavior of the observables in comparison to the pure
gauge and ! ¼ 0:1 cases. The phase transition has appar-
ently disappeared and we only find a smooth crossover type
of behavior between the strong and weak coupling phases.
The maximum of the susceptibility #U has shifted to rather
small values—the crossover takes place near $ ¼ 0:28.
The important fact is that, also here at a larger value of
!, where obviously the Higgs field has a much stronger
influence, the results from the conventional approach and
the dual simulation agree very well, again confirming the
correctness of the implementation of the dual approach.

V. THE Z3 GAUGE-HIGGS MODEL
AT FINITE DENSITY

Let us now come to the more interesting case of finite
density. Here conventional simulations fail and the full
potential of the dual approach can be unveiled. Before
we start with the presentation of Monte Carlo results we
first discuss some characteristic features of the dual repre-
sentation at finite density.

A. Finite density dynamics in the dual representation

The dual representation of the Z3 gauge-Higgs model
uses two sets of degrees of freedom: the plaquette occupa-
tion numbers p and the fluxes k. For the analysis of the
mechanisms that drive the systems at finite density it is
useful to think a little bit about the dynamics of the dual
variables, and this subsection is devoted to that task.

The dual degrees of freedom assume values in
f"1;0;þ1g, i.e., px;%&2f"1;0;þ1g and kx;'2f"1;0;þ1g.

A trivial value of the plaquette occupation number, i.e.,
px;%& ¼ 0, comes with a Boltzmann factor of 1 [compare
(16)], while nontrivial values px;%& $ 1 give rise to a factor
of B$ < 1 [see (11) for the definition of B$]. Thus non-
trivial values of plaquette occupation numbers p are sup-
pressed by their Boltzmann factor. On the other hand
configurations with many px;%& ! 0 have a much higher
entropy and (as always) the interplay of entropy and
Boltzmann factor gives rise to the first order transition of
the pure gauge theory discussed in Sec. IVA. The corre-
sponding observables hUi and #U are simple functions of
the plaquette occupation numbers and their fluctuations.
We stress at this point that both observables have a
$-dependent additive term [compare (18)]. For the pla-
quette expectation value the additive term is given by B$,
and hUi is nonvanishing for $> 0 even when all plaquette
occupation numbers p are trivial, since B$ > 0 for $> 0.
Similar to the plaquette occupation numbers, the spatial

flux variables kx;j, j ¼ 1, 2, 3, have a Boltzmann factor of 1
for kx;j ¼ 0 and a Boltzmann factor B! < 1 for kx;j ¼ $1
[see (16)]. As for the case of the plaquette occupation
numbers, we find for the k variables that trivial values of
the spatial fluxes are preferred by the Boltzmann factor.
The temporal flux variables kx;4 are connected with the
Boltzmann factors Ms with s 2 f"1; 0; 1g defined in (6).
For "> 0 we have Mþ1 >M"1 (see also the discussion
below) and temporal flux with kx;4 ¼ þ1 is favored over
negative temporal flux, i.e., kx;4 ¼ "1.
To illustrate the physical picture in terms of the dual

representation, in Fig. 6 we show a few low-lying excita-
tions of the Z3 gauge-Higgs model in the dual representa-
tion. Thick red lines oriented with arrows are used for the k
flux and filled blue squares for nonvanishing plaquette
occupation numbers, and the circles in the squares indicate
the orientation of the plaquette according to the sign of
the corresponding plaquette occupation number px;%&. The
simplest excitations (the lhs diagram in Fig. 6) are an
occupied plaquette surrounded by flux. At each link the
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FIG. 5 (color online). Same as in Fig. 4, but nowe ! ¼ 0:5.
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𝜂 = 0.5, 𝜇 = 0

Monte Carlo TRG w/ 𝐷 = 45
Gattringer-Schmidt, PRD86(2012)094506

✔ Comparison btw MC and TRG via the average plaquette 𝑈 and its susceptibility

・Good agreement just w/ 𝐷 = 45 at finite-𝜂 regime 

・The suscep-bility of 𝑈 is obtained by numerical difference in case of TRG 

𝑈 𝑈

(3+1)D ℤ𝟑 model at vanishing density 1/2

𝜒? 𝜒?

𝑈 = −
1
6𝑉

𝜕
𝜕𝛽

ln 𝑍
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Average link@𝐷 = 50

✔ Δ 𝐿 becomes smaller when 𝛽 becomes smaller as expected

✔ Location of the transition point seems converging w.r.t 𝐷

・Rela-ve error btw 𝐷 = 44 and 𝐷 = 50 is 0.019% 

𝐷-dependence in the first-order transigon point
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(3+1)D ℤ𝟑 model at vanishing density 2/2
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✔ Again, Δ 𝐿 becomes smaller when 𝛽 becomes smaller as expected

(3+1)D ℤ𝟑 model at finite density
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CEP in (3+1)D ℤ𝟑 model at finite 𝜇
25/28

✔ CEP is determined via the similar fit to the ℤ𝟐 model 
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・Fit by Δ 𝐿 = 𝐴 𝛽 − 𝛽+ , and Δ 𝐿 = 𝐵 𝜂+ − 𝜂 -

𝜇 = 1 𝜇 = 2

・According to the mean field theory, 𝑝 = 𝑞 = 0.5

・The simultaneous fit among different 𝜇 suggests 𝒑 = 𝟎. 𝟒𝟔 𝟐 , 𝒒 = 𝟎. 𝟒𝟔(𝟑)
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Pure ℤ%※)

𝑛 = 2

𝒏 = 𝟑

𝒏 = 𝟑

✔ 𝑛-dependence in the resulting CEP is consistent w/ previous studies

Black  : 𝜇 = 0
Blue   : 𝜇 = 1
Green: 𝜇 = 2

※) Balian+, PRD10(1974)3376

Cf. U(1) gauge-Higgs studies, Baig-Clua, PRD57(1998)3902, Franzki+, PRD57(1998)6625

Pure ℤ&※)

(0.4086 6 4 , 0.3280(6)(3)) @ 𝜇 = 0
(0.4139 2 13 , 0.2813(2)(10)) @ 𝜇 = 1
(0.40873 7 5 , 0.20994(9)(4)) @ 𝜇 = 2



Summary
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✔ TRG is a typical TN algorithm, which enables us to perform TN contraction 
approximately using the idea of RSRG

✔ TRG w/ parallel computa>on has been a good way to inves>gate higher-
dimensional QFT on a thermodynamic laCce

✔ Several public codes for Grassmann TRG

✔ The first application of TRG for (3+1)D LGT has been made
We have obtained the TRG estimates of CEP in ℤ𝟐 & ℤ𝟑 gauge-Higgs 
model at finite density



Future Perspective
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Magnifico+, Nature Commun. 12(2021)1

✔ A next interesting (challenging) target can be the (3+1)D QED

・How can we deal with higher-dimensional non-abelian gauge theories with TN?
Cf. TRG approach for SU(N) gauge theory

✔ Although TRG is based on Lagrangian formalism, some problems are 
shared with quantum computaGons based on Hamiltonian formalism

・TRG may give us insights from the viewpoint of classical computaNon and vice versa

Fukuma-Kadoh-Matsumoto, PTEP2021(2021)123B03

・ Variational approach based on the tree TN for the (3+1)D lattice QED (𝐿 ≤ 8)

・This problem should be addressed

✔ How can we approach 𝑫 → ∞ ? Cf. Finite-entanglement scaling:
Tagliacozzo+, PRB78(2008)024410 
Pollmann+, PRL102(2009)255701

Cf. L. Vanderstraeten, 9/26

Hirasawa+, JHEP12(2021)011
Kuwahara-Tsuchiya, PTEP2022(2022)093B02

・MulN-flavor fermions? SA, PRD108(2023)034514
Yosprakob-Nishimura-Okunishi, arXiv:2309.01422


