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 Today: Quantum Electrodynamics in 2+1 dimensions (QED3)  
            in triangular lattice antiferromagnets

Fluid dynamics, elasticity Ginzburg-Landau theory of superconductivity

Emergent electrodynamics in spin ice

Field theory in condensed matter



“It does seem to be true that all the various field theories have the same kind of 
behavior, and can be simulated in every way, apparently, with little latticeworks of 

spins and other things.”  
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1. INTRODUCTION 

On the program it says this is a keynote speech--and I don't  know 
what a keynote speech is. I do not intend in any way to suggest what should 
be in this meeting as a keynote of the subjects or anything like that. I have 
my own things to say and to talk about and there's no implication that 
anybody needs to talk about the same thing or anything like it. So what I 
want to talk about is what Mike Dertouzos suggested that nobody would 
talk about. I want to talk about the problem of simulating physics with 
computers and I mean that in a specific way which I am going to explain. 
The reason for doing this is something that I learned about from Ed 
Fredkin, and my entire interest in the subject has been inspired by him. It 
has to do with learning something about the possibilities of computers, and 
also something about possibilities in physics. If we suppose that we know all 
the physical laws perfectly, of course we don't  have to pay any attention to 
computers. It's interesting anyway to entertain oneself with the idea that 
we've got something to learn about physical laws; and if I take a relaxed 
view here (after all I 'm here and not at home) I'll admit that we don't  
understand everything. 

The first question is, What kind of computer are we going to use to 
simulate physics? Computer theory has been developed to a point where it 
realizes that it doesn't make any difference; when you get to a universal 
computer, it doesn't matter how it's manufactured, how it's actually made. 
Therefore my question is, Can physics be simulated by a universal com- 
puter? I would like to have the elements of this computer locally intercon- 
nected, and therefore sort of think about cellular automata as an example 
(but I don't  want to force it). But I do want something involved with the 
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 Long-range spin ordering:   (as ) 

 Breaking continuous SU(2) spin rotation symmetry (at ) 

 Gapless Goldstone modes are excitations  

 Observation of Bragg peaks in scattering experiments

|⟨S0 ⋅ Sr⟩ | → const r → ∞

T = 0

120º Néel AFM, q = K Stripy AFM, q = M Tetrahedral AFM, q = M

� (BEDT� TTF)2Cu2(CN)3

[Y. Shimizu et al., Phys. Rev. Lett. 91, 107001 (2003)]

[A. Wietek, R. Rossi, F. Šimkovic IV, M. Klett, P. Hansmann, M. Ferrero, E. M. Stoudenmire, T. Schäfer, A. Georges, Phys. Rev. X 11, 041013 (2021)]

Antiferromagnetism in triangular magnets
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 Regular patterns of (singlet) dimers / plaquettes / … covering a lattice 

 Gapped state, breaks discrete symmetry 

 Long-range dimer order   

 Short-range spin correlations, 

|⟨(S0 ⋅ S1)(Sr ⋅ Sr+α)⟩ | → const

|⟨S0 ⋅ Sr⟩ | ∼ e−r/ξ

[Matan et al., Nat. Phys. 6, 865–869 (2010)]

= | ↑ ↓ ⟩ − | ↓ ↑ ⟩

= ±

Valence bond crystals
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FIG. 5. (Color online) Bond strengths for m = 0, m = 1/4, m = 1/2 and m = 3/4 (from top to bottom and left to right) on 16⇥ 8 cylinder
using DMRG simulations and keeping up to 6,000 states. In each plot, top and bottom lines are identical due to periodic boundary conditions
along this direction (CBC). Data larger than 0.01 (in absolute value) are written on the plot.

IV. CONCLUSION

We have provided strong numerical evidence in favor of the
existence of magnetization plateaux on the spin-1/2 Heisen-
berg model on the 2d checkerbord lattice for m = 0, 1/4, 1/2
and 3/4 of its saturation value. While the m = 0 plateau (due
to the finite spin gap) was previously known from the litera-
ture6–11 and corresponds to a 2-fold degenerate VBC, we find
that the three others are well described by a 4-fold degener-
ate VBC, analogous to the exact localized magnon eigenstate
that can be constructed at m = 3/4.26 Thus, the situation
is rather similar to another famous corner-sharing geometry,
namely the kagomé lattice, where the same phenomenology
has been recently observed.18,19 It seems that the finite-field
situation can be better understood from the large field limit,
which is more amenable to theoretical techniques presumably,
or less frustrated in a sense. Moreover, these product states
can also be interpreted as having quantized spin imbalance
(obtained by measuring magnetization on different blocks),
which could be a interpreted as a remnant of the classical de-
generacy through an order-by-disorder mechanism.27

We would like also to comment about the adiabatic connec-
tions (or not) between these plateaux phases and similar ones
that have been observed in different context.35 For m = 0,
there is a recent numerical evidence of plaquette phase persist-
ing in the antiferromagnetic XY limit.36 In the opposite XXZ
limit with dominant Ising interaction, the m = 0 and m = 1/2
low-energy configurations can be easily seen to be in a one-
to-one correspondence respectively with quantum loop37 and
quantum dimer configurations on a square lattice. Both effec-

tive constrained models are of the Rokhsar-Kivelson type38

with purely kinetic terms, and have been investigated quite
extensively. This quantum loop model (also known as square
ice) has a 2-fold degenerate plaquette ground state37,39, i.e. a
similar structure as our (0, 0) product state, hence pointing to
a robust feature present for any anisotropy in the XXZ sense.
On the contrary, the quantum dimer model with purely kinetic
term has a 4-fold degenerate columnar ground-state40, which,
when translated into spin language, would correspond to a
ferrimagnetic state with fixed local magnetization ±1/2, i.e.
qualitatively different from the resonating state that we have
found in the SU(2) case. Therefore, we predict the existence
of a quantum phase transition when increasing the anisotropy
of the XXZ model between a VBC and an ordered ferrimag-
netic phase, which is confirmed numerically see Sec. III B.
The nature of this phase transition is potentially interesting
(continuous vs first order, see for instance Ref. 41) but a com-
plete analysis is postponed to a future study. In a similar man-
ner, it would be natural to investigate the fate of m = 1/4 and
3/4 plateaux when moving away from the SU(2) case. In ad-
dition, it would be interesting to prove whether supersolidity
can be stabilized in the vicinity of some of these plateaux, a
phenomenon which is common on frustrated lattices but not
present on the checkerboard lattice for interacting hardcore
bosons with non-frustrated hopping.42

As far as fermionic Hubbard-like models on the same lattice
are concerned, it has been shown that various VBC can also
be stabilized at commensurate fillings43–45. Generalization of
spin models with SU(N ) symmetry (using fundamental rep-
resentation at each site) can also host other kinds of valence
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FIG. 6. (color online) Phase diagram of the QDM (second top panel), dimer correlations (first top panels, for clarity only NNVB data on
N = 36 cluster) and low-energy spectra of HK,✓ from exact (fourth panels from top) and NNVB diagonalization (third panels from top), and
of the related GQDM (fifth panels from top). For dimer correlations, blue (red) bonds denote positive (negative) correlations, while the width
of each bond is proportional to Cijkl (see main text for definition). The energy spectra are represented as a function of the wave-vector and
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 Fractional quantum Hall effect for spins instead of electrons 
 
  

 Fractionally quantized spin-Hall and thermal Hall effects 

 (Spontaneous) Breaking time-reversal symmetry,  

 Gapped phase, short-range spin correlations,  

 Topological order, effective Chern-Simons theory 

 Several simple lattice models are known stabilising this phase for SU(2) 
as well as SU(N)

𝒪 = Si ⋅ (Sj × Sk)

|⟨S0 ⋅ Sr⟩ | ∼ e−r/ξ

[Kasahara et al., Nature 571, 376–380 (2019)]

[V. Kalmeyer, R.B. Laughlin, Phys. Rev. Lett. 59 (1987)]
[X. G. Wen, F. Wilczek, and A. Zee, Phys. Rev. B 39, 11413, (1989)]

?

[S. Gong, W. Zhu, D. N. Sheng, Sci. Rep. 4, 6317 (2014)]

[Y.-C. He, D. N. Sheng, and Yan Chen, Phys. Rev. Lett. 112, (2014)]
[A. Wietek, A. Sterdyniak, A. M. Läuchli,  Phys. Rev. B 92, 125122 (2015)]

[B. Bauer et al., Nat. Comm.  5,  5137 (2014)]

[A. Wietek, A. M. Läuchli, Phys. Rev. B 95, 035141 (2017)]

Chiral spin liquid (topological)

[J.Y. Chen et al., Phys. Rev. B 104,  235104 (2021)] …
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 Quasi-long-range spin order,  

 Best known example: spin-1/2 chain in one spatial dimension 

 “Critical phase”, exactly solvable with Bethe ansatz 
 

 Conformal field theory, Luttinger liquid

|⟨S0 ⋅ Sr⟩ | ∼ 1/r1+η

[H. Bethe, Zeitschrift für Physik  71, 205–226 (1931)]

Algebraic spin liquids

CuSO4 (5H2O)

[Mourigal et al., Nat. Phys., 9, 435–441 (2013)]

Sabðk;!Þ ¼ 1

N

XN

j;j0
e$ikðj$j0Þ

Z 1

$1
dtei!thSaj ðtÞSbj0ð0Þi; (2)

where N is the number of sites, and a, b ¼ x, y, z. INS data
sets of KCuF3 were collected at temperatures T ¼ 6, 50,
75, 150, 200, and 300 K using the MAPS spectrometer
at the ISIS Facility, Rutherford Appleton Laboratory, U.K.
To make comparison with theory, we simulated the experi-
ment based on the theoretical Sðk;!Þ (see Supplemental
Material [15]). Figure 1(a) shows the experimental DSF
for T ¼ 6 K as a function of momentum along the chain
and energy. It reveals the characteristic multispinon con-
tinuum of the 1D S-1=2 HAF and is in excellent agreement
with the Bethe ansatz solution for T ¼ 0 K [Fig. 1(b)]
described later. Since the data are normalized to absolute
units no overall scale factor was required when comparing
theory and experiment.

Previous theoretical approaches.— The ground state of
the 1D S-1=2 HAF is quantum disordered with power-law
correlations. The important low-lying excitations [16]
which define the DSF (2) are known as spinons [17] and
can be pictured as Néel domain walls dressed by quantum
fluctuations. They carry fractional spin (S-1/2) which
restricts them to being created in (multiple) pairs, and
they disperse according to ð!=2ÞJj sinkj. The simplest
observable continuum, made from two spinons, fills the
region !lðkÞ % ! % !uðkÞ between the lower and upper
boundaries

!lðkÞ ¼
!

2
Jj sinkj; !uðkÞ ¼ !J

!!!!!!!!sin
k

2

!!!!!!!!;

k 2 ½0; 2!':
(3)

The four-spinon continuum also has a lower threshold at
!lðkÞ as do arbitrary 2n-spinon states.

Because of the long-term absence of precise calculations
for the DSF of the 1D S-1=2 HAF, finite-size exact diag-
onalization results, sum rules, and the spinon dispersions

were combined into a phenomenological formula at
T ¼ 0 K—the so-called Müller ansatz [18],

SMAðk;!Þ ¼ AMA
!ð!$!lðkÞÞ!ð!uðkÞ $!Þ

½!2 $!2
l ðkÞ'1=2

; (4)

where AMA ¼ 289:6=!. This formula, though historically
important due to its simplicity, is inexact.
Bosonization [1] can also be used to approximate the

DSF at k ¼ 0, !, where the spinon dispersion is linear and
the system can be described as a Luttinger liquid (LL) [19].
Finite temperatures are then straightforwardly treated,
giving the DSF around k ¼ !þ "k as

SLLð!þ"k;!;TÞ¼ eð@!=kTÞ

eð@!=kTÞ $1

ALL

T

) Im
"
#
#
!þvF"k

4!T

$
#
#
!$vF"k

4!T

$%
;

(5)

where #ðxÞ * "ð1=4$ ixÞ="ð3=4$ ixÞ, vF ¼ ð!=2ÞJ is
the Fermi velocity and ALL is a constant [20]. This
approach is not applicable at generic momenta.
Recent work making use of nonlinear LL theory [21,22]

allows the threshold behavior at all k to be obtained for
T ¼ 0 K [23,24]. At k ¼ ! and low energies it becomes a

power law with logarithmic corrections, Sðk¼!;!!0Þ+
ð1=!Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð1=!Þ

p
, changing at k ! ! to Sðk ! !; ! !

!lðkÞÞ + ð1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!$!lðkÞ

p
Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð1=ð!$!lðkÞÞÞ

p
for frequen-

cies ! close to the lower threshold !lðkÞ. There is no
obvious extension of this result to finite temperatures.

FIG. 1 (color online). INS data compared to theory. (a)
The data show the multispinon continuum lying predominantly
between the upper (!uðkÞ) and lower (!lðkÞ) boundaries for
2-spinon processes (gray lines). (b) The dynamical structure
factor computed via the algebraic Bethe ansatz.
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FIG. 2 (color online). Comparison of the INS data at k ¼ !
and T ¼ 6 K, with the theoretical approaches. (a) The data agree
approximately with the Luttinger liquid, Müller ansatz, and
algrebraic Bethe ansatz. (b) Differences between the theories
increase at higher energies and the Luttinger liquid and Müller
ansatz show strong discrepancies with the data near the 2-spinon
upper threshold.
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In two-dimensional triangular lattices, geometric frustration
prohibits the formation of ordering even at the lowest
temperatures, and therefore a liquid-like ground state is
expected. The spin-liquid problem has been one of the central
topics of condensed-matter science for more than 30 yr in
relation to the resonating-valence-bond model1. One of the
characteristic features proposed is the existence of a linear
temperature-dependent contribution to the heat capacity, as
the degeneracy of the energy states should give rise to gapless
excitations. Here, we show thermodynamic evidence for the
realization of a spin-liquid ground state through a single-crystal
calorimetric study of the dimer-based organic charge-transfer
salt κ-(BEDT-TTF)2Cu2(CN)3, with a triangular lattice structure
down to 75mK. In addition, we report an unexpected hump
structure in the heat capacity around 6K, which may indicate
a crossover into the quantum spin liquid.

The formation of a spin-liquid ground state is possible when
the system has strong quantum character, and a high-order
exchange such as ring-type exchange is involved in the model
hamiltonian2. This is a widely discussed problem of the quantum
magnetic system and the strongly correlated electron system,
because such kinds of quantum effect may have some relation to the
mechanism of high-temperature superconductivity3,4. Although
numerous theoretical studies have been made on the triangular
system, relevant experiments have been limited because of the
absence of model materials. Well-known examples studied so far
include ANiO2 (A=Li, Na, Rb) (refs 5,6), Cs2CuCl4 (ref. 7) and thin
films of solid 3He (ref. 8). However, in real compounds, especially
intermetallic ones such as the two former examples, lattice disorder
or appreciable interlayer coupling induces a kind of glassy freezing
or a three-dimensional ordering of spins. The orbital degree of
freedom also perturbs the spin states through spin–orbit coupling
in inorganic materials. Hence, the intrinsic nature of the ground
state of the spin S = 1/2 two-dimensional triangular lattice is
still unclear.

The κ-type salts consisting of BEDT-TTF donors show an
interesting phase diagram, explained by Mott–Hubbard physics,
dealing with competition between electron kinetic energy and
correlation9–11. The Mott insulating phase and the superconductive
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Figure 1 Temperature dependence of heat capacities of BEDT-TTF-based salts.
The data of κ-(BEDT-TTF)2Cu2 (CN)3 (green), κ-(BEDT-TTF)2Cu(NCS)2 (red),
κ-(BEDT-TTF)2Cu[N(CN)2]Cl (purple) and β′-(BEDT-TTF)2ICl2 (blue) are plotted on a
logarithmic scale. The contribution of the lattice heat capacity is large but the overall
temperature dependencies are similar to each other. Low-temperature deviation of
κ-(BEDT-TTF)2Cu2 (CN)3 is notable, which demonstrates that large entropy exists in
the low-temperature region. The inset shows the Cp T−1 versus T plot of
κ-(BEDT-TTF)2Cu2 (CN)3 under 0 and 8 T. The effect of magnetic field is very small.

phase are adjacent to each other in the effectively half-filled
band originating from the donor dimers. The nature of the two
phases and the transition between them by external pressure have
been systematically investigated12. In κ-(BEDT-TTF)2Cu2(CN)3
Shimizu et al. took notice of a triangular spin arrangement,
considering that each BEDT-TTF dimer in the donor layers
accommodates a spin of S = 1/2 (ref. 13). Through nuclear
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The family of layered organic salts X#Pd!dmit"2$2 are Mott insulators and form scalene-triangular spin-1 /2
systems. Among them, EtMe3Sb#Pd!dmit"2$2 has a nearly regular-triangular lattice. We have investigated the
spin state of this salt by 13C-NMR and static susceptibility measurements. The temperature dependence of the
susceptibility is described as that of a regular-triangular antiferromagnetic spin-1 /2 system with an exchange
interaction J=220−250 K. The 13C-NMR measurements reveal that there is no indication of either spin
ordering/freezing or an appreciable spin gap down to 1.37 K, which is lower than 1% of J. This result strongly
suggests that this system is in the quantum spin-liquid state with no appreciable spin gap, which has been long
sought after.
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The magnetism of the quantum spin-1 /2 system with an-
tiferromagnetic Heisenberg interactions has been one of the
central issue in condensed-matter physics because this sys-
tem shows rich unconventional physical phenomena due to
the strongest quantum fluctuations. Quantum fluctuations de-
stabilize the magnetically long-range ordered !MLRO" state,
which is inevitably realized in the ground state of a classical
antiferromagnetic system. In some cases, the quantum fluc-
tuations completely destroy the MLRO states, giving rise to
quantum disordered states. A widely observed example is a
fully spin-gapped state accompanied by spin dimerization
such as the spin-Peierls state. This spin-gapped state is the
“valence bond solid” !VBS" state in the broad sense, where
the dominant term of the wave function is described by a
localized array of singlet pairs. By contrast, on a symmetric
lattice without dimerization, where there are various singlet-
pair configurations of the same energy, they may resonate
and the so-called “resonating valence bond” !RVB" state may
emerge. This kind of quantum spin states without either mag-
netic ordering or lattice symmetry breaking are generally
named the quantum spin-liquid states and have been inten-
sively studied for a long time. However, on normal unfrus-
trated lattices without dimerization in two or three dimen-
sions, it has been revealed that the effect of quantum
fluctuations is too weak to destroy the MLRO state and, thus,
the spin-liquid state cannot appear.1–4 It is, therefore, gener-
ally believed that strong geometrical frustration which works
significantly against the MLRO state is needed to realize the
spin-liquid state, if it exists.

For this reason, spin-1 /2 systems on frustrated lattices
such as triangular lattices have attracted attention of many
researchers, and much theoretical work has been conducted.
However, real model materials of such systems are limited
and only a few candidate materials for the spin liquid are
known5–7 despite the long concerted experimental effort. One
of the candidates is the recently discovered organic salt with
an isosceles-triangular lattice, #-!BEDT-TTF"2Cu2!CN"3.7

Inspired by this discovery, various theories from different
viewpoints have been proposed in order to explain the origin
of this spin liquid, which is still controversial.8–12 Under
such circumstances, to facilitate understanding of spin-liquid

states on a triangular lattice, another example of the spin-
liquid system is intensely desired. Discovery of such a ma-
terial evidently provides useful information for elucidation of
the key factors in the spin-liquid physics.

In this paper, we report the magnetic properties of a lay-
ered organic salt EtMe3Sb#Pd!dmit"2$2, which forms a
scalene but nearly regular-triangular spin system !dmit
=1,3-dithiole-2-thione-4,5-dithiolate, Me=CH3, Et=C2H5".
We have reported preliminary results of 13C-NMR study on
this system in a previous report, where we estimated the
hyperfine coupling constant of the 13C site and suggested the
possibility of the spin-liquid ground state in this system.13 In
the present paper, we report more convincing evidence for
the spin liquid obtained by further NMR measurements and
analyses. We also discuss the appearance of inhomogeneous
broadening, which is considered to be common nature of the
spin liquid with no spin gap.

The series of layered organic salts X#Pd!dmit"2$2, where X
is a nonmagnetic monovalent countercation such as Me4P,
Me4As, Me4Sb, Et2Me2P, Et2Me2As, Et2Me2Sb, EtMe3P, or
EtMe3Sb, has a scalene-triangular lattice of #Pd!dmit"2$2
dimers as shown in Fig. 1. They are Mott insulators at am-
bient pressure and, thus, have a localized 1 /2 spin on each
dimer with antiferromagnetic interactions.14 The orbital wave
function on which the spin exists is composed of the
Pd!dmit"2 highest occupied molecular orbital, whose density
lies only on the dmit ligands with little contribution of Pd 4d
orbitals.14 Because the wave function spreads only on light
elements, the spin-orbit interaction is sufficiently weak and,
as a result, the spin-spin exchange interactions of this system
are expected to be spherically symmetric. The strength of the
frustration in the triangular lattice in X#Pd!dmit"2$2 can be
controlled by the choice of X. In most of X#Pd!dmit"2$2,
there is a small but significant difference between exchange
interactions on the three sides of the triangle and, as a result,
they undergo antiferromagnetic ordering owing to the less
frustrated nature.14–16

On the other hand, Et2Me2Sb#Pd!dmit"2$2,17–20

EtMe3P#Pd!dmit"2$2 !space group P21 /m",21–23 and
EtMe3Sb#Pd!dmit"2$2 !space group C2 /c" are considered to
have nearly regular-triangular networks of transfer integrals.
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The static spin susceptibility is usually related to the shift
of NMR frequency. However, in the present case, the shift is
as small as a few kilohertz, because of the small hyperfine
coupling constant !about 900 kHz /!B as will be mentioned
later". Therefore, it is difficult to obtain decisive results from
the shift. On the other hand, the temperature dependence of
the NMR relaxation rate T1

−1 can be used as a sensitive probe
of the spin fluctuations in the system, even in such a case.

Figure 3 shows T1
−1 of EtMe3Sb#Pd!dmit"2$2 as a function

of temperature. The value of T1
−1 gradually decreases as tem-

perature decreases, showing no remarkable enhancement due
to critical fluctuations. It is observed that T1

−1 stops decreas-
ing and retains a finite value below around 5 K.

First, we focus on spin fluctuations in a high-temperature
region. We can evaluate the antiferromagnetic spin correla-
tions by comparing T1

−1 with the static spin susceptibility ".
For the high-temperature paramagnetic states where the spin
autocorrelation function decays exponentially with time,
standard relaxation theory28 generally yields

T1
−1 # lim

$→0
T%

q

"!!q,$"
$

# T%
q

""!q,$ = 0"
%q

, !1"

where "!q ,$"=""!q ,$"+ i"!!q ,$" is the dynamic spin sus-
ceptibility and %q is the characteristic decay rate of the au-
tocorrelation function !in other words, the characteristic fre-
quency of the spin dynamics". At sufficiently high
temperatures !T&J" where the q-dependent antiferromag-
netic correlations are negligible, all %q are equal to the
temperature-independent exchange frequency,29 and ""!q ,$
=0" is also q independent, i.e., ""!q ,$=0"=". In this case,
T1

−1 is proportional to "T. An enhancement from this behav-
ior is a measure of the growth of the antiferromagnetic cor-
relations, because it indicates an enhancement of ""!q ,$
=0" /""!q=0,$=0" and slowing down of %q at a specific q.

This enhancement comes to be recognizable below
around 200 K in our data. As shown in the inset of Fig. 3,
T1

−1 is almost proportional to "T around room temperature.
The uncertainty of " caused by the diamagnetic correction
does not alter this observation. Thus, antiferromagnetic cor-
relations are almost absent around room temperature. The
proportionality coefficient, 3.6 mol emu−1 K−1 s−1, gives the
hyperfine coupling constant to be 9'102 kHz /!B by assum-
ing Gaussian fluctuations29 and by using an exchange fre-
quency $ex=5'1013 rad /s, which is calculated from the
values J=220–250 K and the coordination number z=6.
This hyperfine value is consistent with our previous
estimations,13 which were calculated on spectral-width
analysis and on comparison of T1

−1 between this system and
the (-!BEDT-TTF"2X family. This consistency supports our
interpretation and analysis of the present behavior of T1

−1 at
high temperatures.

As temperature is decreased below 200 K, which corre-
sponds to the energy scale of J, T1

−1 starts to deviate from the
"T line, which means the growth of antiferromagnetic corre-
lations. It is noted that the deviation, or the growth of the
antiferromagnetic correlations, is quite gradual as shown in
the inset. Actually, the peak in ", which indicates significant
development of the antiferromagnetic correlations, is ob-
served at a temperature much lower than 200 K. This unusu-
ally gradual growth of the antiferromagnetic correlations evi-
dently shows the frustration effect.

Recently, T1
−1 under antiferromagnetic fluctuations for the

(-!BEDT-TTF"2X family was discussed in a theoretical pa-
per by Yusuf et al.,30 where the phenomenological form for
"!q ,$" based on the self-consistent renormalization !SCR"
theory31 is assumed. Although the calculation in the paper
seems to reproduce also our data at high temperatures by
tuning several parameters, it is open to question and needs to
be studied further whether or not the phenomenological form
of the SCR theory is applicable to the present frustrated Mott
insulating phase.

As found in Fig. 3, T1
−1 shows no critical enhancement

and, thus, suggests the absence of spin ordering at least down
to 1.37 K. This is markedly contrasting with the behavior of
T1

−1 for Me4P#Pd!dmit"2$2, which shows critical enhancement
around a MLRO temperature of 42 K.15 Furthermore, T1

−1 in
the present system seems to retain a finite value at low tem-
peratures. The recovery curve for T1

−1 becomes nonsingle ex-
ponential at low temperatures, yielding some uncertainty in
the estimation of the value of T1

−1. However, it is clear that
this system does not have an appreciable spin gap more than
1 K either with nodes or without nodes, because the esti-
mated T1

−1 does not show any sign of decreasing. It is sur-
prising that the paramagnetic state remains down to 1.37 K
despite the growth of the antiferromagnetic correlations from
much higher temperatures around 200 K.

The absence of spin ordering is confirmed by the spectra
of EtMe3Sb#Pd!dmit"2$2 displayed in Fig. 4!a". As tempera-
ture is decreased, we observe no critical broadening of the
spectrum characteristic of spin ordering. Instead, it gradually
broadens at low temperatures. Despite the broadening, the
spin-spin relaxation rate T2

−1 remains almost constant over
the entire temperature region and is approximately 1
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FIG. 3. !Color online" Temperature dependence of 13C nuclear
spin-lattice relaxation rate of EtMe3Sb#Pd!dmit"2$2. The transverse
axis in the inset is linear so that data at high temperatures can be
clearly illustrated, while it is logarithmic in the main figure. The
solid curves show values calculated using 3.6 !mol emu−1 K−1 s−1"
'"T, where " and T represent the spin susceptibility and the tem-
perature, respectively.
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The Heisenberg triangular lattice quantum spin liquid and the phase transitions to nearby magnetic orders
have received much theoretical attention, but clear experimental manifestations of these states are rare. This
work investigates a new spin-half Yb3+ delafossite material, KYbSe2, whose inelastic neutron scattering spectra
reveal a di�use continuum with a sharp lower bound. Applying entanglement witnesses to the data reveals
multipartite entanglement spread between its neighbors, and analysis of its magnetic exchange couplings shows
close proximity to the triangular lattice Heisenberg quantum spin liquid. Key features of the data are reproduced
by Schwinger-boson theory and tensor network calculations with a significant second-neighbor coupling �2. The
strength of the dynamical structure factor at the  point shows a scaling collapse in ~l/:B) down to 0.3 K,
indicating a second-order quantum phase transition. Comparing this to previous theoretical work suggests that
the proximate phase at larger �2 is a gapped Z2 spin liquid, resolving a long-debated issue. We thus show that
KYbSe2 is close to a spin liquid phase, which in turn sheds light on the theoretical phase diagram itself.

INTRODUCTION

A quantum spin liquid (QSL) is an elusive state of matter
where magnetic degrees of freedom on a lattice are in a highly
entangled, fluctuating ground state with exotic quasiparticle
excitations [1–4]. The quasiparticles are of singular interest
for, e.g., quantum information applications [2, 5] but have
been, together with the extended entanglement, frustratingly
di�cult to identify experimentally.

The search for a QSL is a very active field of research with
many candidate QSL materials: from organic materials [6,
7] to 2D Kagome minerals [8] to rare earth pyrochlores [9,
10]. However, despite tremendous e�ort, no materials have
unambiguously been shown to realize a genuine QSL. This is
partly because many studies focus on “negative evidence” such
as lack of magnetic order, lack of coherent excitations, etc.,
which are not unique to QSL states. Instead, to conclusively
identify an experimental QSL, “positive evidence” is needed:
experimental evidence of either (i) a highly entangled ground
state, or (ii) exotic quasiparticles—both key properties of a
QSL.

Beginning with Anderson’s resonating valence bond

state [11], the two-dimensional (2D) triangular geometry has
long been studied as a platform for QSLs. Although the sim-
plest spin-1/2 model with nearest-neighbor antiferromagnetic
Heisenberg interactions orders magnetically in a 120� phase,
the magnetic frustration makes the order weak [7]. The mag-
netic order can be further destabilized by additional interac-
tions such as a next-nearest-neighbor exchange coupling. In
that case, it has been found that a realistic strength as small as
⇡ 10% of the main interaction is enough to destroy magnetic
order and bring the system into a QSL phase [13–19] (which
is continuously connected to a QSL phase driven by nearest
neighbor anisotropic exchange [20]). Determining the nature
of the QSL phase is a theoretical challenge, with proposals
ranging from gapped Z2 and gapless* (1) Dirac to chiral [13–
19], with no clear consensus within the community. In order
to discern among possible QSL states, experiments are called
for.

In the last decade, Yb3+ based materials have become pop-
ular as QSL candidates because of the Yb3+ e�ective ( = 1/2
state. Most recently, a class of delafossite materials have been
proposed as relatively disorder-free QSL candidates, includ-
ing NaYbO2 [21–23], NaYbS2 [24, 25], NaYbSe2 [5, 13] and
CsYbSe2 [28]. Each of these materials shows di�use exci-
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long been studied as a platform for QSLs. Although the sim-
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Heisenberg interactions orders magnetically in a 120� phase,
the magnetic frustration makes the order weak [7]. The mag-
netic order can be further destabilized by additional interac-
tions such as a next-nearest-neighbor exchange coupling. In
that case, it has been found that a realistic strength as small as
⇡ 10% of the main interaction is enough to destroy magnetic
order and bring the system into a QSL phase [13–19] (which
is continuously connected to a QSL phase driven by nearest
neighbor anisotropic exchange [20]). Determining the nature
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ranging from gapped Z2 and gapless* (1) Dirac to chiral [13–
19], with no clear consensus within the community. In order
to discern among possible QSL states, experiments are called
for.
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FIG. 2. Neutron spectrum of KYbSe2 at 0.3 K (top row), 1 K (middle row) and 2 K (bottom row). The left panels show energy-dependent
scattering along (�:/2 � 1/2, : , 0) which includes where the dispersion touches zero energy. These plots comprise data with ⇢8 = 1.55 meV
below ~l = 0.5 meV, and ⇢8 = 3.32 meV above ~l = 0.5 meV. Note the roton-like mode at 0.3 K and the di�use high energy spectrum.
The center panels show constant energy slices measured with ⇢8 = 1.55 meV. Panel d shows elastic intensity associated with (1/3, 1/3) static
magnetism which disappears at higher temperatures. The right panels plot this elastic intensity as a function of ✓, which reveals almost no
dependence on ✓, and thus 2D correlations.

low-energy modes [Fig. 2(a)]. The KYbSe2 di�use contin-
uum with a sharp lower bound is reminiscent of the Van Hove
singularity observed in 1D spin chains—which are known to
have highly entangled ground states with fractionalized spinon
excitations [12, 42, 43]. This well-defined lower bound to the
continuum distinguishes KYbSe2 from other QSL candidates,
such as NaCaNi2F7 [44], YbMgGaO4 [45, 46], and herbert-
smithite [8] which are di�use everywhere. This also distin-
guishes KYbSe2 from NaYbSe2, which does not have a lower
bound to its continuum [5]. Whether this signals a genuine
QSL in NaYbSe2 or the e�ect of its 3% site disorder is unclear.

Wide Angular-Range Chopper Spectrometer (ARCS)

In order to understand how “quantum” the KYbSe2 spins
are, we measured the crystal electric field (CEF) excitations
using the ARCS spectrometer [47] at Oak Ridge National Lab’s
Spallation Neutron Source. We fitted a single-ion CEF Hamil-
tonian to the excitations using PyCrystalField [17] software;
data and fits are shown in Fig. 3 [Details on the CEF fitting
procedure are given in the Supplemental Information].

The best fit crystal field Hamiltonian shows a ground state
doublet

|k±i = 0.78(3)
�� ⌥ 5

2

↵
⌥ 0.44(4)

�� ± 1
2

↵
� 0.44(3)

�� ± 7
2

↵
(1)

with a first excited state at 17.1(3) meV. This ground state dou-
blet gives a weak easy plane 6 tensor 6GG = 6HH = 3.0(2), and
6II = 1.8(6). As the large 6GG and 6HH indicate, the ground
state doublet allows for significant quantum tunnelling from

FIG. 3. Crystal field spectrum of KYbSe2. The top row shows
the measured intensity at ⇢8 = 50 meV at 7 K, 100 K, and 200 K.
The middle row shows the same data with the self-consistent 300 K
background subtracted. The bottom row shows a cut through the data
between 2 and 3 Å�1 compared to the fitted CEF Hamiltonian

e�ective spin operator �±. Thus, the Yb3+ spins in KYbSe2

can be treated like a spin-1/2 system.

Inelastic neutron 
Scattering



J1-J2 triangular lattice
Spin-1/2 triangular lattice has a long history in frustrated magnetism:
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Antiferromagnetism. The Triangular Ising Net
G. H. WANNIER
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In this paper the statistical mechanics of a two-dimensionally infinite set of Ising spins is worked out for
the case in which they form either a triangular or a honeycomb arrangement. Results for the honeycomb
and the ferromagnetic triangular net differ little from the published ones for the square net (Curie point
with logarithmically infinite specific heat}. The triangular net with antiferromagnetic interaction is a sample
case of antiferromagnetism in a non-fitting lattice. The binding energy comes out to be only one-third of
what it is in the ferromagnetic case. The entropy at absolute zero is finite; it equals

2 &/3
S(0)=R— ln(2 cosco}des=0.3383R.

The system is disordered at all temperatures and possesses no Curie point.

I. INTRODUCTION
l 'HANKS to the work of Kaufman and Onsager' '

we are now in possession of a method of solving
exactly a certain number of cooperative problems in
physics. We can obtain the thermal properties and some
order-parameters for a two-dimensional periodic struc-
ture whose members are "spins" capable of existing in
two states; these spins interact with their nearest
neighbors only, according to the mode put forward by
Ising. 4 In addition to the general theory, the papers
quoted contain also its application to the rectangular
Ising net which is shown in Fig. 1. The main feature of
their results is the temperature singularity. The singu-
larity is mainly known at this time through its mani-
festation in the specific heat curve. For a complete
study of this "Curie point" transition one wouM like
to know also the magnetic properties. These quantities
are not available in the literature at this time although
the spontaneous magnetization has been calculated. '
In the original calculations the Ising model was

thought of as ferromagnetic. Within recent years, how-
ever, antiferromagnetism has received considerable
attention, and one might wish to think of the model
in terms of this new application. The salient features
of antiferromagnetism are described in an article of
Bizette. ' The specific heat resembles that of ferromag-
netic materials; the susceptibility curves resemble the
specific heat curves somewhat, having a pronounced
maximum at the Curie point. Both these features can
be accounted for qualitatively on the basis of nearest
neighbor interaction. The specific heat calculation of
Onsager' actually does not distinguish at all between
ferromagnetism and antiferromagnetism, owing to the
well-known symmetry property which applies to all
lattices having a- and P-sites with all O.-sites surrounded
by P-sites and vice versa.

A closer study of antiferromagnetism removes to a
great extent this superficial similarity. It may be seen
from the work of Hulthen' that the difference between
the quantum and Ising interactions is much more
drastic in the antiferromagnetic than the ferromagnetic
case. Specifically, a linear chain of quantum spins
whose interaction is JZe; e,+& has a lowest energy
which is 1.775 times that of a corresponding set of
Ising spins. This situation is in contrast to the ferro-
magnetic case and by itself removes any hope of a
simple analogy. In addition, the antiferromagnetic
materials MnO, MnS, MnTe, FeO crystallize in the
NaCl structure; this gives the paramagnetic metal
ions a face-centered cubic arrangement. Such an ar-
rangement of sites does not divide into n- and P-sites
in the manner described above. In consequence, even
for an Ising antiferromagnet the thermal properties are
not trivally related to some "equivalent" ferromagnetic
arrangement.
This paper is one in a series of related studies on these

non-trivial aspects of antiferromagnetism. We will
derive in it the properties of an antiferromagnetic
triangular Ising net (Fig. 2). This arrangement is a two-
dimensional analog of the face-centered cubic structure,
in that it is also a lattice into which antiferromagnetism
does not fit. The Kaufman-Onsager calculation can be
carried out for it and full results obtained. We shall

' L. Onsager, Phys. Rev. 65, 117 (1944).' Kaufman, Phys. Rev. 76, 1232 (1949).' B. Kaufman and L. Onsager, Phys. Rev. 76, 1244 (1949).' K. Ising, Zeits. f. Physik 31, 253 (1925).' B. Kaufman (private communication).
6 H, Bizette, thesis, Paris, Masson et Cie, pp. 62—96,

FIG. 1. Rectangular Ising net. The circles indicate the location of
the spins and the straight lines the interactions.

7 L. Hulthen, Arkiv f, Mat. Astr. o. Fys. 26A, No. 11 (1938}.
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We numerically study the Heisenberg models on triangular lattices by extending it from the simplest equilateral lattice
with only the nearest-neighbor exchange interaction. We show that, by including an additional weak next-nearest-
neighbor interaction, a quantum spin-liquid phase is stabilized against the antiferromagnetic order. The spin gap (triplet
excitation gap) and spin correlation at long distances decay algebraically with increasing system size at the critical point
between the antiferromagnetic phase and the spin-liquid phase. This algebraic behavior continues in the spin-liquid
phase as well, indicating the presence of an unconventional critical (algebraic spin-liquid) phase characterized by the
dynamical and anomalous critical exponents z + © ³ 1. Unusually small triplet and singlet excitation energies found in
extended points of the Brillouin zone impose constraints on this algebraic spin liquid.

The spin liquid was first proposed by Anderson as a
resonating valence bond (RVB) ground state of the spin
1/2 antiferromagnetic Heisenberg model on the triangular
lattice.1) Although it is now widely believed that the true
ground state of the model has a long-ranged magnetic
order,2–4) two-dimensional systems based on some modifica-
tion of the triangular Heisenberg model provide us with
realistic possibilities of reaching the spin liquid. This is
because some organic conductors are basically described by
the triangular structure with some additional elements, and
they indeed do not show clear indications of symmetry
breaking.5,6) If one can understand how and in which direction
the spin-liquid state becomes more stabilized and what kind of
spin liquids is expected even at the level of model studies, it
will greatly help as a clue for stabilizing spin liquids.

In this letter, we study the Heisenberg model on the
triangular lattice shown in Fig. 1(a) with a weak next-nearest-
neighbor interaction J2 illustrated in the inset of Fig. 1(b).
The Hamiltonian has the form

H ¼ J1
X

hi;ji
Si " Sj þ J2

X

hhi;jii
Si " Sj; ð1Þ

where Si, hi; ji, and hhi; jii denote the quantum S ¼ 1=2 spin
at site i, nearest-neighbor sites, and next-nearest-neighbor
sites, respectively.

Previous studies7–16) have suggested that the above model
contains rich phases, as shown in Fig. 1(c). For the classical
Heisenberg model, the 120° Néel state illustrated in Fig. 1(b)
is stable for J2=J1 < 1=8, while for J2=J1 > 1=8 the ground
states become degenerate for any four-sublattice states that
satisfy S1 þ S2 þ S3 þ S4 ¼ 0, where Si denotes the spin
at sublattice site i. When J2=J1 > 1, an incommensurate
spin structure appears. By considering quantum fluctuations
perturbatively, the stripe-type antiferromagnetic state illus-
trated in Fig. 1(b)8–14) was proposed for 1=8 < J2=J1 < 1.
Then, the spin-liquid state could emerge at approximately
J2=J1 ¼ 1=8, sandwiched by the 120° Néel and stripe
states.8,10) Very recently, by using a variational Monte Carlo
(VMC) method, Mishmash et al. claimed that the spin-liquid
phase with the nodal d-wave symmetry is realized for
0:05 . J2=J1 . 0:17.16) However, they overestimated the
spin-liquid phase, since their Huse-Elser-type wave functions
for antiferromagnetic states are relatively inaccurate. More-

over, their wave function favors the d-wave-type spin liquid
due to a limited number of variational parameters.

To reveal the nature of the spin-liquid ground states
possibly realized in this model, we calculate the ground states
and low-energy excitations up to 18& 18 sites by a many-
variable variational Monte Carlo (mVMC) method17) (see
Supplemental Materials18) for more details). We find a spin-
liquid phase characterized by gapless excitations and the
power-law decay of the spin correlation with the critical
and dynamical exponents © and z, respectively, satisfying
zþ ! ¼ 1 in the parameter region 0:10ð1Þ ' J2=J1 '
0:135ð5Þ, as shown in Fig. 1(b).

Three locally stable states are found as candidates of the
ground state: the 120° Néel, stripe, and spin-liquid states. As
shown in Fig. 2, these states are characterized by the spin
structure factor defined as

SðqÞ ¼ 1

Ns

X

i;j

eiq"ðRi(RjÞhSi " Sji; ð2Þ

where Ri denotes the position vector of site i. The existence
of the long-ranged order is ensured when the maximum of
SðqÞ at q ¼ Q scales as SðQÞ / Ns for a large Ns. The ground
state is determined from the comparison of the energy, which
is extrapolated to the thermodynamic limit, if more than one
locally stable states are found.

For J2=J1 < 0:1, we find the 120° Néel state as the ground
state. In the Brillouin zone illustrated in Fig. 1(d), Bragg
peaks appear at q ¼ )ð2"=3; 2"=3Þ corresponding to the
120° spin structure, as shown in Fig. 2(a). From the size
extrapolation of SðQÞ=Ns in Fig. 2(d), we obtain the
magnetization of the 120° Néel state at J2=J1 ¼ 0 as
m=m0 ¼ 0:543ð6Þ, where m0 ¼ 1=2 is the saturated magnet-
ization in spin 1/2 systems. This value is nearly the same as
the best variational result (m=m0 ¼ 0:53) in the literature.19)

For J2=J1 > 0:135, we find the stripe ordered state as the
ground state. As shown in Fig. 2(b), a Bragg peak appears at
q ¼ ð";"Þ, corresponding to the ferromagnetic spin align-
ment along the x ¼ y direction and the antiferromagnetic spin
alignment along the x- and y-axes on the lattice illustrated
in Fig. 1(a). The state has a long-ranged order, as shown in
Fig. 2(e).

Sandwiched by the 120° Néel and stripe states, the spin
liquid is stabilized. Diffusive peaks appear at q ¼
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!ð2!=3; 2!=3Þ, reminiscent of the 120° spin alignment, as
shown in Fig. 2(c). We find in Fig. 2(f ) that the peak scales
as SðQÞ / N1=2

s in all the regions of the spin-liquid phase
(0:10 < J2=J1 < 0:135), implying the emergence of a critical
phase without the long-ranged order. In fact, this scaling
leads to the spin correlation hSi $ Sji / 1=jRi % Rjj.20)

At the transition point J2=J1 ¼ 0:10ð1Þ, the spin liquid
undergoes a continuous quantum phase transition to the 120°
Néel state, while at J2=J1 ¼ 0:135ð5Þ a level crossing to the
stripe state occurs.

To get further insight into the nature of the spin-liquid
ground state, we study the energies of the momentum-
resolved lowest triplet and singlet excited states. We take the
total momenta along the symmetric ¥–K–M line, namely,

K ¼ ðq; qÞ with 0 ' q ' !, as illustrated in Fig. 1(d). The
ground states have turned out to be always the singlet and
stay at the ¥ point irrespective of J2 and Ns.
According to the results of spin wave (SW) analyses,21,22)

the spin gap ¦ for antiferromagnetic states should scale as
!ðNsÞ / 1=Ns. However, when both the magnetic order and
spin gap become zero, especially on continuous transition
points, a more subtle scaling dominates. For example, for
the two-dimensional quantum Heisenberg model, when a
quantum phase transition occurs between the phase with an
O(3) long-ranged order and the disordered phase with a
finite-gap spin excitation, the nature of the transition was
proposed to be essentially the same as that of the two-
dimensional quantum O(3) nonlinear sigma model.23) Since

Ns=18×18
J2/J1=0.0
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Fig. 2. (Color online) (a–c) Spin structure factors (Ns ¼ 18( 18) for 120° Néel state at J2=J1 ¼ 0 (a), stripe state at J2=J1 ¼ 0:4 (b), and spin-liquid state
with short-ranged magnetic correlation with the 120° spin alignment at J2=J1 ¼ 0:125 (c). (d–f ) Size dependences of peak value of SðQÞ=Ns for 120° Néel
states (except J2=J1 ¼ 0:1) (d), stripe states (e), and SðQÞ=N1=2

s for 120° Néel states and spin liquid states (f ). Size dependence at J2=J1 ¼ 0:1 is also shown in
(d) for reference. We extrapolate the data using the relation SðQÞ=Ns ¼ m2=cþ S1=N1=2

s þ S2=Ns, where m denotes the extrapolated magnetization, c denotes a
correction factor, which is the same as in Fig. 1(a), while S1 and S2 are constants. For antiferromagnetic states, we use the data for Ns > 100 to reduce the
finite-size effect, and fit them by the relation with S2 ¼ 0 to estimate the statistical error bars. On the other hand, to precisely determine the phase boundary for
spin-liquid states, we also examine the size dependence of SðQÞ. We find that SðQÞ scales as SðQÞ / N1=2

s for J2=J1 * 0:1.

(a) (b) (d)

(c)

Fig. 1. (Color online) (a) Deformed triangular lattice, which is topologically equivalent to isotropic triangular lattice. (b) Phase diagram of antiferromagnetic
J1–J2 Heisenberg model on triangular lattice obtained in the present study. The red squares, green up-pointing triangular points, and blue down-pointing
triangular points are order parameters (sublattice magnetizations) of the 120° Néel states (120° Néel AF), spin-liquid (SL) states, and stripe states (stripe AF),
respectively. The lines are guides for the eyes. The magnetization is estimated as m=m0 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c( limNs!1 SðQÞ=Ns

p
, where c denotes a correction factor, and

SðQÞ is the peak value of the spin structure factor. For the 120° Néel and SL states, c ¼ 2, which is compatible with the standard definition,2–4) while for the
stripe states, c ¼ 1. Here, m0 (¼ 1=2) is the saturated magnetization expected in the classical Néel order. (c) Phase diagram of classical model as reference. The
transition from the 120° Néel AF state to the four-sublattice antiferromagnetic state (4 sub AF) occurs at J2=J1 ¼ 1=8. The stripe AF state is one of the 4 sub-
AF states, and it is selected under quantum fluctuations. (d) Brillouin zone of deformed triangular lattice. Equivalent momenta are represented by the same
symbols.
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the correlation length is the same in the spatial and time
directions, the dynamical exponent z becomes z ¼ 1 at the
critical point. Therefore, the spin gap, which scales as ! " kz

at the critical point,24) obeys the relation ! " k / 1=L with
L # N1=2

s . Later on, a possible deconfined criticality was
proposed in that case.25,26)

In general, the critical state may be characterized by the
power-law decay ! / 1=Lz with the dynamical exponent z.
As shown in Fig. 3, the spin gap at the critical point
(J2=J1 ¼ 0:1) consistently shows power-law decay for larger
sizes, although it is difficult to estimate the critical exponent
of the decay z quantitatively. In finite-size systems, higher-
order corrections in the extrapolation of the spin gap are
nonnegligible, which makes the extrapolation difficult.
Indeed, in a previous study on the triangular lattice system,
the spin gap of the spin liquid scales as a concave function of
1=Ns if the system size is not sufficiently large,27) although
the chiral perturbation theory for the square lattice with the
well-established antiferromagnetic order predicts the scaling
by 1=Ns with the negative coefficient of the 1=N3=2

s
correction.21) Therefore, the estimated critical exponents
may become larger than the exact exponents.

This critical point turns out to be unusual, because the
spin gap appears to decay as a power law even deep
inside the spin-liquid phase. Within the available system
size ($18% 18), these results support the nation that the
whole spin-liquid phase may belong to the critical phase.
This is consistent with the above critical behavior of
the spin correlation, because we expect hSi & Sji /
1=jRi ' Rjjdþzþ!'2 with d ¼ 2 and zþ ! ¼ 1 in the whole
spin-liquid phase, as we will detail later.

We now study the momentum-resolved spectra of the
excitations !ðKÞ. Generally, if the ground state has a
magnetic long-ranged order, corresponding to the magnon
modes, it shows gapless excitations at the ¥ point as well as
at the wave vector Q of SðQÞ peaks. We have indeed
confirmed that the present mVMC calculation reproduces this
expectation.

In the spin-liquid phase, we examine the size dependence
of singlet and triplet gaps at K ¼ ðn"=3; n"=3Þ (n 2 Z), as
shown in Fig. 4(a), which can be calculated for all the system
sizes that we studied28) (see also Supplementary Materials for
data at other k points). As shown in Figs. 4(b) and 4(c), we
find that both singlet and triplet gaps at all the available
momenta systematically and substantially decrease with
increasing system size, and natural extrapolations suggest
vanishingly and unusually small values if it is nonzero. Even
at K ¼ ð"=3;"=3Þ, where the gap is largest, a simple linear
extrapolation suggests the gap <0:2J1. The gaps at other
momenta are likely to be less than 0:1J1. To our knowledge,
such small gaps in the extended points of the Brillouin zone
are not known. In the antiferromagnetic phase, the spin wave
excitation usually has dispersions of the order of the
exchange coupling J1.

Now, we discuss comparisons with previously proposed
spin-liquid states. In the present result, the singlet and triplet
excitation energies look vanishingly small at all the studied
total momenta, including the ¥, K, and M points, as well as
the middle of the ¥ and K points, as shown in Fig. 4(a). If the
excitation is gapless at the momenta in a finite area of the
Brillouin zone, it can be accounted for by the presence of a
large spinon Fermi surface.29,30) Although the present model
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Fig. 4. (Color online) Momentum-resolved excitation spectra in spin-liquid phase. (a) Momenta studied for excitation spectra in colors the same as in (b)
and (c). Size dependences of triplet (b) and singlet (c) gaps of each total momentum for spin-liquid phase (J2=J1 ¼ 0:125). Triplet excitations are gapless only
at the ¥ and K points for the 120° Néel state, while they are gapless only at the ¥ and M points for the stripe state. For the spin liquid, in addition to the K, M,
and ¥ points, the middle points of the ¥ and K points show unusually small excitation energies.
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Spin liquid nature in the Heisenberg J1- J2 triangular antiferromagnet
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We investigate the spin- 1
2 Heisenberg model on the triangular lattice in the presence of nearest-neighbor J1

and next-nearest-neighbor J2 antiferromagnetic couplings. Motivated by recent findings from density-matrix
renormalization group (DMRG) claiming the existence of a gapped spin liquid with signatures of spontaneously
broken lattice point group symmetry [Zhu and White, Phys. Rev. B 92, 041105 (2015) and Hu, Gong, Zhu, and
Sheng, Phys. Rev. B 92, 140403 (2015)], we employ the variational Monte Carlo (VMC) approach to analyze
the model from an alternative perspective that considers both magnetically ordered and paramagnetic trial states.
We find a quantum paramagnet in the regime 0.08 ! J2/J1 ! 0.16, framed by 120◦ coplanar (stripe collinear)
antiferromagnetic order for smaller (larger) J2/J1. By considering the optimization of spin-liquid wave functions
of a different gauge group and lattice point group content as derived from Abrikosov mean-field theory, we
obtain the gapless U(1) Dirac spin liquid as the energetically most preferable state in comparison to all symmetric
or nematic gapped Z2 spin liquids so far advocated by DMRG. Moreover, by the application of few Lanczos
iterations, we find the energy to be the same as the DMRG result within error bars. To further resolve the intriguing
disagreement between VMC and DMRG, we complement our methodological approach by the pseudofermion
functional renormalization group (PFFRG) to compare the spin structure factors for the paramagnetic regime
calculated by VMC, DMRG, and PFFRG. This model promises to be an ideal test bed for future numerical
refinements in tracking the long-range correlations in frustrated magnets.

DOI: 10.1103/PhysRevB.93.144411

I. INTRODUCTION

Quantum antiferromagnetic models on two-dimensional
frustrated lattices provide a natural habitat for the birth of
novel quantum spin-liquid states [1–3], whose search has been
a keynote of contemporary condensed matter physics [4]. For
example, spin- 1

2 Heisenberg models defined on the kagome
lattice have been shown to potentially host exotic spin liquids,
sometimes with controversial findings from different numeri-
cal methods. This includes potential microscopic models for
the chiral spin liquid as originally described by Kalmeyer and
Laughlin and similar states [5–20], the gapped (topological)Z2
spin liquid proposed to describe the properties of the nearest-
neighbor model of this highly frustrated lattice [21–24], the
foundation of paradigmatic gapless spin liquids such as the
U(1) Dirac spin liquid and algebraic spin liquids [25–28],
and attempts to resolve magnetic phase diagrams assisting
the experimental investigation of Herbertsmithite crystals and
polymorphs thereof [29–33].

Another prominent candidate model conjectured to host a
quantum paramagnetic ground state is the spin- 1

2 triangular
lattice with both antiferromagnetic nearest-(J1) and next-
nearest-neighbor (J2) couplings [34,35]. Although there are
several compounds in which magnetic moments lie on stacked
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†wenjun.hu@rice.edu
‡rthomale@physik.uni-wuerzburg.de
§didier.poilblanc@irsamc.ups-tlse.fr
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layers with a triangular geometry, most of them have sizable
distortions, leading to spatial anisotropies along different
directions [36,37]. Very recently, it has been claimed that
Ba3CoSb2O9 gives an almost perfect realization of a spin- 1

2
equilateral triangular lattice antiferromagnet, with both J1
and J2 couplings [38]. From a theoretical point of view, the
classical limit of the J1-J2 model has three different phases:
for J2/J1 < 1/8, the system has three-sublattice 120◦ coplanar
order, for 1/8 < J2/J1 < 1 it is infinitely degenerate (with
four-sublattice periodicity, in which the only constraint is to
have the four spins sum to zero), and for J2/J1 > 1 it features
generic incommensurate spiral structures. By including spin-
wave fluctuations, both at the lowest (first) and second
orders, the coplanar phase remains stable, while the accidental
degeneracy of the intermediate phase is lifted in favor of a
stripe collinear order with two-sublattice periodicity [35,39].
Naturally, quantum paramagnetic domains tend to emerge in
the vicinity of classical transition points, i.e., J2/J1 = 1/8
and J2/J1 = 1; however, their actual stabilization is not
clear within spin-wave approaches [35,39]. Subsequent works
have shown conflicting results on the possible existence,
extent, and nature of nonmagnetic phases [39–46]. Some
more recent studies have vouched for the existence of a
quantum paramagnet in the vicinity of J2/J1 = 1/8, while the
problem of the precise identification of its nature and extent in
parameter space remains an open issue: a Schwinger-boson
approach found the corresponding window to be 0.12 !
J2/J1 ! 0.19 with no further clarification of the nature of the
paramagnetic state [45], while a high-order coupled-cluster
method (CCM) study predicted a quantum paramagnet for
0.060(10) " J2/J1 " 0.165(5) [46], with a spin-triplet gap
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which vanishes in the entire paramagnetic regime [47]. In
addition, two different variational Monte Carlo (VMC) studies
claimed for a gapless spin liquid close to J2/J1 = 1/8: Kaneko
and co-workers [48] used a full optimization of the pairing of a
Gutzwiller-projected BCS wave function [obtaining a critical
spin liquid for 0.10(1) ! J2/J1 ! 0.135(5)] and Mishmash
and collaborators [49] considered few variational Ansätze to
describe both magnetic and nonmagnetic phases (here, they
obtained evidence for a gapless nodal d-wave spin liquid for
0.06 " J2/J1 " 0.17). In the former case, the full optimization
of the pairing function faces technical difficulties, which
make it difficult to reach true energy minima; in the latter
one, the variational states are relatively simple and do not
exhaust the rich variety of states that can be obtained within
the fermionic representation of Gutzwiller-projected states.
Indeed, the variational energies that we get are much better
than those of these two papers, indicating the high accuracy of
the present approach.

By contrast, density-matrix renormalization group
(DMRG) studies find a gapped Z2 topological spin liquid
for 0.06 " J2/J1 " 0.17 [50] and 0.08 " J2/J1 " 0.16 [51],
with signatures of possible spontaneously broken rotational
symmetry. Following this proposal, Zheng, Mei, and Qi, [52],
and, in an independent work, Lu [53] have performed a
classification of symmetric and nematic Z2 spin liquids, and
pointed out promising candidates at the fermionic mean-
field level. This approach was extended by Bieri, Lhuillier,
and Messio [54] to include chiral spin liquids as well. A
bosonic mean-field classification has likewise been accom-
plished [55,56], with some of the states addressed already in
earlier works [57,58].

In this paper, we address the J1-J2 Heisenberg model on
the triangular lattice from the viewpoint of versatile Gutzwiller
projected Abrikosov-fermion wave functions (optionally sup-
plemented by Lanczos optimization), which we implemented
by using efficient VMC techniques. To enable a comparison of
the variational energies, we also perform DMRG and Lanczos
diagonalizations for specific regions in parameter space. In
order to resolve the magnetic susceptibility profile in the
paramagnetic regime, we employ pseudofermion functional
renormalization group (PFFRG) calculations, the results of
which are then compared with analogous results from DMRG
and VMC. Our main VMC results are summarized as follows:
a spin-liquid phase is stabilized for 0.08 " J2/J1 " 0.16
(Fig. 1), in excellent agreement with DMRG [50,51] and
CCM [46]. Within the spin-liquid regime, however, we find
no signal of stabilization for any of the gapped symmetric
or nematic Z2 states proposed in Refs. [52,53]. In particular,
the gapped Z2 spin liquids are found to have higher energies
compared to the gapless U(1) Dirac spin liquid (DSL); the
gapless Z2 spin liquids suffer the same fate. We find that
nematic order only onsets simultaneously with collinear anti-
ferromagnetic order, which is also supported by the analysis
of nematic response functions in PFFRG. On performing a
couple of Lanczos optimization steps on the VMC variational
result, followed by a zero-variance extrapolation, we obtain
estimates of the exact ground-state and S = 2 excited-state
energies on different cluster sizes. Our estimate of the ground-
state energy on finite-systems is in excellent agreement with

(a) 120 AF (c) Stripe AF(b) Spin liquid
J2/J10.160.080

FIG. 1. Schematic illustrations of the coplanar three-sublattice
(black, blue, and red) magnetic order on the triangular lattice
(a), the resonating-valence bond spin liquid (b), and the collinear
two-sublattice (blue and red) stripe magnetic order (c). The phase
diagram, as obtained by using variational Monte Carlo method is
also reported. Note that the DSL found here can be represented as a
resonating-valence bond spin liquid with a power-law distribution of
bond amplitudes.

exact diagonalization and other numerical methods. In the
thermodynamic limit, our estimate of the ground-state energy
is equal to the one obtained by DMRG, within error bars.
However, in contrast to DMRG results, which found a finite
spin excitation gap, the S = 2 gap computed in VMC is found
to extrapolate to zero (within error bars) in the thermodynamic
limit. These findings strongly point to a gapless spin liquid
ground state, yielding a clear disagreement with the findings
by DMRG.

The article is organized as follows. In Sec. II, we describe
the model Hamiltonian and discuss its finite-size spectra
obtained from exact diagonalization, followed by a description
of the pseudofermion spin representation framework. In
Sec. III, the variational Monte Carlo method, the associated
wave functions, and the pseudofermion functional renormal-
ization group method are explained. In Sec. IV, we present the
results on, the energy optimization of competing variational
states, spin excitation gap, spin structure factors, followed by a
discussion of the findings from different methods. Conclusions
are given in Sec. V.

II. MODEL

The Hamiltonian for the spin- 1
2 Heisenberg J1-J2 antifer-

romagnetic model is

H = J1

∑

〈i,j〉
Si · Sj + J2

∑

〈〈i,j〉〉
Si · Sj , (1)

where both J1 and J2 are positive; 〈i,j〉 and 〈〈i,j 〉〉 denote
sums over nearest-neighbor (NN) and next-nearest-neighbor
(NNN) pairs of sites, respectively. Si = (Sx

i ,S
y
i ,Sz

i ) denotes
the spin operator acting on a spin- 1

2 at site i. All energies will
be given in units of J1.

A. Finite-size spectra

Before discussing our main results based on VMC and
PFFRG approaches (see Sec. IV), we would like to show
the results of exact diagonalizations on a small 6 × 6 cluster.
All eigenstates can be classified according to their quantum
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We study the S = 1/2 Heisenberg model on the triangular lattice with nearest- and next-nearest-neighbor
interactions J1 and J2 with the density matrix renormalization group, on long open cylinders with widths up to
nine lattice spacings. In an intermediate J2 region 0.06 ! J2/J1 ! 0.17, we find evidence for a spin liquid (SL)
state with short range spin-spin, bond-bond, and chiral correlation lengths, bordered by a classical 120◦ Néel
ordered state at small J2 and by a two sublattice collinear magnetically ordered state at larger J2. Focusing on
J2/J1 = 0.1, we find a number of signatures of a gapped SL phase.
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In Anderson’s paper introducing the resonating valence
bond (RVB) state [1], the prototypical example of a spin liquid
(SL) [2], the ground state of the triangular lattice nearest-
neighbor Heisenberg model was argued to be a likely candi-
date. Later, a variety of analytical and numerical studies [3–6]
demonstrated that this system has three sublattice 120◦

long range antiferromagnetic order. More recent numerical
studies [7–9] have confirmed this result, and more accurately
determined the magnetization, with M ∼ 0.2.

It is natural to include small second-neighbor J2 terms to
the Hamiltonian, in addition to the nearest-neighbor terms with
coupling J1, to see if this additional frustration induces a spin
liquid state. The corresponding classical phase diagram has a
single phase transition point at J2 = 1/8 (setting J1 = 1 here
and below) between the 120◦ phase and a large number of
degenerate four sublattice magnetically ordered states. This
degeneracy is broken by quantum fluctuations within spin
wave theory, selecting a two sublattice collinearly ordered
state through the order by disorder mechanism [10,11].

One might expect an intermediate phase to appear near
the classical critical point at J2 = 1/8. The limited number
of studies on this question, which have usually relied on ap-
proximations with uncertain reliability, have given conflicting
results, particularly on the nature of a possible disordered phase
and the location of the phase boundaries [12–15]. Here, we try
to resolve the nature of this possible intermediate state using
density matrix renormalization group (DMRG) methods [16].
We do find a spin liquid intermediate phase, gapped with
fairly large singlet and triplet gaps, which is bordered by the
expected magnetic phases, the

√
3 ×

√
3 ordered state (120◦

classical Néel order pattern) at J2 < 0.05 ∼ 0.07 and a two
sublattice collinear ordered state at J2 " 0.17. The SL state
away from the phase boundaries at J2 = 0.1 has very short
range magnetic, bond, and chiral correlations. We also observe
a dimerization pattern of bond strengths on odd cylinders and
obtain two different topological sectors on even cylinders. This
behavior is in a number of ways similar to that observed in the
Z2 spin liquid state of the kagome Heisenberg model [17,18].
A possible Z2 SL state on the triangular lattice was treated
analytically in the early 1990’s [19,20]. However, in contrast to
the kagome, it has a strong tendency towards spatial anisotropy
in the bond strengths.

We study the Hamiltonian

H = J1

∑

〈i,j〉
Si · Sj + J2

∑

〈〈i,j〉〉
Si · Sj , (1)

where 〈i,j〉 and 〈〈i,j 〉〉 run over nearest- and next-nearest-
neighbor pairs of sites. We set J1 = 1 and consider only
J2 > 0. We study open-ended cylinders, with the axis along
the x direction. If one of the three bond directions lies along
the x (y) direction, we call it an XC (YC) cylinder. An XCn
cylinder has n sites along the zigzag y direction, while a YCn
cylinder has a circumference of n vertical bonds.

The triangular lattice, with six J1 and six J2 bonds, has
more connecting bonds than other lattices recently studied
with DMRG. This both increases the number of Hamiltonian
terms and increases the entanglement, which is to first order
governed by the area law. For example, a vertical line through
the YCn cylinder cuts 2n near-neighbor bonds; thus, one
would expect a greater entanglement entropy in this system
than in a square, honeycomb, or kagome lattice with the same
width. This means we have to keep more states m for the
same accuracy, while the greater number of Hamiltonian terms
increases the computational and memory cost for a given m.
The widest cylinders that we can calculate accurately are YC9
and XC10, keeping up to M = 6400 states, which produces a
truncation error that is always less than 10−5.

First, we present one calculation which shows all three
phases along a single cylinder. In Fig. 1, we vary J2 spatially
from 0 (left edge) to 0.24 (right edge) on a YC6 cylinder, where
we label the possible phase transition points in this model. At
J2 ! 0.06, we see the

√
3 ×

√
3 magnetically ordered state,

with a diminishing order parameter as one nears the transition.
For large J2 values, we see a two sublattice collinear ordered
phase consistently across various cylinders, which resembles
the Néel order on a tilted square lattice, consistent with spin
wave theory [11].

For 0.06 ! J2 ! 0.16 on this YC6 cylinder, there is a region
with very small magnetic moments, and with a nearly uniform
nearest-neighbor bond strength pattern. Below we will study
in detail the point J2 = 0.1, near the center of the intermediate
phase. We find that all of our results are consistent with this
phase being a gapped SL.

We now focus on J2 = 0.1, in the center of the nonmagnetic
phase. To understand the results it is essential to distinguish the
different possible topological sectors for a finite cylinder with
open ends. (We consider an even number of sites.) Infinitely
long cylinders are either even or odd, based on the number
of sites in a one-dimensional (1D) unit cell. For example, a
YCn cylinder is even if n is even. Call this type of parity
C. In addition, another parity arises based on a near-neighbor

1098-0121/2015/92(4)/041105(4) 041105-1 ©2015 American Physical Society

RAPID COMMUNICATIONS

ZHENYUE ZHU AND STEVEN R. WHITE PHYSICAL REVIEW B 92, 041105(R) (2015)

J2=0.06J2=0 J2=0.16 J2=0.24

FIG. 1. (Color online) For a YC6 cylinder, we vary J2 with position, from J2 = 0 on the left edge to J2 = 0.24 on the right edge. We also
apply a pinning magnetic field along both the x and z directions on the left edge to favor the classical 120◦ order. Two approximate phase
transition lines are shown. The size of the arrow represents local measurement of 〈S〉 =

√
〈Sx〉2 + 〈Sz〉2 with the direction of the angle given

by tan−1[〈Sz〉/〈Sx〉], and the widths of lines proportional to |〈Si · Sj 〉 + 0.18|. The solid lines along the bonds mean the bond measurement is
negative, i.e., a stronger than average bond, while dashed lines indicate bonds that are weaker than average.

dimer picture. Given any dimer covering, if we cut the cylinder
with a vertical line not intersecting any sites, the number of
dimers cut gives another parity. Call this parity D; we also
refer to it as the even or odd (topological) sector. For a finite
cylinder, assuming perfect dimer coverings, the D parity is
determined by how the left and right ends are terminated, and
moving a site from the left end to the right (or vice versa)
switches the topological sector. In a C-odd cylinder, the two
D-parity sectors are related by a translation of one 1D unit cell,
so the bulk properties are identical. In a C-even cylinder, the
two D-parity sectors are significantly different, but the bulk
properties become identical as the cylinder width increases in
a Z2 SL. For finite width, a ground state of the higher-energy
sector may be able to fall into the lower-energy sector, through
the creation of a spinon at each end of the system. The C parity
is a rigorous concept associated with the Lieb-Schultz-Mattis
theorem. It is not obvious that the D parity is a useful concept
for every spin liquid, but for both the kagome and the triangular
SL found here, the classification appears to work perfectly.

In Fig. 2 we show results for the ground states for both
sectors for the (C-even) YC6 cylinder. Here we see that the
lower-energy sector has a very uniform bond strength pattern
(bottom panel), whereas the higher-energy sector is much less
uniform. This behavior is seen in all the C-even cylinders,
in both this triangular system and in the kagome Heisenberg
system, thought to be a Z2 spin liquid [17].

For a Z2 spin liquid, these two sectors in a C-even cylinder
should become degenerate in the two-dimensional (2D) limit,
with the energy separation depending exponentially on the
width of the cylinder. Here, for YC6, extrapolating in the
truncation error and in the cylinder length, we find an energy
per site for the lower-energy odd sector of E0 = −0.520 96(1).
For a long enough cylinder, the even sector produces end
spinons and falls into the odd sector. The end spinons cost
a finite energy, of order of the triplet spin gap, but being in
the wrong sector in the bulk costs an energy proportional
to the length of the system. Thus, short system even sector
ground states are stable. Longer systems, during the course
of a DMRG simulation, may stay in the even sector ground
state for a number of sweeps, but then as we increase the
number of states kept m, they may suddenly fall into the
lower-energy sector by producing two end spinons. (We can
also prepare the initial DMRG state to make it start off in the
two spinon sector, in which case there is no sudden fall.) For

example, for a YC6 cylinder with length Lx = 30, we have
observed a sudden drop near m ∼ 3000, but this depends on a
variety of details of the DMRG simulations. Thus, estimating
the higher-energy ground state energy cannot be done as
accurately as the low-energy sector. (The DMRG calculations
also converge faster and with smaller truncation errors for
the lower-energy sector.) Using shorter cylinders, for YC6
we find an even sector energy of E1 = −0.5152(2), higher
than the odd sector by about 0.0058(2) per site, or about 1.1%.
The magnetic correlations, the bond-bond correlations, and the
chiral correlations for the YC6 low-energy sector are all very
short ranged, with correlation lengths roughly one to two lattice
spacings [21].

Similar behavior is seen for the C-even YC4 and YC8
cylinders. However, whereas for YC6 the bond strengths in
the three bond directions were almost identical, for YC4 they
are highly anisotropic. For YC4, the ground state is in the even
sector, while the odd sector energy is higher by about 3%. In

FIG. 2. (a) The higher-energy even and (b) the lower-energy odd
sector ground states for a YC6 cylinder with J2 = 0.1, where we
subtract −0.18 from all the bonds. The odd and even sector systems
differ primarily by the removal of a single site at each edge; in
addition, we needed to make the higher-energy system shorter to
avoid falling into the low-energy sector through the creation of two
end spinons. In the plot the bond thickness is restricted to a maximum;
otherwise, many edge bonds would be much thicker. (c) Central
portion of the ground state on the XC6 cylinder. The solid (dashed)
bonds have strength 〈Si · Sj 〉 = −0.287/−0.157. (d) A similar central
region for a YC5 cylinder. The solid (dashed) bonds have strength
〈Si · Sj 〉 = −0.158/−0.126.
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the even sector, the diagonal bond strength (−0.045) is almost
ten times weaker than the vertical bond strength (−0.442).
In the odd sector, the opposite happens: The diagonal bond
(−0.23) is three times larger than vertical bonds (−0.08). It
appears that this spin liquid state is highly susceptible to bond
anisotropy, and the small circumference of the YC4 cylinder
elicits very large anisotropic responses.

On the YC8 cylinder, the ground state is in the odd sector
with an energy 0.6% lower than the even sector. The odd sector
has uniform bond strengths in the cylinder center, but as YC4 it
has a significant bond anisotropy, with a vertical bond strength
of −0.225 and a horizontal bond strength of −0.159. (This
strong tendency towards anisotropy on such a large lattice is
completely absent in the kagome system.) The higher-energy
even sector has nonuniform bond strengths, appearing as if
there are strings connecting two ends of the cylinder [21].

Comparing YC4, YC6, and YC8, we see that the energy dif-
ference between the two sectors falls steadily with increasing
width. For a gapped Z2 SL, the energy splitting should decay
exponentially with increasing the cylinder width. Our results
are consistent with this exponential decay, with a decay length
of about 1.7 lattice spacings (not shown). The YC cylinders can
have significant bond anisotropy, although for YC6 it is very
small. Comparing YC4 and YC8, the strength of the anisotropy
falls rapidly with width, while for YC6 it is anomalously small.

On the C-even XC cylinders, such as XC4 and XC8,
anisotropy is also observed. (XC6 is an odd cylinder, so we
will discuss that below.) With the XC cylinder geometry, finite
size effects make the horizontal bonds weaker than the two
diagonal bonds. The anisotropy is less pronounced on XC8
than on XC4.

We have tried to measure the topological entanglement
entropy to more directly measure the topological order for
the SL state. However, because of the strong anisotropy, the
entanglement entropy for various cylinders cannot be linearly
extrapolated versus the cylinder width for our current range of
widths.

For C-odd cylinders, the dimer picture predicts two de-
generate ground states which differ only by a horizontal
translation, thus obeying the Lieb-Schultz-Mattis theorem.
These two states are always visible in our results through
bond strength distortions, as they are for the kagome SL.
These distortions decrease in intensity with cylinder width,
as expected. Figures 2(c) and 2(d) show the dimerization
patterns on the XC6 and YC5 cylinders. Similar dimerized
patterns are also observed on all other C-odd XC and YC
cylinders.

To quantify the bond distortion, we define the dimerization
order parameter D as the difference between the strong and
weak bonds along the two diagonal directions, for both YC
and XC cylinders. We find that, for all C-odd cylinders,
D is almost constant in the cylinder center, indicating long
range dimerization order, and decreases for wider cylinders.
In contrast, on C-even cylinders, D decays exponentially away
from the left and right edges [21]. The behavior is quite similar
to that of the kagome SL and provides additional evidence in
support that the state is a spin liquid.

We display results for triplet spin gap in Fig. 3 for J2 = 0.1.
The gaps are typically two to three times as large as that of the
kagome system (!T ∼ 0.14 [18]). The gaps show a relatively
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FIG. 3. (Color online) The spin triplet gap for various long
cylinder geometries at J2 = 0.1 with Lx = 20. The inset shows the
linear extrapolation of spin triplet gap for YC6 cylinders vs 1/L2

x .
The triplet gap is roughly !T = 0.357 for an infinitely long YC6
cylinder.

minor finite size behavior, compared to their magnitude. Each
of these gaps in the main part of the figure is for Lx = 20;
one should extrapolate these to Lx → ∞, and the inset shows
this extrapolation for YC6. The gap is proportional to 1/L2

x ,
as expected for a simple massive particle (e.g., a particle in
a 1D box). The correction to the Lx = 20 results is small
and we expect that the main figure would only be slightly
changed if it used extrapolated results. Note that for wider
cylinders, we need to constrain the spin excitation to the
cylinder center, since otherwise low-energy edge excitations
might hide the bulk gap (again, as one must do for the kagome).
A conservative estimate for the bulk 2D triplet gap would be
0.3(1) for J2 = 0.1, and it is hard to imagine it being zero.

One can look at the bond and particularly the spin patterns
for the lowest-energy triplet excitations. On even cylinders,
the spin excitation resembles a single particle, which we
might interpret as two tightly bound spinons. However, on
odd cylinders, the spin excitation typically looks more as
two separate spinons, and seems more complicated than on
even cylinders, with more Lx dependence of the gap [21].
We have only calculated the spin singlet gap for the YC6
and YC8 cylinders. In the kagome system, the singlet gap is
small, about 0.05. Here, it is much larger: !s = 0.30 for YC6
and !s = 0.26 for YC8. Overall, our results strongly support
a fully gapped SL state, instead of the gapless SL state in
Ref. [14].

The finite gaps, short correlation lengths, and topological
sector behaviors are all qualitatively similar to the kagome
system and strongly indicate a gapped spin liquid. However,
the directional anisotropy of the bonds apparent in most
cylinders is unlike the kagome, and raises the question of
whether it persists in the 2D limit—which would make it a
“nematic spin liquid” [22]. To try to understand the finite
size effects associated with bond anisotropy, we have studied
systems where we strengthen all the near-neighbor exchange
couplings J along one particular direction and measure the
response in the spin-spin correlation pattern. For the normally
isotropic YC6 cylinder, increasing the J ’s along one diagonal
direction by 5% increases the corresponding bonds by roughly
30% and decreases the other diagonal bonds by roughly
30%—a rather large response. For the XC8 cylinder, which
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We study the spin- 1
2 Heisenberg model on the triangular lattice with antiferromagnetic first- (J1) and second-

(J2) nearest-neighbor interactions using density matrix renormalization group. By studying the spin correlation
function, we find a 120◦ magnetic order phase for J2 ! 0.07J1 and a stripe antiferromagnetic phase for J2 "
0.15J1. Between these two phases, we identify a spin-liquid region characterized by exponential decaying spin
and dimer correlations, as well as large spin singlet and triplet excitation gaps on finite-size systems. We find two
near degenerating ground states with distinct properties in two sectors, which indicates more than one spin-liquid
candidate in this region. While the sector with spinons is found to respect time reversal symmetry, the even sector
without spinons breaks such a symmetry for finite-size systems. Furthermore, we detect the signature of the
fractionalization by following the evolution of different ground states with inserting spin flux into the cylinder
system. Moreover, by tuning the anisotropic bond coupling, we explore the nature of the spin-liquid phase and
find the optimal parameter region for gapped Z2 spin liquids.
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Quantum spin liquids (SLs) are long-range entangled states
with remarkable properties of fundamental importance [1].
The SL physics has been considered to be essential to under-
stand strongly correlated systems and unconventional super-
conductivity [2,3]. The simplest and perhaps most striking SLs
are the gapped topological SLs, which develop a topological
order [4–6] with emergent fractionalized quasiparticles [7–9].
Although SLs have been studied intensively for two decades
and have been demonstrated in contrived models [10–20], the
microscopic condition for the emergence of SLs in frustrated
magnetic systems is not well understood.

At the experimental side, possible SLs have been discov-
ered in various materials. Among these materials, the most
promising systems are kagome antiferromagnets, including
herbertsmithite and kapellasite [21–25], as well as organic
Mott insulators with a triangular lattice structure such as
κ-(ET)2Cu2(CN)3 [26–29] and EtMe3Sb[Pd(dmit)2]2 [30,31].
In all these materials, no magnetic order is observed at a
temperature much lower than the interaction energy scale.
These experimental findings have inspired intensive theoretical
studies on frustrated magnetic systems.

Theoretically, the kagome Heisenberg model appears to
possess a robust SL. Density matrix renormalization group
(DMRG) studies suggest a gapped Z2 SL [32–35]. Variational
studies based on projected fermionic parton wave functions,
however, favor a gapless Dirac SL [36–38]. Interestingly,
by introducing second- and third-neighbor couplings [39–41]
or chiral interactions [42], DMRG [40–42] studies recently
discovered another topological SL, the chiral spin liquid
(CSL) [43,44], which breaks time reversal symmetry (TRS)
spontaneously and is identified as the ν = 1/2 bosonic frac-
tional quantum Hall state. On the other hand, the nonmagnetic
phases in frustrated honeycomb and square J1-J2 models
appear to be conventional valence-bond solid states [45–48].

The spin- 1
2 triangular nearest-neighbor (NN) antiferromag-

netic (AF) Heisenberg model was the first candidate proposed

*shoushu.gong@gmail.com

to realize a SL [2], although it turns out to exhibit a 120◦ AF
order [49–53]. To understand triangular weak Mott insulator
materials, combined theoretical and numerical studies [54–56]
on a spin model with four-site ring-exchange couplings [57]
find a gapless spin Bose metal. To enhance frustration [58–68],
one way is to include the second-neighbor coupling J2, where
a stripe ordered state is found with larger J2 coupling [58,59],
and an intermediate nonmagnetic region may emerge [60–63].
The variational Monte Carlo simulations find a nodal d-
wave SL [61] and a gapless SL [62] as candidates for this
intermediate phase. Very recently, a DMRG work [69] found
an indication of a gapped SL with TRS in the nonmagnetic
phase. However, the nature of this intermediate phase remains
far from clear.

In this Rapid Communication, we study a spin- 1
2 triangular

model with AF first- and second-nearest-neighbor J1(J ′
1)-J2

couplings using DMRG. The Hamiltonian is given as

H = J1

∑

〈i,j〉vertical

%Si · %Sj + J ′
1

∑

〈i,j〉zigzag

%Si · %Sj + J2

∑

〈〈i,j〉〉

%Si · %Sj ,

where the sums 〈i,j〉 and 〈〈i,j 〉〉 run over all the first-
and second-neighbor bonds, respectively. The first-neighbor
couplings J1 and J ′

1 are for the vertical and zigzag bonds,
as shown in Fig. 1(a). We study most systems with J ′

1 = J1
unless we specify otherwise. We set J1 = 1 as the energy scale.
By studying spin correlations, we find a nonmagnetic region
sandwiched by a 120◦ AF phase with three sublattices for J2 !
0.07 and a stripe AF phase for J2 " 0.15, as shown in Fig. 1. In
this nonmagnetic region, we identify two ground states with
distinct properties in two sectors, indicating two competing
candidates for SL phases. The spin and dimer correlations
decay exponentially with small correlation lengths. Interest-
ingly, the chiral correlations decay exponentially fast in the
odd sector with an edge spinon, while they develop long-range
correlations in the even sector (with no spinon) for finite-size
systems, consistent with the level crossing between two SLs
for systems with different boundaries. A fractionalized spinon
is detected through adiabatically inserting the spin flux. While
the state in the odd sector agrees with a TRS preserving SL, the
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We study the spin liquid candidate of the spin-1=2 J1-J2 Heisenberg antiferromagnet on the triangular
lattice by means of density matrix renormalization group (DMRG) simulations. By applying an external
Aharonov-Bohm flux insertion in an infinitely long cylinder, we find unambiguous evidence for gapless
Uð1Þ Dirac spin liquid behavior. The flux insertion overcomes the finite size restriction for energy gaps
and clearly shows gapless behavior at the expected wave vectors. Using the DMRG transfer matrix, the
low-lying excitation spectrum can be extracted, which shows characteristic Dirac cone structures of both
spinon-bilinear and monopole excitations. Finally, we confirm that the entanglement entropy follows the
predicted universal response under the flux insertion.
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Introduction.—Quantum spin liquids (QSLs) are exotic
phases of matter which remain disordered due to quantum
fluctuations which, in turn, give rise to remarkable proper-
ties of fundamental importance, such as fractionalizations,
gauge fluctuations, topology, and unconventional super-
conductivity [1–4]. However, despite of a long-running
quest, theoretical and experimentally relevant models for
enigmatic QSLs are still limited and rare.
Historically, it has been proposed that geometric frus-

trations on the spin-1=2 triangular antiferromagnetic
Heisenberg model (TAFM) could lead to a spin disordered
ground state [5]. Although the nearest neighbor TAFM
turns out to exhibit a 120° magnetic order [6–10], the
possibility of increasing the frustration by adding next-
nearest-neighbor (NNN) interactions has captured much
interest in the literature [11–26] for the J1-J2 TAFM

H ¼ J1
X

hi;ji
Si · Sj þ J2

X

⟪i;j⟫

Si · Sj; ð1Þ

where hi; ji and ⟪i; j⟫, respectively, denote NN and NNN
bonds. So far, the general consensus is that an intermediate
region (0.07≲ J2=J1 ≲ 0.15) without magnetic ordering
[11–24] is sandwiched between a stripe ordered phase
(J2=J1 ≳ 0.15) [25,26] and a 120° magnetically ordered
phase (0.0 ≤ J2=J1 ≲ 0.07) [6–10]. However, the under-
lying physics and precise nature of this intermediate phase
is under an intense debate. For instance, variational
Monte Carlo simulations suggest a gapless Uð1Þ Dirac
QSL [14] as candidates for this intermediate phase.
Density-matrix renormalization group (DMRG) calcula-
tions [16–19] found an indication of a gapped QSL as the

nonmagnetic phase, while its internal structure (e.g., Z2,
chiral) has yet to be determined. In addition, extensive
exact diagonalization calculations fail to find evidence in
support of either theory in the accessible system sizes [20].
Taken as a whole, although a possible QSL phase has been
identified on TAFM, the exact nature of this intermediate
phase remains elusive.
It was shown that other experimental-relevant spin

models on the triangular lattice also show spin liquid
behavior which is continuously connected to the spin-
liquid phase of the J1-J2 TAFM model [27,28]. Thus,
understanding the underlying physics in the J1-J2 TAFM,
will give deep insight into a whole class of new triangular
materials, for example, the recent synthesized Na-based
chalcogenides [29–33]. In particular, the spin dynamics of
NaYbO2 shows low-energy spectral weight accumulating
at the K point of the Brillouin zone [31]. So far, it is unclear
if these findings can be interpreted within the spin liquid
picture [34,35], which demonstrates the need for detailed
theoretical predictions.
In this Letter, we unveil the QSL nature of the triangular

J1-J2 model by using large-scale DMRG simulations
armed with recently developed state-of-the-art transfer
matrix analysis [36,37]. We find smoking-gun signatures
of theUð1ÞDirac QSL (DSL), which consistently appear in
16 different geometries and/or system sizes [see Fig. 1(a)
for details]. These signatures include (1) momentum-de-
pendent “excitation spectra,” extracted from the DMRG
transfer matrix [36,37], which reveals gapless modes of the
Dirac spin liquid showing recently predicted behavior of
both fermion bilinear excitations as well as intricate
monopoles [34,35], (2) strong dependence of the energy
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We study the spin-1/2 Heisenberg model on the triangular lattice with the nearest-neighbor J1 > 0, the
next-nearest-neighobr J2 > 0 Heisenberg interactions, and the additional scalar chiral interaction Jχ (!Si × !Sj ) · !Sk

for the three spins in all the triangles using large-scale density matrix renormalization group calculation on cylinder
geometry. With increasing J2 (J2/J1 ! 0.3) and Jχ (Jχ/J1 ! 1.0) interactions, we establish a quantum phase
diagram with the magnetically ordered 120◦, stripe, and noncoplanar tetrahedral phase. In between these magnetic
order phases, we find a chiral spin liquid (CSL) phase, which is identified as a ν = 1/2 bosonic fractional quantum
Hall state with possible spontaneous rotational symmetry breaking. By switching on the chiral interaction, we
find that the previously identified spin liquid in the J1-J2 triangular model (0.08 " J2/J1 " 0.15) shows a phase
transition to the CSL phase at very small Jχ . We also compute the spin triplet gap in both spin liquid phases, and
our finite-size results suggest a large gap in the odd topological sector but a small or vanishing gap in the even
sector. We discuss the implications of our results on the nature of the spin liquid phases.
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I. INTRODUCTION

Quantum spin liquid (QSL) is a kind of a long-range
entangled state with fractionalized quasiparticles [1]. Since
the proposal by P. W. Anderson, the concept of QSL has been
playing an important role for understanding strongly correlated
materials and unconventional superconductors [2]. Although
QSLs have been pursued for more than two decades [3–9],
only recently such novel states have been found in realistic spin
models [10–23], in which geometric frustration and competing
interactions play important roles for developing spin liquid
states.

One of the most promising spin liquid candidates is
the antiferromagnet on the corner-sharing kagome lattice.
Experimentally, spin-liquid-like behaviors have been observed
in several kagome materials such as herbertsmithite [24–28].
Theoretically, the most extensively studied kagome model
is the spin-1/2 kagome Heisenberg model with the nearest-
neighbor (NN) interaction. Thanks to recent large-scale
density matrix renormalization group (DMRG) simulations
[29,30], conventional orders have been excluded, leading to a
QSL ground state. However, the nature of this spin liquid is still
in debate. DMRG calculations suggest a gapped spin liquid
[29–31], seemingly consistent with a Z2 topological order
[30,31]. Recent tensor network state simulations identify the
Z2 topological order of the obtained variational wave function
[32], but, so far, the four degenerate ground states of the
putative Z2 QSL have not been found in exact diagonalization
(ED) [33,34] and DMRG calculations, leaving this problem
open. On the other hand, variational studies based on the
fermionic parton wave functions find a gapless U(1) Dirac
spin liquid rather than a gapped Z2 spin liquid with an
optimized variational energy [35–37]. Very recently, tensor
renormalization group [38,39] and DMRG [40] calculations
also suggest the gapless spin liquid as a strong candi-
date. Interestingly, studies on the modified kagome models
[14–16,41–43] find that the kagome spin liquid emerges near

the phase boundaries of several ordered phases, suggesting
possible strong competition of the different physical mecha-
nisms in the kagome spin liquid regime. In particular, a fully
gapped chiral spin liquid (CSL) [44,45] is found by switching
on small further-neighbor [15,16] or chiral interactions [14]
on the NN kagome model.

Another promising spin liquid candidate is the antifer-
romagnet on the edge-sharing triangular lattice. Although
frustration is present in the spin-1/2 NN triangular model,
it turns out to still exhibit a 120◦ antiferromagnetic order
[46,47]. In recent experiments on triangular organic Mott in-
sulators such as κ-(ET)2Cu2(CN)3 and EtMe3Sb[Pd(dmit)2]2
[48–52], spin-liquid-like behavior has been found. Theoret-
ically, multispin exchange interactions, which can lead to a
gapless spin Bose metal with a large spinon Fermi surface
[53–55] and a gapless spin liquid with a quadratic band
touching [56,57] depending on the strength of interaction, and
the space anisotropic interaction [58–61] have been suggested
to help us understand the spin-liquid behavior in triangular
materials.

Recently, a new spin liquid phase is found in the spin-1/2
triangular Heisenberg model with the NN J1 and the next-
nearest-neighbor (NNN) J2 interactions for 0.08 " J2/J1 "
0.15, which is sandwiched by a 120◦ magnetic phase and
a stripe magnetic order phase [56,62–67]. This frustrating
J2 interaction is considered as a possible mechanism to
understand the spin-liquid behavior of the newly synthesized
triangular materials YbMgGaO4 [68] and Ba3InIr2O9 [69].
For this J1-J2 model, DMRG calculations on a cylindrical
system find evidence of a spin liquid including the two
near-degenerate ground states in the even and odd topological
sectors whose energy difference decays rapidly with growing
cylinder width, and the fractionalized spin-1/2 quasiparticle
revealed by inserting a flux simulation and entanglement
spectrum (ES) [64–66]. On the finite-size DMRG calculations,
the spin triplet gap measured above the overall ground state
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(in the odd sector) is big (!T ∼ 0.3J1) [64,65], seemingly
consistent with a gapped spin liquid [70,71]. Nonetheless,
the even and odd sectors show some distinct features in
finite-size DMRG calculations. While the odd sector shows
a short correlation length that could be consistent with the
large gap, the even sector exhibits a much larger one [65,66],
which may suggest a smaller gap in the even sector. The
low-lying entanglement spectrum in the even sector shows a
Dirac-node-like structure, which is suggested as an implication
of gapless spinon excitations [66]. The different DMRG
results in the two sectors reasonably imply that either the
putative gapped spin liquid is not yet well developed due
to the strong finite-size effects in numerical calculations, or
a gapless spin liquid is possible. In the variational study,
a U(1) Dirac gapless spin liquid indeed possesses the best
variational energy [67]. The nature of this spin liquid remains
an open question. To shed more light on this spin liquid phase,
the modified J1-J2 triangular models have been investigated
[72–75]. Interestingly, the variational [73] and ED calculations
[74] suggest a possible CSL at the neighbor of the J1-J2 spin
liquid, which seems to be similar to the situation in the kagome
model and deserves more studies. Besides, the quantum phase
transition between the two spin liquid phases is also far from
clear.

In this article, we study the spin-1/2 J1-J2 Heisenberg
model on the triangular lattice with additional time-reversal
symmetry (TRS) breaking chiral interaction Jχ using DMRG
simulations. The model Hamiltonian is given as

H = J1

∑

〈i,j〉

$Si · $Sj + J2

∑

〈〈i,j〉〉

$Si · $Sj + Jχ

∑

%/&
($Si × $Sj ) · $Sk,

where J1 and J2 denote the NN and the NNN interactions,
respectively. The scalar chiral interaction Jχ has the same
magnitude for all the up (%) and down (&) triangles, and the
three sites i,j,k for Jχ follow the clockwise order in all the
triangles as shown in Fig. 1(a). Physically, the scalar chiral
interaction Jχ term can be induced in the Hubbard model with
large U in a magnetic field [76,77]. Starting from the Hubbard
model, a t/U (t and U are the hopping and interaction,
respectively) expansion to the second order at half-filling
gives the effective chiral interaction Jχ ($Si × $Sj ) · $Sk with
Jχ ∼ #t3/U 2, where # is the magnetic flux enclosed by the
triangle. We take J1 = 1.0 as the energy scale. Using DMRG
simulation, we obtain a quantum phase diagram as shown
in Fig. 1(d). Besides the 120◦ Néel phase, the stripe phase,
and the time-reversal invariant spin liquid in the J1-J2 model
(here we denote it as J1-J2 SL), we find a large regime of
the noncoplanar tetrahedral order for large Jχ , whose spin
configuration is shown in Fig. 1(c). Below the tetrahedral
phase for J2 ! 0.25, we identify a CSL as the ν = 1/2 bosonic
fractional quantum Hall state by observing the gapless chiral
edge mode. The strong nematic order of bond energy suggests
a possible spontaneous lattice rotational symmetry breaking
and implies an emergent nematic CSL. By studying the spin
triplet gap and entanglement spectrum, we observe a transition
from the J1-J2 SL to the CSL at small chiral interaction. While
we find a large spin triplet gap above the overall ground state
(in the odd sector) in the CSL phase, the small triplet gap in
the even sector suggests that on our studied system size the
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FIG. 1. Model Hamiltonian and quantum phase diagram of the
spin-1/2 J1-J2-Jχ Heisenberg model on the triangular lattice. (a) and
(b) are the schematic figures of the 120◦ and the stripe magnetic
order on the XC and YC cylinders. The triangular model has the
nearest-neighbor J1, next-nearest-neighbor J2, and three-spin scalar
chiral Jχ interactions. For all the triangles, the chiral interactions have
the same chirality direction. (c) Tetrahedral magnetic order on the
triangular lattice. This order has four sublattices with spins pointing
toward the corners of a tetrahedron. (d) Quantum phase diagram of the
model with growing J2 and Jχ . The model shows the 120◦ magnetic
order, J1-J2 spin liquid (J1-J2 SL), stripe magnetic order, chiral spin
liquid (CSL), and tetrahedral phases. The phase boundaries (dashed
lines) are obtained by measuring the magnetic order parameter and
spin correlation function. The dot-dashed line is the classical phase
boundary between the 120◦ magnetic order and the tetrahedral order.

topological nature in the even sector may not have been fully
developed. A possible reason is that this CSL regime generated
by increasing Jχ is near the phase boundaries from the CSL
to the neighboring phases. In the J1-J2 triangular model, the
triplet gap in the even sector seems to be vanished, which
could be consistent with the larger correlation length found
in DMRG calculations [65,66] and may suggest a possible
gapless spin liquid [67], which deserves more studies.

We study the system with cylindrical geometry using
DMRG [78] with spin rotational SU(2) symmetry [79]. We
choose two geometries that have one lattice direction parallel to
either the x axis (XC) or the y axis (YC), as shown in Figs. 1(a)
and 1(b). These cylinders are denoted as XC(YC)Ly-Lx , where
Ly and Lx are the numbers of sites along the two directions.
To study the phase diagram and characterize the CSL phase,
we perform calculations on the systems with Ly up to 8 and
10. We keep up to 4000 SU(2) states to obtain accurate results
with the truncation error less than 10−5 in most calculations.

II. TETRAHEDRAL ORDER AND 120◦ ORDER

For J2 = 0.0, the triangular model has a coplanar 120◦

magnetic order at Jχ = 0.0 [46,47,80,81]. In the large Jχ

limit, a classical spin analysis finds a tetrahedral magnetic
state with the spins of the four sublattices pointing toward
the corners of a tetrahedron [82] [see Fig. 1(b)]. In the
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We investigate the J1-J2 Heisenberg model on the triangular lattice with an additional scalar chirality term
and show that a chiral spin liquid is stabilized in a sizable region of the phase diagram. This topological phase is
situated in between a coplanar 120◦ Néel ordered and a noncoplanar tetrahedrally ordered phase. Furthermore we
discuss the nature of the spin-disordered intermediate phase in the J1-J2 model. We compare the ground states
from exact diagonalization with a Dirac spin liquid wave function and propose a scenario where this wave function
describes the quantum critical point between the 120◦ magnetically ordered phase and a putative Z2 spin liquid.
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I. INTRODUCTION

The emergence of quantum spin liquids in frustrated
quantum magnetism is an exciting phenomenon in contem-
porary condensed matter physics [1]. These states of matter
exhibit fascinating properties such as long-range ground-state
entanglement [2,3] or anyonic braiding statistics of quasipar-
ticle excitations, relevant for a potential implementation of
topological quantum computation [4]. Only very recently have
such phases been found to be stabilized in realistic local spin
models [5–19].

Triangular lattice Heisenberg models are a paradigm of
frustrated magnetism. Although the Heisenberg model with
only nearest-neighbor interaction is known to stabilize a
regular 120◦ Néel order [20–23], adding further interac-
tion terms may increase frustration and induce magnetic
disorder to the system. Experimentally, several materials
with triangular lattice geometry do not exhibit any sign of
magnetic ordering down to lowest temperatures [24–27].
These include, for example, the organic Mott insulators like
κ-(BEDT-TTF)2Cu2(CN)3 [24,25] or EtMe3Sb[Pd(dmit)2]2
[26,27] and are thus candidates realizing spin liquid physics.

Historically Kalmeyer and Laughlin [28] introduced the
chiral spin liquid (CSL) state on the triangular lattice. This
state is closely related to the celebrated Laughlin wave function
of the fractional quantum Hall effect and has recently been
shown to be the ground state of several extended Heisenberg
models on the kagomé lattice [5–7,9]. The question arises
whether a CSL can indeed be realized on the triangular
lattice as originally proposed. In a recent study [10] this
was shown for SU(N ) models for N ! 3. In this paper we
provide conclusive evidence that indeed the CSL is stabilized
in a spin-1/2 Heisenberg model upon adding a further scalar
chirality term Jχ

"Si · ("Sj × "Sk), similar to Refs. [6–8,10]. Such
a term can be realized as a lowest order effective Heisenberg
Hamiltonian of the Hubbard model upon adding # flux through
the elementary plaquettes [6,29,30], either via a magnetic field
or by introducing artificial gauge fields in possible cold-atom
experiments [31,32]. The coupling constants then relate to
the Hubbard model parameters t and U as J1 ∼ t2/U and

*alexander.wietek@uibk.ac.at

Jχ ∼ #t3/U 2 where J1 (resp. Jχ ) is the nearest-neighbor
Heisenberg (resp., scalar chirality) coupling.

Another open question in frustrated magnetism of the
triangular lattice is the nature of the intermediate phase in the
phase diagram of the S = 1/2 Heisenberg model with added
next-nearest-neighbor couplings around J2/J1 ≈ 1/8. Several
authors [20,33,34] found a spin disordered state. Recently
several numerical studies [35–40] proposed that a topological
spin liquid state of some kind might be realized in this regime.
The exact nature of this phase yet remains unclear. In this paper
we advocate the presence of a O(4)∗ quantum critical point
[41–44] separating the 120◦ Néel order from a putative Z2
spin liquid. The diverging correlation length at this quantum
critical point and the neighboring first-order phase transition
into the stripy collinear magnetic ordered phase render the
unambiguous identification of the intermediate spin liquid
phase challenging, however.

II. MODEL

We investigate the Heisenberg model with nearest- and
next-nearest-neighbor interactions with an additional uniform

FIG. 1. Approximate T = 0 phase diagram of the J1-J2-Jχ model
on the triangular lattice, cf. Eq. (1). The extent of phases is inferred
from excitation spectra from ED on a periodic 36-site triangular
simulation cluster; see main text for details. Orange: S = 1 K .A1
(120◦ Néel); light blue: S = 0 $.E2b (CSL); green: S = 0 $.E2a,
$.E2b degenerate (Dirac/Z2 spin liquid); dark blue: S = 0 $.A1,
$.E2a, $.E2b degenerate (stripy magnetic order); dark red / light red:
S = 1 M .A / S = 0 $.E2a (tetrahedral magnetic order).
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regular 120◦ Néel order [20–23], adding further interac-
tion terms may increase frustration and induce magnetic
disorder to the system. Experimentally, several materials
with triangular lattice geometry do not exhibit any sign of
magnetic ordering down to lowest temperatures [24–27].
These include, for example, the organic Mott insulators like
κ-(BEDT-TTF)2Cu2(CN)3 [24,25] or EtMe3Sb[Pd(dmit)2]2
[26,27] and are thus candidates realizing spin liquid physics.

Historically Kalmeyer and Laughlin [28] introduced the
chiral spin liquid (CSL) state on the triangular lattice. This
state is closely related to the celebrated Laughlin wave function
of the fractional quantum Hall effect and has recently been
shown to be the ground state of several extended Heisenberg
models on the kagomé lattice [5–7,9]. The question arises
whether a CSL can indeed be realized on the triangular
lattice as originally proposed. In a recent study [10] this
was shown for SU(N ) models for N ! 3. In this paper we
provide conclusive evidence that indeed the CSL is stabilized
in a spin-1/2 Heisenberg model upon adding a further scalar
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next-nearest-neighbor couplings around J2/J1 ≈ 1/8. Several
authors [20,33,34] found a spin disordered state. Recently
several numerical studies [35–40] proposed that a topological
spin liquid state of some kind might be realized in this regime.
The exact nature of this phase yet remains unclear. In this paper
we advocate the presence of a O(4)∗ quantum critical point
[41–44] separating the 120◦ Néel order from a putative Z2
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critical point and the neighboring first-order phase transition
into the stripy collinear magnetic ordered phase render the
unambiguous identification of the intermediate spin liquid
phase challenging, however.

II. MODEL

We investigate the Heisenberg model with nearest- and
next-nearest-neighbor interactions with an additional uniform

FIG. 1. Approximate T = 0 phase diagram of the J1-J2-Jχ model
on the triangular lattice, cf. Eq. (1). The extent of phases is inferred
from excitation spectra from ED on a periodic 36-site triangular
simulation cluster; see main text for details. Orange: S = 1 K .A1
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At strong repulsion, the triangular-lattice Hubbard model is described by s ¼ 1=2 spins with nearest-
neighbor antiferromagnetic Heisenberg interactions and exhibits conventional 120° order. Using the infinite
density matrix renormalization group and exact diagonalization, we study the effect of the additional four-
spin interactions naturally generated from the underlying Mott-insulator physics of electrons as the
repulsion decreases. Although these interactions have historically been connected with a gapless ground
state with emergent spinon Fermi surface, we find that, at physically relevant parameters, they stabilize a
chiral spin liquid (CSL) of Kalmeyer-Laughlin (KL) type, clarifying observations in recent studies of the
Hubbard model. We then present a self-consistent solution based on a mean-field rewriting of the
interaction to obtain a Hamiltonian with similarities to the parent Hamiltonian of the KL state, providing a
physical understanding for the origin of the CSL.
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Introduction.—The triangular lattice has played a promi-
nent role in the physics of spin liquids ever since they were
first proposed by Anderson [1], and many of the candidate
materials exhibit this lattice geometry [2–11]. In particular,
some organic charge transfer salts [2,3] and 1T-TaS2 [6,12]
are believed to be described by the Hubbard model on the
triangular lattice in the vicinity of the Mott transition. While
the existence of a nonmagnetic insulating (NMI) phase in the
Hubbardmodel has been observed in numerous studies [13–
23], the determination of the type of spin-liquid phase in
direct studies of the Hubbard model has long been elusive.
The problem has instead often been investigated via an

effective spin model. Deep in the insulating phase of the
Hubbard model, a nearest-neighbor Heisenberg model is
sufficient and contains long-ranged three-sublattice order
[24–26]. To describe physics closer to the Mott transition,
one includes a four-spin ring-exchange part in addition to
the Heisenberg term, a description coming from the lowest
order t=U expansion of the Hubbard model [27]. In a
seminal paper, Motrunich showed, using variational
Monte Carlo simulations, that a spin liquid with spinon
Fermi surface (SFS) is a strong competitor for the ground
state if the ring-exchange term is large enough [28].
Indications for this state, in subsequent works also referred
to as spin-Bose metal, have been seen in other studies,
including some with complementary methods [12,17,29–
32], but remain under debate [33]. However, recent work on
the Hubbard model suggested that the NMI is instead a
chiral spin liquid (CSL) of Kalmeyer-Laughlin (KL) type
[34–38], seemingly at odds with the results for the effective
spin model.

In this Letter, using a combination of exact diagonaliza-
tion (ED) and infinite density matrix renormalization group
(iDMRG) [39] simulations, we first show that the KL spin
liquid is indeed the ground state of the effective spin model
around the parameter regime relevant for the Hubbard
model. We demonstrate that this CSL does not emerge as a
competing state to the SFS, but rather appears at a different
value of the four-spin interaction; this is to our knowledge
the first demonstration of a KL ground state in a time-
reversal invariant spin model on the triangular lattice.
However, we also find that much of the region that had
been attributed to the SFS in previous works is occupied by
a magnetically ordered zigzag state. The second main result
is to connect analytically the four-spin term, which pre-
serves time-reversal symmetry (TRS), back to the TRS-
breaking parent Hamiltonians of the KL state [40,41] by
mean-field arguments. Hence, one aspect of our work
clarifies the relation between the appearance of the CSL
in the triangular-lattice Hubbard model and the correspond-
ing spin model, while the second clarifies why the CSL
appears in the spin model via a connection to known TRS-
breaking parent Hamiltonians for the CSL.
Finding a parent spin Hamiltonian of the KL state

[40,41] and its generalizations, the Read-Rezayi states
[42,43], has been of considerable interest. Generally, the
parent Hamiltonians derived from conformal-field theoretic
(CFT) arguments have long-ranged interactions, but a local
Hamiltonian can be found if only short-ranged coefficients
are kept, made uniform, and tuned [41,43–47]. While the
underlying Hamiltonian for a material in zero applied field

PHYSICAL REVIEW LETTERS 127, 087201 (2021)

0031-9007=21=127(8)=087201(7) 087201-1 © 2021 American Physical Society
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 Translation of a spin Hamiltonian to fermions coupled to a gauge field 
 

 

 Breaking up a spin into Abrikosov fermionic “partons” …  
 

   

 … and rewriting the original Hamiltonian in terms of these new operators 
 

 

 Now doubly occupied sites are explicitly allowed 

 Interesting exact local gauge symmetry: 

H = ∑
i,j

JijSi ⋅ Sj

Si =
1
2 ∑

αβ

c†
iασαβciβ, α, β = ↑ ↓

H = ∑
i,j,α,β

−
Jij

2
c†

iαcjαc†
jβciβ + ∑

i,j

Jij

2 (ni −
1
2

ninj) .

c†
iα → eiθic†

iα

[Xiao-Gang Wen, Phys. Rev. B 65, 165113 (2002)]

Construction of quantum spin liquids
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 Mean-field decoupling using an ansatz for  
 

 

 To reintroduce the single particle constraint, either couple to the gauge field … 
 

       

 … or perform a Gutzwiller projection

χij ≡ ⟨c†
iαcjα⟩

Hmean = ∑
i,j,α

(χijc†
iαcjα + H.c.)

𝒵 = ∫ 𝒟ci𝒟ai𝒟χij exp {i∫ dt ℒ − ∑
i

ai(t)(ni − 1)}, ∫ 𝒟ai exp {i∫ dt ai(ni − 1)} = δ (ni − 1) .

Construction of quantum spin liquids
[Xiao-Gang Wen, Phys. Rev. B 65, 165113 (2002)]



 Choosing a two-site unit cell with - flux … 
 
 
 
 
 
 

 … yields a band structure with two Dirac cones

π
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[I. Affleck and J. B. Marston, Phys. Rev. B 37, 3774(R) (1988)]

Dirac spin liquid
 Choosing a two-site unit cell with - flux … 
 
 
 
 
 
 

 … yields a band structure with two Chern bands
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π/2

π/2

π/2

π/2

[X. G. Wen, F. Wilczek, and A. Zee, Phys. Rev. B 39, 11413, (1989)]

Chiral spin liquid
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(a)
QED3 vacuum
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Dirac spin liquid summary

If the fermion (parton) band structure has (2) Dirac cones

Then, they are coupled to a compact U(1) gauge field

As a spin wavefunction, it could be gapless (several gapless excitations, see later),

algebraic spin liquid

(Think about the S=1/2 Heisenberg chain in 1d)

It has been proposed as the groundstate of other frustrated magnets (kagome) but 
there is no exactly solvable model so far…



Example: Gutzwiller projection of a Fermi sea

Chapter 3

Chiral spin liquids

The chiral spin liquid (CSL) [73; 74; 89; 160; 125] is an example of a two-dimensional system obeying
fractional statistics. It is a spin liquid which violates time reversal (T) and parity (P) symmetry. Being
conceptually closely related, the system may be viewed as an extension of the Haldane-Shastry model to
two dimensions.

In case of the Abelian or spin s = 1/2 CSL, it is essentially a Laughlin state with filling fraction ⌫ = 1/2
for spin flips on a two-dimensional lattice. The liquid supports spinon excitations, which are deconfined
and obey fractional statistics. The spinons of the CSL are quasiparticles with spin 1/2 and no charge. They
exhibit quantum-number fractionalization and carry only half of the spin as compared to the excitations
of conventional magnetically ordered systems with spin 1.

In 2009, Greiter and Thomale propopsed a novel CSL state for a s = 1 antiferromagnet, the non-Abelian
chiral spin liquid (NACSL) [45; 136]. As for the Abelian CSL, the spinon excitations are deconfined, but
in this state, they obey non-Abelian statistics, making the system interesting for the field of quantum
computation and cryptography. As suggested by [45], the concept can be extended to systems with s > 1.

In the following, we first briefly review the Haldane-Shastry model and summarize the main properties
of the Abelian and non-Abelian CSL.

3.1 The Haldane-Shastry model

The Haldane-Shastry model [54; 127; 70; 57; 126; 58; 77; 78; 21; 88; 11; 10; 44] plays a unique role among
the integrable models of spin 1/2 Heisenberg chains. Apart from being solvable by the asymptotic Bethe
ansatz, its ground state and several excited states (those with fully polarized spins of the spinon excitations)
can be written down in closed form. Futhermore, the model reveals a direct relationship of the spin chain
to the fractional quantum Hall e↵ect (FQHE) [74].

Let a spin-1/2 chain of N sites, N 2 2N, with periodic boundary conditions be wrapped onto a unit
circle. Each site may be expressed as a complex number,

&%
'$

rrr
rrrrr r r r r ⌘↵ = e

i 2⇡N ↵ with ↵ = 1, . . . , N .

The Haldane-Shastry Hamiltonian then is

H
HS =

✓
2⇡

N

◆2 NX
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Exact Jastrow-Gutzwiller Resonating-Valence-Bond Ground State of the Spin- 2 Antiferromagnetic
Heisenberg Chain with I/r Exchange

F. D. M. Haldane
Department ofPhysics, University of California at San Diego, La JollaC, alifornia 92093

(Received 15 December 1987)

A set of Jastrow wave functions comprises exact eigenstates of a family of S= 2 antiferromagnetic
chains with r exchange. The ground state of the isotropic model is in this set, and is identical to the
U ~ limit of the Gutzwiller wave function, also identified as Anderson s "resonating-valence-bond"
state. The full set of energy levels of this model is obtained; the spectrum exhibits remarkable "super-
multiplet" degeneracies suggesting the existence of a hidden continuous symmetry,

PACS numbers: 75.10.Jm, 74.65.+n

I

(J) g al(1 n)P 1(I —n) v t (2)

where p, q, and J are integers, z =exp(2tri/N), and the
primed sum is from n =1 to N —1. J may be chosen in
the range 1~J&N. Then, for O~q~ J&N—p&N,
(a) S~~(J) 0 for p+q & 2, (b) Spv(J) (—1)P
for p+q =2, (c) Sp~(J) ——,

' —(p —q)(J——,
' N) for

p+q =1, and (d) Spp(J) = —,', (N —1)——,
' J(N —J).

If p or q exceed the maximum values allowed by the in-
equality, S&q~0. This means that the set of values
[S~v(J),p+q =r] are all zero only in the range
2 & r ~ min(J, N —J).
It is convenient to choose the total azimuthal spinS'~ 0, and treat the system as a Bose lattice gas where

S„'=ct=+—,
' represents an empty site, and cr= ——,

' an
occupied site. There are M= 2 N —S' particles, with
matrix elements —,

' d(n) for a hop of n sites, and in-
teraction energy Ad(n) between pairs n sites apart.
The boson dispersion relation is given by e(k) = —, k(k

In this Letter I construct the exact Jastrow-product
ground-state wave function of the S 2 one-dimen-
sional (1D) isotropic Heisenberg antiferromagnet with
an exchange coupling falling off as the inverse square of
the distance between sites. This state is found to be
identical to the U ~ limit of Gutzwiller's variational
wave function' for the Hubbard chain, and to the 1D
version of Anderson's "resonating-valence-bond" (RVB)
state. I also obtain the wave functions and correlation
functions of a related set of exact eigenstates, give a con-
struction for the full set of excitation energies, and dis-
cuss an anisotropic generalization of the model.
The model Hamiltonian is given by

H =g„&„J(n—n ') (S„"S„".+S~»S» +B,S„'S„' ), (1)
with J(n n') =d(n—n'), whe—re d is the distance be-
tween sites. To impose periodic boundary conditions on
a finite ring of N sites, I take d to be the chord distance
(N/tt)

~
sin [tr(n —n ')lN]

~
.

The mathematical result underlying the solution of the
model involves the sum

Z({nt] ) ( )
([ ]) =Z.f.(J)Z IIJ [1 g~j"
y n;

(4)

where f„(J)= —,
' (2tr/N) z (1—z") '(1 —z ") ' and

g;,'"' =Z;j '[(1—z")Z + (1—z ")ZJ'], where Z; =z"'
and Z;J =Z;—Z~. If m is an even integer, the product in
(4) can be expanded as a finite polynomial in
(1—z")~(1—z ")q with p+q ~ —,

' m(M —1). Provid-
ed —,

' m(M —1)~ J~ N —2 m(M —1), terms with
p+q & 2 do not contribute to the right hand side of-(4).
This means that (4) only involves two-particle and
three-particle terms; furthermore, the three-particle term
may be eliminated with the identity [cot(8t —82)cot(8z
83) + (cyclic permutations of 1,2, 3 ) =—1 ] . The right-

hand side of (4) then is given by a constant minus
'H'([ ]n), the inverse-square interaction term with cou-

pling d, (m) = —,
' m(m —1). Provided 5 takes a value cor-

responding to even-integral m, (3) is an eigenfunction of
(1) with eigenvalue Ep(M, A)+ —,

' Et, where

E~ =(2tr/N) [24 m M(M —1)—2 MJ(N —J)].
(s)

The lowest-energy eigenstate of the form (3) is obtained
by our choosing M and J as close as possible to
while respecting the restrictions on M and J.

-2tt) for 0&k &2tt. In addition, there is an energy
hift

Ep(M, h) = ~'~ (2tt/N) (N —I ) [ 4 NB+M(1 —6)].
Motivated by Sutherland's solution6 of the continuum

limit of this problem, I consider the Jastrow wave func-
tions

y([n;]) =+;exp(2triJn;/N)Q; d(n; n)—
Jcontrols the particle current around the ring; the state
is an eigenfunction of the translation operator with ei-
genvalue T=exp(iE) =exp(2tti JM/N).
If H is the kinetic (hopping) term, and H

~ y) = ~ X),
then

1988 The American Physical Society 635

In 1d, it is known that the ground-state of a S=1/2 sytem can be obtained as the 
Gutzwiller projection of a simple Fermi sea

VOLUME 60, NUMBER 7 PHYSICAL REVIEW LETTERS 15 FEBRUAR I 1988

Exact Solution of an S 2 Heisenberg Antiferromagnetic Chain with Long-Ranged Interactions

B. Sriram Shastry '
Joseph Henry Laboratories of Physics, Princeton University, Princeton, New Jersey 08544

(Received 24 December 1987)

The S= 2 Heisenberg Hamiltonian

N—1 N

Z Jn~m ' trm+n
n 1m 1

with J„JO/sin (ntt/N), is shown to have a simple singlet ground state in the form of a Jastrow function.
The spectrum and correlations are explicitly known and the magnetic susceptibility is shown to be Pauli
type at T 0. The model has a striking similarity to the nearest-neighbor isotropic Heisenberg model
and may be viewed as a discretized version of the Sutherland-Calogero-Moser system.

PACS numbers: 75.10.Jm, 05.50.+q, 71.28.+d, 74.65.+n

Si(x) =„
"sin(try)

dy.
ZJ

I was motivated by the above to inquire further into
the precise nature of the wave function

I y& as a spin
wave function. I show in this Letter that I y&!s, in fact,
an eigenfunction of a long-ranged Hamiltonian antifer-
romagnet described by the Hamiltonian (a periodic ver-
sion of 1/r exchange)

N N —1 J0e'=-,'g g, ~ o+„
m 1 n 1 s111 ntr/N

(3)

(N even and periodic boundary conditions).
As a prelude, let us examine the .tature of the

Gutzwiller projection in Eq. (1). It is convenient to work
with the Klein operation a„l =c„t, a„l =c„texp(itrN1),
where Nt is the number operation for the up spins.
(These operators have the property that [a„t,a„i]=0.)
A basis wave function for band electrons is written in the

There has been a great interest recently in the proper-
ties of the Gutzwiller-projected Fermi wave function.
The one-dimensional case corresponding to one electron
per atom (Nt =Nl =N/2, N even) is a singlet wave
function,

I tit&=PGI&&; PG=+;(1—n; n; ),

I e& =II)
Elegant numerical work' has shown that I ttt& is an ex-
tremely good variational wave function for the nearest-
neighbor isotropic Heisenberg (NNIH) model in that
the energy is close to the Bethe Ansatz results, and also
the spin correlations have a power-law behavior similar
to the exact results. In fact, Gebhard and Vollhardt
have succeeded in computing the spin correlations
analytically and find

(~z~z& Si(nn) (,)„4zn
(2)

form

Ie'&= ll,', ll,', Io&, (4)
keK qeg

where K is a set of (N —M) momenta occupied by the
up electrons and Q is the set of M wave vectors for the
down electrons. We now perform a particle-hole trans-
formation on the up-spin species generated by a unitary
operator U = (atvl +atv t ) (a 1 t +a11) and consider
the state

I y&=UPGI p'&=PGU I
p'&, where PG=II (1—n l+n tn t). The operator U can be commuted

through the a's and we find

(5)

Expanding the plane-wave states in the Wannier basis
and implementing PG we find

I ttt&
= g det(e' '"')det(e' '"')b~ . bt„ IO&,
~ 1 ~ ~ ~ .~M

where the p's are the set of wave vectors complementing
the set —K and b„=a„la„l. The algebra of the opera-
tors b„ is identical to that of the Pauli spin operators
and, in fact, this representation was first used by Ander-
son in the context of the theory of superconductivity.
To be precise, I write S„+=b„,S„=2

—b„~b„. The state
I y& is thus isomorphic to the state

I X&
= g det(e' '"')det(e' '"')5„, Sn„ I F&,

(7)
where I F& is the ferromagnetic state. The totality of
states IX& form an appropriate basis for the spin system
since the determinant forces the vanishing of the wave
function for coincident spin deviation (the kinematical
constraint is fulfilled) and, moreover, the pair of deter-
minants gives a Bose character to the wave function. In
fact, if we chose p's such that p„+q aO (for any n, m),

1988 The American Physical Society



21

 Continuum limit, expanding close to the Dirac nodes at long wavelengths yields effective action 
 

 

 Quantum electrodynamics in 2+1 dimensions,   

  fermions (factor 2 from , factor 2 from 2 Dirac nodes) 

 Gamma matrices:  

 Gauge field stems from introducing single occupancy constraint 

 Enhanced symmetry: SU(4) flavor

ℒ =
4

∑
i=1

Ψ̄i[−iγμ(∂μ + iaμ)]Ψi +
1

2e2 ∑
μ

(ϵμνλ∂νaλ)2

Nf = 4 α = ↑ ↓

(γ0, γ1, γ2) = (iσy, σz, σx)

aμ

(a)
QED3 vacuum

(b)
bilinear excitations

(c)

monopole excitations

°t

(d) photon excitations

º
0

º
0

(e) º-flux ansatz
(f)

momentum space

K

M

X°

[M. Hermele, T. Senthil, M. P. A. Fisher, P. A. Lee, N. Nagaosa, and X.-G. Wen, Phys. Rev. B 70, 214437 (2004)]

Field theory in the continuum
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 Properties of QED3 strongly depend on the number of fermion flavours   (Dirac spin liquid ) 
 

  

  limit supresses gauge fluctuations 

 conformal field theory with gapless fermion and photon modes 

 Monopole excitations at large energy scale  
 

  limit: pure  gauge field theory is confining in 2+1 dimensions 
 

 : still subject of ongoing research (presumably strongly coupled CFT)

Nf Nf = 4

ℒ =
4

∑
i=1

Ψ̄i[−iγμ(∂μ + iaμ)]Ψi +
1

2e2 ∑
μ

(ϵμνλ∂νaλ)2

Nf → ∞

∝ Nf

Nf = 0 U(1)

Nf = 4

(a)
QED3 vacuum

(b)
bilinear excitations

(c)

monopole excitations

°t

(d) photon excitations

º
0

º
0

(e) º-flux ansatz
(f)

momentum space

K

M

X°

[A. Polyakov, Nucl. Phys. B 120, 429 (1977)]

Properties of QED3

 [ many refs…]



The mother of many competing orders
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 Whether QED3 with  fermions is stable is not fully settled  there can be spontaneous mass generation 

  

 Analogous to Higgs mechanism of gapping EM field in superconductor 

 Different mass terms stabilise different phases of matter 

 Mass term  breaks time reversal symmetry  chiral spin liquid 

 Mass terms  leads to non-collinear antiferromagnet   Néel state   

 Mass terms  leads to valence bond solid states 

 the latter two cases yield a proliferation of monopole excitations

Nf = 4 →

ℒ =
4

∑
i=1

Ψ̄i[−iγμ(∂μ + iaμ)]Ψi + gϕ ⋅ Ψ̄MΨ + (∂μϕ)2 − uϕ2 − λϕ4

Ψ̄Ψ →

Mi0 = Ψ̄σi ⊗ 1Ψ → 120∘

M0j = Ψ̄1 ⊗ σjΨ

(a)
QED3 vacuum

(b)
bilinear excitations

(c)

monopole excitations

°t

(d) photon excitations

º
0

º
0

(e) º-flux ansatz
(f)

momentum space

K

M

X°

[M. Hermele, T. Senthil, and M.P.A. Fisher, Phys. Rev. B 72, 
104404 (2005)]

[X.-Y. Song, C. Wang, A. Vishwanath, Y.-C. He, Nat. Commun. 10, 
4254 (2019)]



Low-energy spectrum on a torus
Operator-state correspondence in CFT valid on a sphere geometry

But numerics is more practical on a torus…

Nontrivial geometry but universal spectrum too !

Universal Signatures of Quantum Critical Points from Finite-Size Torus Spectra:
A Window into the Operator Content of Higher-Dimensional Conformal Field Theories
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The low-energy spectra of many body systems on a torus, of finite size L, are well understood in
magnetically ordered and gapped topological phases. However, the spectra at quantum critical points
separating such phases are largely unexplored for ð2þ 1ÞD systems. Using a combination of analytical and
numerical techniques, we accurately calculate and analyze the low-energy torus spectrum at an Ising critical
point which provides a universal fingerprint of the underlying quantum field theory, with the energy levels
given by universal numbers times 1=L. We highlight the implications of a neighboring topological phase on
the spectrum by studying the Ising* transition (i.e. the transition between a Z2 topological phase and a
trivial paramagnet), in the example of the toric code in a longitudinal field, and advocate a
phenomenological picture that provides qualitative insight into the operator content of the critical field
theory.

DOI: 10.1103/PhysRevLett.117.210401

Introduction.—Quantum critical points continue to
attract tremendous attention in condensed matter, statistical
mechanics, and quantum field theory alike. Recent high-
lights include the discovery of quantum critical points
which lie beyond the Ginzburg-Landau paradigm [1,2], the
striking success of the conformal bootstrap program for
Wilson-Fisher fixed points [3], and the intimate connection
between entanglement quantities and universal data of the
critical quantum field theory [4–8].

A surprisingly little explored aspect in this regard is the
finite (spatial) volume spectrum on numerically easily
accessible geometries, such as the Hamiltonian spectrum
on a 2D spatial torus at the quantum critical point [9]. In
the realm of ð1þ 1ÞD conformal critical points there exists
a celebrated mapping between the spectrum of scaling
dimensions of the field theory in R2 and the Hamiltonian
spectrum on a circle (space-time cylinder: S1 ×R) [10].
This result is routinely used to perform accurate numerical
spectroscopy of conformal critical points using a variety of
numerical methods [11,12]. In higher dimensions the
situation is less favorable: Cardy has shown [13] that the
corresponding conformal map can be generalized to a map
between Rd and Sd−1 × R. While numerical simulations in
this so-called radial quantization geometry have been
attempted at several occasions [14–18], this numerical
approach remains very challenging due to the curved
geometry, which is inherently difficult to regularize in
numerical simulations.
Although low-energy spectra on different toroidal con-

figurations have been discussed in the context of some
specific field theories (in Euclidean spacetime) [19–23],
our understanding of critical energy spectra is rather limited

beyond free theories [24–28]. This is due to the absence of
a known relation between the scaling dimensions of the
field theory and the torus energy spectra.
In this Letter we present a combined numerical and

analytical study of the Hamiltonian torus energy spectrum
of the 3D Ising conformal field theory (CFT), and show that
it is accessible with finite lattice studies and proper finite-
size scaling. Torus energy spectra provide a universal
fingerprint of the quantum field theory governing the
critical point and depend only on the universality class
of the transition and on the shape and boundary conditions
of the torus, which acts as an infrared (IR) cutoff (but not on
the lattice discretization, i.e., the ultraviolet cutoff). We will
explicitly demonstrate this here for the Ising CFT. This
approach will also be valuable as a new numerical tool to
investigate and discriminate quantum critical points.
We provide a quantitative analysis of many low-lying

energy levels of the standard Z2-symmetry breaking phase
transition in the 3D Ising universality class. We also
advocate a phenomenological picture that provides quali-
tative insight into the operator content of the critical point.
As an application, we reveal that the torus energy spectrum
of the confinement transition between the Z2 topological
ordered phase and the trivial (confined) phase of the toric
code (TC) in a longitudinal magnetic field can be under-
stood as a specific combination of a subset of the fields and
several boundary conditions of the standard 3D Ising
universality class. Since the operator content of the parti-
tion function at criticality obviously differs from the
standard 3D Ising universality class, we term this transition
a 3D Ising* transition [29–31].
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symmetries are preserved during the calculation and no
extra length scales are introduced.
Our approach to the critical theory in a finite volume

originated from Lüscher [40], and was extended to deal
with finite size criticality in classical systems by others
[33,41]. The key observation is that the zero mode of the
field generates incurable infrared divergences in perturba-
tion theory, so it must be separated and treated non-
perturbatively. In the context of the finite-size spectrum,
this can be understood from Eq. (2) by noticing that the
Gaussian theory at s ¼ 0 does not contain any potential
term for the zero mode, giving a continuous spectrum,
whereas any finite uwill confine the zero mode producing a
discrete spectrum. Therefore, the correct perturbative
approach is to treat the momentum of the zero mode at
the same order as its interactions.
By splitting the fields in Eq. (2) and proper normali-

zation of the zero-mode terms, the Hamiltonian can be
decomposed into a quadratic part H0 describing the
Fock spectrum of the finite-momentum modes, and an
interaction part V containing all zero-mode contributions
and nonlinearities.
At zeroth order, our states are given by finite momentum

Fock states multiplied by arbitrary functionals of the zero
mode, so these states are infinitely degenerate. We then
derive an effective Hamiltonian within each degenerate
subspace using a perturbation method due to Bloch [42].
This effective Hamiltonian acts in a degenerate subspace,
but its eigenvalues correspond to the exact eigenvalues of
the original Hamiltonian to desired order. It turns out, that
the effective Hamiltonians take the form of a strongly
coupled oscillator with coefficients depending on the
degenerate subspaces. The coefficients of the more com-
plicated expansion for the energy levels (expansion in ϵ1=3)
can be found in Ref. [34]. In addition, the effective
Hamiltonian will couple different Fock states with the
same energy and momentum whenever possible, leading to

off-diagonal terms. These off-diagonal terms were com-
puted numerically from the unperturbed wave function.
Further details about the ϵ-expansion approach can be
found in the Supplemental Material [32].
In Fig. 3 we show the universal torus spectrum obtained

from ϵ expansion for the two choices of τ and compare it to
numerical results from ED and QMC computations [32(d)]
normalized by the speed of light c [32(e),43]. We observe a
remarkable agreement between the two different methods.
This further illustrates the interpretation of the torus spectra
as a universal fingerprint of the critical field theory and
their accessability from numerical finite lattice simula-
tions. The larger discrepancies between numerical and ϵ-
expansion data for some higher levels in the spectrum may
result from the extrapolation to the thermodynamic limit
using only ED data with strong finite-size effects, espe-
cially for κ > 0 [44].
ð2þ 1ÞD Ising* universality class.—In this section we

are investigating the confinement transition of a Z2 spin

+
+

FIG. 3. Universal torus spectra for the Ising QFT for the
modular parameters τ ¼ i (left panel) and τ ¼ 1=2þ

ffiffiffi
3
p

=2i
(right panel). Full symbols denote numerical results obtained
by EDþ QMC (the lowest Z2 odd levels), while empty symbols
denote the ϵ-expansion results. The dashed line shows a
dispersion according to the speed of light.

FIG. 2. Normalized low-energy torus spectrum for the Ising QFT for the modular parameters τ ¼ i and τ ¼ 1=2þ
ffiffiffi
3
p

=2i obtained
with ED (large symbols) and QMC simulations (small red filled circles). Filled (empty) symbols denote Z2 even (odd) levels. Linear fits
in 1=N for levels with κ ¼ 0 (κ ¼ 1) are shown by blue solid (green dashed) lines (cf. color coding in Fig. 1) and the values of the fields
after extrapolation to the thermodynamic limit 1=N → 0 are given in parentheses. The normalization constant Δ0 is chosen such that the
first Z2 odd level extrapolates to one. We observe a universal torus spectrum for the lattices with the same type of IR cutoff (same τ).
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Many model quantum spin systems have been proposed to realize critical points or phases described by 2+1
dimensional conformal gauge theories. On a torus of size L and modular parameter τ , the energy levels of
such gauge theories equal (1/L) times universal functions of τ . We compute the universal spectrum of QED3, a
U(1) gauge theory with Nf two-component massless Dirac fermions, in the large-Nf limit. We also allow for a
Chern-Simons term at level k, and show how the topological k-fold ground state degeneracy in the absence of
fermions transforms into the universal spectrum in the presence of fermions; these computations are performed
at fixed Nf /k in the large-Nf limit.
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I. INTRODUCTION

While many fractionalized states of matter have been
proposed, verifying their existence is a formidable task. Not
only are experimental measurements of fractional degrees
of freedom difficult, but even establishing the existence of
these phases in simplified lattice models can be challenging.
Numerical techniques have made a great deal of progress and
now provide support for some of these states of matter.

In the context of quantum spin systems, the simplest
fractionalized state with an energy gap and time-reversal
symmetry is the Z2 spin liquid. Recent work described the
universal spectrum of a spin system on a torus [1,2] across
a transition between a Z2 spin liquid and a conventional
antiferromagnetically ordered state [2]. Such a spectrum is
a unique signature of the transition between these states and
goes well beyond the 4-fold topological degeneracy of the
gapped Z2 state that is usually examined in numerical studies.

In this paper, we turn our attention to critical spin liquids
with an emergent photon and gapless fractionalized excita-
tions. Commonly referred to as an “algebraic spin liquid”
(ASL) or a “Dirac spin liquid”, it is a critical phase of matter
characterized by algebraically decaying correlators, and whose
long-distance properties are described by an interacting con-
formal field theory (CFT) called 3d quantum electrodynamics
(QED3) [3–7]. For the kagome antiferromagnet, and also for
the J1-J2 antiferromagnet on the triangular lattice, there is an
ongoing debate as to whether the ground state is a gapped Z2
spin liquid [8–13] or a U(1) Dirac spin liquid [14,15], and
we hope our results here can serve as a useful diagnostic of
numerical data.

In addition, although certain systems may not allow for an
extended ASL phase, related CFTs could describe their phase
transitions [16,17]. These “deconfined critical points” [18,19]
require a description beyond the standard Landau-Ginzburg
paradigm and are often expressed in terms of fractionalized
quasiparticles interacting through a gauge field. Our methods
can be easily generalized [20] to critical points of theories with
bosonic scalars coupled to gauge fields [18,19], but we will
limit our attention here to the fermionic matter cases.

A close cousin of QED3 can be obtained by adding an
Abelian Chern-Simons (CS) term to the action. When a
fermion mass is also present, the excitations of the resulting

theory are no longer fermions, but instead obey anyonic
statistics set by the coefficient, or “level”, of the CS term. The
critical “Dirac-CS” theory (with massless fermions) has been
used to describe phase transitions between fractional quantum
Hall plateaus in certain limits [21,22] and transitions out of a
chiral spin liquid state [17,23,24].

In this paper, we study the finite-size spectrum of the QED3
and Dirac-CS theories on the torus. While the state-operator
correspondence often motivates theorists to put CFTs on
spheres, the torus is the most practical surface to study on
a computer. The energy spectrum on the torus does not give
any quantitative information regarding the operator spectrum
of the theory, but it is a universal function of the torus
circumference L and modular parameter τ and, therefore,
can be used to compare with numerically generated data.
The torus has the additional distinction of being the simplest
topologically nontrivial manifold. A defining characteristic of
topological order is the degeneracy of the ground state when
the theory is placed on a higher genus surface. On the torus,
the pure Abelian CS theory at level k has k ground states
[25,26] whose degeneracy is only split by terms which are
exponentially small in L. Here, we will couple Nf massless
Dirac fermions to the CS theory and find a rich spectrum of
low-energy states with energies which are of order 1/L. In the
limit of large Nf and k, we will present a computation which
gives the k degenerate levels in the absence of Dirac fermions
and a universal spectrum with energies of order 1/L in the
presence of Dirac fermions.

Proposals for ASL phases typically begin with a parton
construction of the spin-1/2 Heisenberg antiferromagnet

H =
∑

〈ij〉
Jij Si · Sj , (1)

where Si represent the physical spin operators of the theory and
i,j label points on the lattice. Slave fermions are introduced by
expressing the spin operators as Si = 1

2f
†
iασ αβfiβ , where fiα is

the fermion annihilation operator and σ = (σ x,σ y,σ z) are the
Pauli matrices. This is a faithful representation of the Hilbert
space provided it is accompanied by the local constraint

∑

α

f
†
iαfiα = 1. (2)
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Since the physical spin Si is invariant under the transformation
fiα → eiφi fiα , the slave fermions necessarily carry an emer-
gent gauge charge. Replacing spins with slave fermions, de-
coupling the resulting quartic term, and enforcing 〈f †

iαfiα〉 =
1 on average returns an ostensibly innocuous mean field
Hamiltonian HMF = −

∑
〈ij 〉 tij f

†
iαfjα + H.c. The mean field

theory is a typical tight-binding model, but with electrons
replaced by slave fermions. However, the stability of HMF
is by no means guaranteed, and gauge fluctuations must be
taken into account. This is achieved by supplementing the
mean field hopping parameter with a lattice gauge connection
aij : tij → tij e

iaij . Under the renormalization group, kinetic
terms for the gauge field are generated. Since the connection
aij parametrizes the phase redundancy of the fiα’s, it is a
2π -periodic quantity, and the resulting lattice gauge theory is
compact. Determining the true fate of these theories is where
numerics provide such great insight.

The mean field Hamiltonians of the models we are con-
cerned with possess gapless Dirac cones. In the continuum
they can be expressed

SD[ψ,A] = −
∫

d3r ψ̄αiγ µ(∂µ − iAµ)ψα, (3)

where r = (τ,x) is the Euclidean spacetime coordinate, ψα

is a two-component complex spinor whose flavor index α is
summed from 1 to Nf , and Aµ is a U(1) gauge field that
is obtained from the continuum limit of the aij . The gamma
matrices are taken to be γ µ = (σ z,σ y,−σ x) and ψ̄α = iψ†

ασ z.
On the the kagome lattice, the mean field ansatz with a π
flux through the kagome hexagons and zero flux through the
triangular plaquettes has a particularly low energy [27–29]. Its
dispersion has two Dirac cones, which, accounting for spin,
gives Nf = 4.

By writing the theory in the continuum limit in the form of
Eq. (3), we are implicitly assuming that monopoles (singular
gauge field configurations with nonzero flux) in the lattice
compact U(1) gauge theory can be neglected. In their absence,
the usual Maxwell action can be added to the theory

SM[A] = 1
4e2

∫
d3r FµνF

µν, Fµν = ∂µAν − ∂νAµ, (4)

resulting in the full QED3 action, Sqed[ψ,A] = SD[ψ,A] +
SM[A]. Importantly, when Nf is smaller than some critical
value, these manipulations are no longer valid. SM[A] is never
an appropriate low-energy description of a lattice gauge theory
with Nf = 0: for all values of e2, monopoles will proliferate
and confine the theory [30,31]. In the confined phase, the slave
fermions cease to be true excitations, and remain bound within
the physical spins Si . However, matter content suppresses
the fluctuations of the gauge field. For Nf large enough,
monopoles are irrelevant operators [5,32–34], and Sqed[ψ,A]
is a stable fixed point of the lattice theory [5]. In this limit,
QED3 is believed to flow to a nontrivial CFT in the infrared,
and this has been shown perturbatively to all orders in 1/Nf

[35–38]. The critical theory is obtained by naïvely taking the
limit e2 → ∞, and, for this reason, the Maxwell term will be
largely ignored in what follows.

The Dirac fermions ψα represent particle or hole-like
fluctuations about the Fermi level. Consequently, any single-
particle state violates the local gauge constraint in Eq. (2)

TABLE I. Energies of two-particle fermion states in QED3 (CS
level k = 0) on a square torus of size L. Energies are shown for
q = 0, q1 = 2π (1,0)/L, and q2 = 2π (1,1)/L. The 1st, 3rd, and 5th
columns list the energy levels, Ef , while the column to the right,
labeled df , shows the degeneracy of the level. The energy levels with
finite external momentum, q1 = 2π (1,0)/L and q2 = 2π (1,1)/L,
have an additional 4-fold degeneracy resulting from the symmetry
of the lattice. (q̄ = Lq/2π , Ē = LE/2π .)

q̄ = (0,0) q̄ = (1,0) q̄ = (1,1)

Ēf df Ēf df Ēf df

1.414214 4N 2
f − 2 1.414214 2N2

f − 1 1.414214 N 2
f − 1

2.288246 4N 2
f − 2 2.288246 4N2

f − 2
2.828427 2N2

f − 1
3.162278 8N2

f − 4 3.162278 2N2
f − 1 3.162278 2N2

f − 1
3.702459 4N 2

f − 2
4.130649 4N2

f − 2 4.130649 4N2
f − 2

4.242640 4N2
f − 2

4.496615 4N 2
f − 2

4.670830 4N2
f − 2

and is prohibited. Since fluctuations in Aµ are suppressed
at Nf = ∞, we might expect this neutrality to be the only
signature of the gauge field in the large-Nf limit, and so
the spectrum on the torus is given by the charge neutral
multiparticle states of the free field theory. It is important to
note that all of these multiparticle states are built out of single
fermions ψα which obey antiperiodic boundary conditions
around the torus: such boundary conditions (or equivalently, a
background gauge flux of π and periodic boundary conditions
for the fermions) minimize the ground state energy, as we show
in Appendix C. Some of these energy levels are given in Table I.

Even among the charge-neutral multiparticle states, there
are certain states of the free field theory which are strongly
renormalized even at Nf = ∞. These are the SU(Nf ) singlet
states which couple to the Aµ gauge field. Computation of
these renormalizations is one of the main purposes of the
present paper. We show that the energies of these states are
instead given by the zeros of the gauge field effective action.
A similar conclusion was reached in Ref. [2] for the O(N )
model, where the O(N ) singlet levels were given by the zeros
of the effective action of a Lagrange multiplier.

In Table II, we list some of the lowest frequency modes of
the photon in QED3 on a square torus, obtained in the large-Nf

computation just described. Because the theory on the torus
is translationally invariant, we can distinguish states by their
total external momentum. For each momentum considered,
the leftmost column gives the photon frequency, with its
degeneracy shown on the right. By including multiphoton
states, the actual energy levels of the photon are shown in
Table III for the same set of momenta. The origin of the photon
shift will be apparent when we find the free energy in Sec. II C
and explicitly calculate the energy levels in Sec. III.

A similar story applies to the Dirac-CS theory with finite
CS coupling k:

SCS[A] = ik

4π

∫
d3r εµνρAµ∂νAρ . (5)
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In a theory of massless Dirac fermions, there are monopoles and fermion zero modes

interaction terms that break SU(4) symmetry, and that of
magnetic monopoles.

Let us begin with the scaling dimension of the monopole
operator. Within a large Nf approximation, the scaling dimension
is: Δ1= 0.265Nf− 0.0383+O(1/Nf), so setting Nf= 4 yields Δ1
= 1.02 < 3, which implies that this operator is strongly relevant.
While the true scaling dimension at Nf= 4 could be different, this
is unlikely to exceed 3. We will therefore assume that the single
monopole operator is a relevant perturbation. For the bipartite
lattices, the presence of a trivial monopole implies a single
monopole insertion operator is allowed on symmetry grounds in
the Lagrangian. Then, we do not expect the U(1) Dirac spin liquid
to be a stable phase. What does it flow to? The most likely
scenario is that chiral symmetry is broken, i.e. a mass term is
developed by spontaneous symmetry breaking. This still leaves a
gapless photon, which is removed by monopole proliferation52.
We will argue below that this does not lead to additional
symmetry breaking, and conclude that the colinear Neel order or
common VBS orders on bipartite lattices are likely to be realized
in this theory at the lowest energies.

On the other hand for the non-bipartite lattice DSLs
considered here, i.e. the triangular and kagome DSL, no such
trivial monopole is present. This has a number of consequences.
First, the QED3 theory discussed here could potentially represent
a stable phase, with an enlarged SU(4) ×U(1)/Z4 global symmetry
which appears in the low-energy limit. We discuss this and other
possibilities below. First, let us discuss the issue of monopole
operator scaling dimensions. For the triangular lattice, under
translations (see Table 2), note that Φ1,2 have k1= π/3 and Φ3 has
k1=−2π/3, and the lowest order invariant monopole terms are:

ΔLTriangular ¼ Φ1Φ2Φ3 þ h:c: ð7Þ

Note, the mismatch in momentum with fermion bilinears,
which only pick up phase factors that are multiples of π, implies
that there is no invariant term with a smaller monopole charge.
Although zero modes for 6π (three-fold) monopole as in Eq. (7)
carries Lorentz spin-1, the leading-order three-fold monopoles
contain lorentz singlet ones and transform formally as the above
term, detailed construction contained in Supplementary Note 4.
Within a large Nf calculation53, the scaling dimension of this
triple monopole is Δ3= 1.186Nf− 0.422+O(1/Nf) ~ 4.32, which
makes it very likely to be an irrelevant perturbation at the SU(4)
symmetric fixed point. The remaining operator to inspect is the

four fermion that breaks SU(4) symmetry, that can be written as
L4 ¼

P3
a¼1 ð!ψσaψÞ

2 % ð!ψτaψÞ2. While this operator is irrelevant
at tree level, interactions could change its scaling dimension. A
recent epsilon expansion study51 reports the scaling dimension of
this operator to be Δ4f= 3.17, which means it would remain
irrelevant, although significant uncertainty is associated with this
scaling dimension, and other approximations, such as large Nf,
imply that it is relevant35. This would decide whether the Dirac
spin liquid a stable phase, with no relevant operators, or a critical
point with a single relevant operator, which would require tuning
of the four fermion term L4 to access35. In either case it is
expected to be relevant to understanding the phase structure on
the triangular lattice.

In contrast, on the kagome lattice an inspection of the
monopole and mass term transformation laws imply (see Table 3)
the following two invariant terms:

ΔL1
kagome ¼ M01 Φ1e

i2π3
! "

þM02ðΦ2Þ þM03 Φ3e
%i2π3

! "
þ h:c:

ΔL2kagome ¼ ei
2π
3 ðΦy1Þ

2 þ ðΦy2Þ
2 þ e%i2π3 ðΦy3Þ

2 þ h:c:

ð8Þ

where M0i & !ψτiψ. Note, the first term involves a combination of
a single monopole insertion operator and a fermion bilinear,
which may be regarded as the excited state of a monopole with
larger scaling dimension, and the second term refers to doubled
monopole insertion and preserves symmertry if considering the
associated lorentz singlet operator, details in Supplementary
Note 4. The scaling dimensions for these operators, estimated
from large Nf is Δ1' ¼ Δ1 þ 2

ffiffiffi
2
p

( 3:84 and
Δ2' ¼ 0:673Nf % 0:194 ( 2:50. While the second one is nomin-
ally relevant, their closeness to 3 implies that we should leave
open the possibility of a stable phase or critical point on the
kagome lattice described by a U(1) Dirac spin liquid. Regardless
of stability, this difference in the nature of the monopoles from
the bipartite case will have an important impact on proximate
orders that we document below. In particular, relatively complex
magnetic orders such as the 120° state and the 12 site VBS pattern
on the triangular lattice are captured.

Symmetry breaking, monopole proliferation, and ordered
states. Now, we will be concerned with identifying ordered states
that can be reached from the Dirac spin liquid, either as a result of

Table 2 Triangular lattice: fermion bilinears and monopole
symmetries

T1 T2 R C6 T
M00 + + − + −
Mi0 + + + − +
M01 − − −M03 −M02 +
M02 + − M02 M03 +
M03 − + −M01 M01 +
Mi1 − − Mi3 Mi2 −
Mi2 + − −Mi2 −Mi3 −
Mi3 − + Mi1 −Mi1 −

Φy
1 e!iπ3Φy

1 ei
π
3Φy

1 !Φy
3 Φ2 Φ1

Φy
2 ei

2π
3 Φy

2 ei
π
3Φy

2 Φy
2 !Φ3 Φ2

Φy
3 e!iπ3Φy

3 e!i2π3 Φy
3 !Φy

1 !Φ1 Φ3

Φy
4=5=6 ei

2π
3 Φy

4=5=6 e!i2π3 Φy
4=5=6 Φy

4=5=6 !Φ4/5/6 !Φ4/5/6

The Mij ¼ ψσ iτ jψ denotes the 16 fermion mass terms. Their transformation under lattice and
time reversal symmetry are shown followed by the corresponding table for the six magnetic
monopoles Φi. Symmetries T1/2, R, C6 denote translation and reflection marked in Fig. 1, and
six-fold rotation around a site, respectively

Table 3 Fermion bilinear and monopole symmetries on the
kagome lattice

T1 T2 Ry C6 T
M00 + + − + −
M01 − − −M03 M02 +
M02 + − M02 −M03 +
M03 − + −M01 −M01 +
Mi0 + + − + +
Mi1 − − −Mi3 Mi2 −
Mi2 + − Mi2 −Mi3 −
Mi3 − + −Mi1 −Mi1 −

Φy
1 !Φy

1 !Φy
1 !Φ3 ei

2π
3 Φy

2 Φ1

Φy
2 Φy

2 !Φy
2 Φ2 !ei

2π
3 Φy

3 Φ2

Φy
3 !Φy

3 Φy
3 !Φ1 !ei

2π
3 Φy

1 Φ3

Φy
4=5=6 Φy

4=5=6 Φy
4=5=6 !Φ4/5/6 ei

2π
3 Φy

4=5=6 !Φ4/5/6

Symmetry transformation of fermion bilinears and monopoles on the kagome lattice, where
Mij # ψσ iτ jψ. Translations are marked in Fig. 1. Ry, C6 denotes reflection with respect to y-axis
and six-fold rotation around center of hexagon. The six-fold rotation symmetry acting on
monopoles cannot be incorporated into the vector representation of SO(6) owing to the
nontrivial Berry phase, which is in line with the magnetic pattern expected on the kagome lattice
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The interplay of symmetry and topology has been at the forefront of recent progress in quantum matter.
Here, we uncover an unexpected connection between band topology and the description of competing
orders in a quantum magnet. Specifically, we show that aspects of band topology protected by crystalline
symmetries determine key properties of the Dirac spin liquid (DSL), which can be defined on the
honeycomb, square, triangular, and kagome lattices. At low energies, the DSL on all of these lattices is
described by an emergent quantum electrodynamics (QED3) with Nf ¼ 4 flavors of Dirac fermions
coupled to aUð1Þ gauge field. However, the symmetry properties of the magnetic monopoles, an important
class of critical degrees of freedom, behave very differently on different lattices. In particular, we show that
the lattice momentum and angular momentum of monopoles can be determined from the charge (or
Wannier) centers of the corresponding spinon insulator. We also show that for DSLs on bipartite lattices,
there always exists a monopole that transforms trivially under all microscopic symmetries owing to the
existence of a parent SUð2Þ gauge theory. We connect our results to generalized Lieb-Schultz-Mattis
theorems and also derive the time-reversal and reflection properties of monopoles. Our results indicate that
recent insights into free-fermion band topology can also guide the description of strongly correlated
quantum matter.
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I. INTRODUCTION

Quantum spin liquids represent a class of exotic qua-
ntum phases of matter beyond the traditional Landau
symmetry-breaking paradigm. Besides being conceptually
meaningful and experimentally relevant on their own [1–3],
they are also connected to various deep problems ranging
from high-temperature superconductivity to topological
order and strongly coupled gauge theories, to name a
few [4,5].
A particularly important quantum spin liquid in two

spatial dimensions is the Dirac spin liquid (DSL) [4,6–12].
The DSL is described by fermionic spinons—emergent
particles carrying spin-1=2—whose dispersion at low
energies is described by the massless Dirac equation.
These Dirac spinons interact with an emergent photon
[Uð1Þ gauge field], an effective field theory known as
QED3. At low energy and long wavelength, the effective
theory is described by the continuum Lagrangian

L¼
X4

i¼1

ψ̄ iði=∂−=aÞψ iþ
1

4e2
f2μν; ð1Þ

where the first term describes Dirac fermions ψ minimally
coupled with an emergent Uð1Þ gauge field a, and the
second term is a standard Maxwell term for the gauge field
a. This spin-liquid state was originally discussed on the
square lattice in the context of high-Tc cuprates (as a
candidate state of the “pseudogap” regime) [4] and as a
“mother state” of different competing orders [13]. On the
kagome lattice, the DSL is a candidate ground state for the
Heisenberg antiferromagnet [8,9,14], as supported by
recent density matrix renormalization group calculations
[10,12], and may potentially be relevant for experimental
systems such as herbertsmithite [15,16], although gapped
spin liquids have also been proposed in this context. On the
triangular lattice, a spin liquid is observed in density matrix
renormalization group studies when a small second neigh-
bor spin coupling J2 is added in the range 0.07 < J2=J1 <
0.15 [17], and variational Monte Carlo simulation sug-
gested it to be a Dirac spin liquid [11]. As predicted for a
Dirac spin liquid, a chiral spin liquid is obtained in this
parameter range as soon as a time-reversal symmetry-
breaking perturbation is applied [18,19]. Further support
comes from recent lattice gauge theory simulations, which
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Quantum numbers are known !

singlet monopoles (Φ1;2;3), which leads to one of the singlet
monopoles being completely trivial. Therefore, in contrast
to traditional wisdom, in the DSL case it is the complexity
of VBS order parameters that made the difference between
bipartite and nonbipartite lattices.

B. Triangular lattice

As shown in Sec. VI A, a !ð2π=3Þ Berry phase attaches
to monopoles under translations. This peculiar phase
forbids either an elementary monopole or a double-strength
monopole; i.e., the leading-order monopole allowed on the
triangular lattice is a threefold monopole formally written
as Φ1Φ2Φ3 þ H:c:, which is highly likely irrelevant in the
renormalization group sense. The DSL can be a stable
phase.
Moreover, one considers its proximate symmetry-

breaking phases accessed by tuning interactions to drive
chiral symmetry breaking [28]. The discussion assumes
first a condensed fermion mass and then an energetically
favored monopole proliferation. For example, if a quantum
spin Hall mass, ψ̄σ3ψ , condenses and gaps the fermions,
this lowers the energy of two zero modes that carry Sz ¼
−1=2 and selects the monopole associated with these two
zero modes filled as the lowest-energy one. This monopole
is f†1;↓f

†
2;↓Mbare ¼ Φ†

4 þ iΦ†
5 according to Eq. (8). Since

fΦ4;Φ5;Φ6g transform as fSx; Sy; Szg spin components in
the SOð3Þspin group, Φ4 þ iΦ5 is equivalent to spin
operators Sx þ iSy. Under translations T1;2, Φ†

4 þ iΦ†
5

acquires a phase !ð2π=3Þ, respectively; in other words,
the order parameter Sx þ iSy rotates by !2π=3 upon
translations. Intuitively, Sx þ iSy characterizes the ordered
spin moments in the xy plane where the angle of complex
Sx þ iSy tells the direction of ordered moments. This trans-
lation Berry phase hence translates to the angle between
neighboring xy plane spin moments. Hence, the quantum
spin Hall mass drives the familiar 120° magnetic order on the
triangular lattices.We note that this Berry phase effect,which
is crucial to the identification of final orders, is unique to
monopole operators. This result also provides useful guid-
ance to identify a DSL in spectroscopic measurements or
numerical studies. As shown in Fig. 8, monopoles carry
momenta like ð2π=3;−2π=3Þ; ðπ=3; 2π=3Þ, while fermion
bilinears (Table VII) are located at Γ, M points in the
Brillouin zone.
Hence, our results on monopole quantum numbers not

only solve the longstanding question on the stability of
DSL but also unveil the nature of its neighboring
symmetry-breaking orders. When stabilized, it is a prom-
ising candidate theory in numerics [62] and for real
materials [63], with distinctive features given by monop-
oles’ unique (angular) momenta or other quantum numbers
[28]; even if unstable on bipartite lattices, DSL organizes
the plethora of ordered phases a host organizing the
plethora of ordered phase.

IX. ANOMALIES AND LIEB-SCHULTZ-MATTIS

The celebrated Lieb-Schultz-Mattis (LSM) type of
theorems [41–43] strongly constrain the possible low-
energy theories that can emerge from a lattice system.
For example, a trivially gapped ground state (without
topological orders or symmetry breaking) cannot emerge
out of a system with spin-1=2 per lattice unit cell with
translation symmetry. In the IR limit, these constraints are
manifested as symmetry anomalies in the continuum field
theory descriptions [44–47].
In the CP1 (slave boson) representation of spin-1=2

systems on the square lattice, the monopole quantum
numbers were fixed by LSM constraints [45].
Essentially, the LSM theorem requires certain symmetry
anomalies in the effective CP1 field theory, which can be
matched only if the monopole carries the right quantum
number, e.g., !1 angular momentum under C4. It is then
natural to ask to what extent the monopole quantum
numbers in Dirac spin liquids are determined by LSM-
anomaly constraints. In this section, we show that monop-
ole quantum numbers associated with Z2 symmetries (such
as inversion) are indeed determined by LSM-anomaly
constraints in DSL, while those associated with Z3 sym-
metries (such as C3) are not.
Let us start from the QED3 theory and try to gauge the

SOð3Þspin × SOð3Þvalley ×Uð1Þtop symmetry [64], as we
will be interested in those microscopic symmetries that can
be embedded into this group. The anomaly associated with
these symmetries can be calculated. One way to interpret
the anomaly is to imagine a ð3þ 1Þd SPT state that hosts
the QED3 theory on its boundary, and the bulk SPT is
characterized by a response theory

Sbulk ¼ iπ
Z

X4

!
ws
2 ∪ wv

2 þ
"
ws
2 þ wv

2 þ
dAtop

2π

#
∪
dAtop

2π

$
;

ð56Þ

spin triplet(singlet) monopole 
fermion bilinear

FIG. 8. The momenta of monopoles and fermion bilinears in the
triangular lattice DSL—signatures of a DSL system in experi-
ments such as neutron scattering. Solid or empty circles represent
momenta of spin-triplet or spin-singlet monopoles, distinct from
all fermion bilinear operators, and black triangles represent those
of fermion bilinears.
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Dynamical Structure Factor of the J1 − J2 Heisenberg Model on the Triangular Lattice:
Magnons, Spinons, and Gauge Fields
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Understanding the nature of the excitation spectrum in quantum spin liquids is of fundamental
importance, in particular for the experimental detection of candidate materials. However, current theoretical
and numerical techniques have limited capabilities, especially in obtaining the dynamical structure factor,
which gives a crucial characterization of the ultimate nature of the quantum state and may be directly
assessed by inelastic neutron scattering. In this work, we investigate the low-energy properties of the
S ¼ 1=2 Heisenberg model on the triangular lattice, including both nearest-neighbor J1 and next-nearest-
neighbor J2 superexchanges, by a dynamical variational Monte Carlo approach that allows accurate results
on spin models. For J2 ¼ 0, our calculations are compatible with the existence of a well-defined magnon
in the whole Brillouin zone, with gapless excitations at K points (i.e., at the corners of the Brillouin zone).
The strong renormalization of the magnon branch (also including rotonlike minima around the M points,
i.e., midpoints of the border zone) is described by our Gutzwiller-projected state, where Abrikosov
fermions are subject to a nontrivial magnetic π flux threading half of the triangular plaquettes. When
increasing the frustrating ratio J2=J1, we detect a progressive softening of the magnon branch atM, which
eventually becomes gapless within the spin-liquid phase. This feature is captured by the band structure of
the unprojected wave function (with two Dirac points for each spin component). In addition, we observe an
intense signal at low energies around the K points, which cannot be understood within the unprojected
picture and emerges only when the Gutzwiller projection is considered, suggesting the relevance of gauge
fields for the low-energy physics of spin liquids.

DOI: 10.1103/PhysRevX.9.031026 Subject Areas: Condensed Matter Physics

I. INTRODUCTION

The antiferromagnetic Heisenberg model for S ¼ 1=2
spins interacting on the triangular lattice represents the
simplest example in which quantum fluctuations give rise
to strong modifications of the classical picture, where the
minimum energy configuration shows 120° order. Indeed,
this was the first microscopic model that has been proposed
for the realization of the so-called resonating valence-bond
state [1,2]. Within this approach, the ground state is
described by a superposition of an exponentially large
number of singlet coverings of the lattice, generalizing the
concept of resonance introduced and developed by Rumer
[3] and Pauling [4] to describe the chemical bond. Even
though recent numerical investigations [5,6] have shown
that the ground state possesses a finite magnetization in the
thermodynamic limit, the results confirmed large deviations

from classical and semiclassical limits. In addition, small
perturbations on top of the nearest-neighbor Heisenberg
model have been shown to drive the system into magneti-
cally disordered phases [7,8]. By keeping the spin SU(2)
symmetry, a natural way to induce further magnetic
frustration is to include a next-nearest-neighbor super-
exchange coupling, leading to the following Hamiltonian:

H ¼ J1
X

hi;ji
Si · Sj þ J2

X

⟪i;j⟫

Si · Sj; ð1Þ

where h% % %i and ⟪ % % %⟫ indicate nearest-neighbor and
next-nearest-neighbor sites in the triangular lattice, Si ¼
ðSxi ; S

y
i ; S

z
i Þ is the spin-1=2 operator at the site i, and, finally,

J1 and J2 are the antiferromagnetic coupling constants.
This model has been intensively investigated in the past,
from the semiclassical approaches of the early days [9,10]
to the recent numerical approaches [11–13]. The latter ones
indicated a rather fragile 120° magnetic order, which is
melted for J2=J1 ≈ 0.07ð1Þ (a value that is in very good
agreement among these calculations). For larger values of
the frustrating ratio J2=J1, the nature of the nonmagnetic

Published by the American Physical Society under the terms of
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In Fig. 8, we report the dynamical structure factor
for J2=J1 ¼ 0.125. The spin-liquid state is characterized
by a broad continuum that extends up to relatively large
energies. In particular, around the M points, the magnon
rotonlike minima of the ordered phase fractionalize into
an incoherent set of excitations at low energies. This
feature is compatible with the existence of Dirac points in
the unprojected spectrum of the auxiliary Hamiltonian
H0; see Fig. 8. By contrast, a strong signal in the lowest-
energy part of the spectrum is detected around the K
points, where the unprojected spinon spectrum is instead
gapped. In this respect, the Gutzwiller projection is
fundamental to include interaction among spinons in a
nonperturbative way and give a drastic modification of
the low-energy features. This is a distinctive aspect of
the triangular lattice, since, on the square lattice, all the

low-energy (gapless) points observed in the presence of
the Gutzwiller projector [i.e., q ¼ ð0; 0Þ, ðπ; πÞ, ðπ; 0Þ,
and ð0; πÞ] already exist in the noninteracting picture
[51]; see Fig. 9. We would like to emphasize that, in
contrast to the magnetically ordered phase, where no
visible spectral weight is present right above the magnon
branch (see Fig. 3), in the spin-liquid phase the con-
tinuum is not separated from the lowest-energy excita-
tion. This outcome corroborates the fact of having
deconfined spinons in the magnetically disordered phase.
The intense signal at K points immediately implies
strong (but short-range) antiferromagnetic correlations
in the variational wave function, which are absent in the
unprojected π-flux state (by contrast, on the square
lattice, the π-flux state already has significant antiferro-
magnetic correlations built in it).

FIG. 8. The dynamical structure factor for the J1 − J2 Heisenberg model on the 30 × 30 cluster with J2=J1 ¼ 0.125. The variational
results (left) are compared to the ones obtained from the unprojected Abrikosov fermion Hamiltonian H0 of Eq. (13) with t ¼ 1 and
h ¼ 0 (right). The path along the Brillouin zone is shown in Fig. 1. We applied a Gaussian broadening of σ ¼ 0.02J1 to the variational
results. Notice that, for the unprojected data, the energy scale is given by the hopping amplitude t of the unprojected Hamiltonian
Eq. (13), instead of J1. In addition, the broadening has been rescaled in order to account for the larger bandwidth of the spectrum.

FIG. 9. The dynamical structure factor for the J1 − J2 Heisenberg model on the square lattice (22 × 22) with J2=J1 ¼ 0.55. The
variational results (left) are compared to the ones obtained from the unprojected Abrikosov fermion Hamiltonian H0 (right), which
contains a flux-phase hopping (of strength t) and a dxy pairing (see Ref. [46] for details). We applied a Gaussian broadening of
σ ¼ 0.02J1 to the variational results. Notice that, for the unprojected data, the energy scale is given by the hopping amplitude t of the
unprojected Hamiltonian of Ref. [46], instead of J1. In addition, the broadening has been rescaled in order to account for the larger
bandwidth of the spectrum.
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Low-energy monopoles ?

Variational Monte-Carlo
Spectral function of the �1 � �2 Heisenberg model on the triangular lattice
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Spectral probes, such as neutron scattering, are crucial for characterizing excitations in quantum many-body
systems and the properties of quantum materials. Among the most elusive phases of matter are quantum spin
liquids, which have no long-range order even at zero temperature and host exotic fractionalized excitations
with non-trivial statistics. These phases can occur in frustrated quantum magnets, such as the paradigmatic
Heisenberg model with nearest and next-nearest neighbor exchange interactions on the triangular lattice, the
so-called �1 � �2 model. In this work, we compute the spectral function using large scale matrix product state
simulations across the three di�erent phases of this model’s phase diagram, including a quantum spin liquid
phase at intermediate �2/�1. Despite a plethora of theoretical and experimental studies, the exact nature of this
phase is still contested, with the dominant candidates being a gapped Z2, a gapless * (1) Dirac, and a spinon
Fermi surface quantum spin liquid state. We find a V-shaped spectrum near the center of the Brillouin zone (�
point), a key signature of a spinon Fermi surface, observed in prior neutron scattering experiments. However,
we find a small gap near the � point, ruling out such a phase. Furthermore, we find localized gapless excitations
at the corner of the Brillouin zone boundary (K point) and the middle of the edge of the Brillouin zone boundary
(M point), ruling out the gapped Z2 spin liquid phase. Our results imply that the intermediate spin liquid phase
is a gapless * (1) Dirac spin liquid, and provide clear signatures to detect this phase in future neutron scattering
experiments.

I. INTRODUCTION

Two-dimensional quantum systems host exciting physics:
reduced dimensionality leads to strong quantum fluctuations,
yet provides more possibilities than in one dimension as con-
tinuous symmetry can be spontaneously broken and lead to
long-range order [1–5]. While such conventional ordered
states of matter are fairly well understood, some disordered
states remain elusive. Among those are quantum spin liq-
uids (QSL) found in frustrated quantum magnets [6–9] as a
result of competing ordered phases. These states possess no
long-range order, even at zero temperature, and often result in
fractionalized excitations with non-trivial statistics.

One of the most promising geometries for realizing a QSL
phase is the triangular lattice, which has a rich history starting
with Anderson’s proposed resonating valence bond state [10].
However, the simplest lattice spin model, namely the spin-1/2
nearest-neighbor antiferromagnetic Heisenberg model, has
been shown to have 120� magnetic long-range ordering [11–
18]. Yet, quantum fluctuations lead to the order parameter
magnitude being significantly smaller than its classical value,
implying the order is weak and potentially easy to disrupt.
For instance, with the introduction of a small next-nearest-
neighbor interaction, this model exhibits a QSL phase [19–25].
Early studies using the density matrix renormalization group
(DMRG) [26] suggested that the QSL phase was a Z2 gapped
QSL [19, 20, 22]. This was later challenged by simulations
using variational quantum Monte Carlo (QMC), which found
that a gapless * (1) Dirac spin liquid was most energetically
favorable [21]. This was later supported by a DMRG study
on an infinite cylinder with an external Aharonov-Bohm flux,
claiming unambiguous evidence for a gapless* (1) Dirac spin
liquid [25]. However, this has been challenged by a recent
DMRG study [27], as well as by Schwinger-boson theory [28],
suggesting the phase is a gapped Z2 QSL.

The simplicity and realistic form of the Hamiltonian has

attracted many experiments to probe triangular lattice ma-
terials, in the quest for a realization of such a QSL phase.
Experiments conducted on triangular lattice systems range
from organic compounds such as :�(BEDT-TTF)2Cu2(CN)3,
Et=Me4�=Sb[Pd(DMIT)2]2, and other similar structures [29–
61], to Ba3CoSb2O9 [62–72], and many Yb3+-based materi-
als [73–109]. In particular, recent neutron scattering data in
KYbSe2 has shown that the material is well modelled by a spin
one-half Heisenberg model on a triangular lattice with nearest-
and next-nearest-neighbor antiferromagnetic interactions, i.e.,
a �1� �2 Heisenberg model [109]. The authors also found crit-
ical scaling in the dynamical structure factor near the corner
of the Brillouin zone, suggesting the close proximity of this
material to a second-order quantum phase transition.

Despite a plethora of experimental studies in triangular lat-
tice compounds, the presence and nature of a QSL phase is still
under debate, as smoking-gun signals for such phases are chal-
lenging to identify. One main signature is a lack of long-range
order, which is also present in other phases such as spin-glass
states [110, 111]. In fact, the actively studied spin liquid can-
didate YbMgGaO4 has been conjectured to be a spin-glass,
based on susceptibility measurements in its sister compound
YbZnGaO4 [108]. Another key signature is the presence of
fractionalized quasi-particles which are hard to detect directly.
Recent proposals to look at the entanglement content of the
triangular lattice compound KYbSe2 [109], through the quan-
tum Fisher information [112, 113] and other entanglement
measures [114–119], may prove fruitful. This challenge calls
for further theoretical understanding, and improved numerical
simulations of experimentally relevant quantities to identify
signatures of QSL phases.

Neutron scattering is potentially an excellent experimental
tool to detect quantum spin liquid physics, as it directly probes
the excitations in the system through the spin-spin correlation
function [120, 121]. On the theoretical side, making a direct
comparison with neutron scattering experiments requires the
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FIG. 6. Results for the �1 � �2 Heisenberg model on the triangular lattice, defined by Eq. (1) with �2/�1 = 0.12. We show the static structure
factor ((q) defined by Eq. (4) in a). In b) and e) we show the dynamical structure factor ((q,l) defined by Eq. (2) for path 1 and path 2 shown
in Fig. 2 respectively. In c) we show the spectral function using the same path and color map as Fig. 4 in Ref. 103 for easy comparison. The
maximum intensity using Eq. (20) is shown in d). Lastly, we show the frequency dependence of ((q,l) at fixed high symmetry momentum
values in f). We divide the values by the maximum intensity (max to view all three points on the same axis. For both the static structure factor
and the dispersion relation, we restore the 6-fold rotational symmetry of the lattice in the thermodynamic limit, as discussed in Sec. II B.

posed to being isolated. We believe this di�erence is because
our simulations don’t rely on an ansatz for the excitations, and
can probe the full spectrum.

We also see the low energy spectral weight along the Bril-
louin zone boundary by looking at the dispersion relation
shown in Fig. 6 d), obtained using Eq. (21). It is more
accurate to call this just the maximum intensity as a function
of momentum q. The dispersion relation interpretation as-
sumes well define magnon modes, which we do not expect in
the QSL phase. Nevertheless, it does indicate that there is low
energy spectral weight across the Brillouin zone boundary,
but low energy spectral weight is absent in the center of the
Brillouin zone. Lastly we show the frequency dependence of
((q,l) at the high symmetry q points in Fig. 6 f). We want
to emphasize the similarity between q =  and q = " , which
is unique to the QSL phase. We also note that the maximum
intensity is suppressed as compared to the 120� phase in Fig.
4 f), and the striped phase in Fig. 5 f).

Let us now examine what these results have to say about
the nature of the QSL ground state. First, we show in Fig. 4
c) the spectrum with the same colormap and momentum path
as Fig. 4 in Ref 103 for easy comparison. We see the V-
shape spectrum near q = �, as is observed in previous neutron
scattering experiments in NaYbSe2 [103], and in YbMgGaO4
[83, 153]. This is a hallmark of a QSL with a spinon Fermi
surface, as discussed in Sec. III. However, we also see that
near q = � that there is a small gap � ⇡ 0.25 in the spectrum
which is not seen in the experiments. If NaYbSe2 is similar to
KYbSe2, which has been shown to be well modelled by a �1��2
Heisenberg model with �1 ⇡ 0.56 mev [109], then the gap
would be � ⇡ 0.14 mev, which is below the lowest frequency

lmin ⇡ 0.2 meV accesible in Ref. [103]. This discrepancy
means that either these materials are not well modelled by the
�1��2 Heisenberg model, or that the lowest energies accessible
in these experiments is not low enough to probe this gap on
the order of �1/3. In either case, the presence of the gap in the
spectrum rules out the spinon Fermi surface state as ground
state of this model.

Next we wish to distinguish the gapped Z2 from the gapless
* (1) Dirac spin liquid. To do this, we look at how the full
spectrum changes as we tune �2 through all three phases, illus-
trated in Fig. 7. As discussed in Sec. III, we want to look at
what happens at q =  and q = " , as we approach the QSL
phase from the 120� phase. What we find is that there is a
sharp low energy magnon branch near q = " that softens and
decreases as the critical point is approached, and remains this
way into the QSL phase. This feature has also been observed
in a recent variational QMC study [151]. This is a key sig-
nature of a gapless * (1) Dirac QSL, suggesting the spectrum
is gapless at both q =  and q = " in the QSL phase, in
agreement with a recent DMRG study [25]. This feature is
not captured within the Schwinger-boson formalism [28, 109],
which finds that the gap q = " remains gapped as �2 is tuned
towards the critical point. This suggests that Schwinger-boson
theory does not capture the QSL phase well, even though it
has remarkable agreement with PEPS [140], and the neutron
spectrum of Ba3CoSb2O9 [68, 71], near the �2 = 0 point.

To further examine the behavior at q =  and q = " across
all three phases, we show ((q,l = 0+) as well in Fig. 7. This
quantity looks at the spectral weight down towards l = 0. If
this quantity is non-zero, then this would mean that there is
gapless modes in the spectrum, which produce spectral weight

Dirac spin liquid ? or else ?
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We present the dynamical spin structure factor of the antiferromagnetic spin- 1
2

J1−J2 Heisenberg
model on a triangular lattice obtained from large-scale matrix-product state simulations. The high
frustration due to the combination of antiferromagnetic nearest and next-to-nearest neighbour inter-
actions yields a rich phase diagram. We resolve the low-energy excitations both in the 120○-ordered
phase and in the putative spin liquid phase at J2�J1 = 0.125. In the ordered phase, we observe
an avoided decay of the lowest magnon-branch, demonstrating the robustness of this phenomenon
in the presence of gapless excitations. Our findings in the spin-liquid phase chime with the field-
theoretical predictions for a gapless Dirac spin liquid, in particular the picture of low-lying monopole
excitations at the corners of the Brillouin zone. We comment on possible practical di�culties of
distinguishing proximate liquid and solid phases based on the dynamical structure factor.

Introduction. Quantum spin liquids (QSLs) [1–4] are
exotic, entangled phases of matter characterized by a lack
of magnetic order at zero temperature and the emergence
of fractionalized quasiparticle excitations. They have re-
ceived substantial attention both in theory and experi-
ment, giving rise to various proposals regarding the na-
ture of the candidate QSL phases on frustrated spin sys-
tems [5–15]. Using state-of-the-art numerics, we study
in this work the paradigmatic antiferromagnetic J1-J2

Heisenberg Hamiltonian on a triangular lattice (TLHAF)

H = J1 ��i,j�
Ŝi ⋅ Ŝj + J2 ��i,j�

Ŝi ⋅ Ŝj , (1)

where �i, j� and �i, j� denote pairs of nearest-neighbour
and next-nearest-neighbour sites respectively, thereby
aiming to find dynamical fingerprints of the distinct
phases that have been proposed theoretically.

Following Anderson’s original proposal [16] that the
ground state of the nearest-neighbour TLHAF could sta-
bilize a resonating valence bond state, there has been in-
tense investigations into the nature of quantum spin mod-
els on the frustrated geometry of the triangular lattice
[5–7, 17]. Even though the ground state for the nearest-
neighbour model has been established to have a coplanar
120○ Néel order [18–22], the underlying geometry still
provides one of the simplest cases for the emergence of
a QSL phase [23]. Adding a next-nearest-neighbour cou-
pling J2, there is classically a phase transition at J2

J1
=

1
8

between the 120○ Néel order and a four-sublattice or-
dered phase with a residual degeneracy [23–25]. For the
quantum model, however, numerical simulations indicate
a QSL phase around the point of the classical phase tran-
sition for 0.07 � J2

J1
� 0.15 the nature of which has been

∗ markus.drescher@tum.de

Figure 1. Phase diagram of the J1 − J2 antiferromagnetic
Heisenberg model on a triangular lattice. At the Heisen-
berg point J2 = 0, the ground state exhibits a 120○ order
(a). Around J2

J1
≈ 0.07, there is a transition into a candidate

quantum spin liquid state (b). In the illustration, we show
the dispersion of the spinons at half-filling in the mean-field
solution of the Dirac spin liquid discussed in Appendix E.
For larger next-nearest neighbour couplings, a stripe-ordered
phase emerges (c). The blue arrows at J2 = 0 and J2

J1
= 0.125

denote the points in the di↵erent regimes where we compute
the spectral function.

under debate [5–14]. It is followed by a collinear stripe-
ordered phase for larger J2 [5, 6, 23] (cf. Fig. 1). De-
spite recent progress in the quest for candidate materi-
als [14, 26, 27], most promisingly with respect to rare-
earth delafossites [15, 28–30], the unambiguous detection
of a QSL remains an open issue.

From a theoretical perspective, the computation of
spectral functions of two-dimensional quantum mag-
nets has been a challenge as well, triggering work in
higher-order spin wave theory [20–22, 31], series expan-
sion [32, 33], Schwinger boson theory [34, 35], variational
Monte-Carlo simulations [10, 36] and tensor-network ap-
proaches [37–39]. Using large-scale matrix product state
(MPS) methods [40–44], we compute the dynamical cor-
relations of the system both in the ordered 120○ phase
for J2 = 0 and the adjacent candidate QSL phase at
J2

J1
= 0.125, which allows us to compute the spectral func-
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Figure 4. Spectral function in the candidate QSL phase at J2
J1
= 0.125 along the same momentum cuts as in Fig. 3 obtained on

a cylinder geometry with Ly = 6 and Lx = 51. The dash-dotted line denotes the corresponding lowest energy mode from the
quasiparticle ansatz. We used bond dimension � = 2000 for these simulations.

that avoided magnon-decay is a valid feature of the the-
ory [10, 47]. The variation of the integrated spectral
weight of the repelled magnon mode is confirmed within
the quasiparticle ansatz (Appendix C).

The Goldstone modes at the corners of the Brillouin
zone K and K′ exhibit a high concentration of spectral
weight (Fig. 3c). This agrees with previous numerical
and experimental findings [10, 15, 56]. Due to finite size
e↵ects, the magnon modes develop a gap. Note that
the finite-size gap determined at K for the quasiparticle
ansatz has been taken as a reference o↵set when plotting
the analytic linear spin wave results in Fig. 3.

Candidate QSL Phase. While the existence of a
QSL phase around the classical phase transition point
J2

J1
= 0.125 is rather well-established, the precise nature of

this phase is highly debated so far, reaching from gapped
Z2 spin liquids to gapless U(1) Dirac spin liquids (DSL)
or chiral spin liquids [5, 7, 10]. Note that the J1 −J2 tri-
angular Heisenberg model on an even cylinder comprises
two di↵erent topological sectors in the candidate QSL
phase [5, 6]. The sector of the isotropic ground state can
be reached by adiabatically inserting a flux ✓ = 2⇡ [9].
We focus on this sector for our simulations and all subse-
quent results. The numerically obtained static structure
factor shown in Fig. 2 exhibits broad features which are
compatible with the ones from the Dirac spin liquid par-
ton theory.

Figure 4 shows the dynamical structure factor for
J2

J1
= 0.125. We observe a softening of the minima at

the M-points compared to the ordered phase, which can
be attributed to the existence of spinon-bilinears at the
centers of the edges [49] in a U(1) DSL. Apart from
this, the continuum is shifted downwards with varying
strength between M

′ and M , diminishing the distance
in energy between the lowest-energy mode and the onset
of the continuum. This is in accordance with variational
Monte Carlo data that suggests a vanishing separation
of the continuum from lowest-energy excitations in the
QSL phase [10]. Even though we expect the bilinear ex-
citations to become gapless in the two-dimensional limit
(i.e. Ly → ∞), we observe a clear gap in the spectral
function. This can be related to the geometry of the
Ly = 6-cylinder: The accessible momenta do not include

the spinon Dirac cones at ±Q = ±�⇡2 ,
⇡

2
√
3
� [57] (see Ap-

pendix E), which gaps out the corresponding spectral
function. The spectral maximum at B survives across
the transition from the ordered phase to the QSL phase
(Fig. 4a) as well as the feature of the lowest mode with al-
most vanishing weight being repelled from the continuum
at intermediate energies (Fig. 4a)—although the spectral
function shows di↵erent distinct modes below the more
pronounced continuum.

Perhaps the most striking aspect, however, is the struc-
ture of the excitations at the K-points. As for the
Goldstone-mode in the symmetry-broken phase, there is
a minimum in the candidate QSL phase as well, albeit
with a flatter dispersion and a rich structure of the dis-
tribution of the spectral weight above the minimum in
contrast to the 120○ phase. The locations of the minima
at K and K′ and related points are in accordance with
the field-theoretical predictions by Song et al. [49, 50]:
They report the occurance of triplet monopole excita-
tions at the corners of the Brillouin zone for a U(1)
DSL on a triangular lattice. The comparison of Fig. 4b

with variational Quantum Monte Carlo data for a DSL
ansatz [10, 58] supports this conjecture. At the tran-
sition to the ordered phase for smaller J2 coupling, the
monopole operators whose quantum numbers correspond
to the K-points condense [49, 59], thus building up the
familiar three-sublattice order. The comparison of the
static structure factor sustains this theory: Although in
the QSL phase at J2

J1
= 0.125, �(k) still exhibits maxima

in the intensity around the K-points of the Brillouin zone
(Fig. 2), the structure factor obtained from DMRG sim-
ulations has a much broader and more di↵use structure
than in the ordered phase at J2 = 0, which compares well
with the analytic result for a U(1) DSL (Fig. 2d), sug-
gesting qualitative agreement notwithstanding the finite
cylinder e↵ects.
Conclusions. We have studied the dynamical prop-
erties of ordered and candidate spin liquid phases in
the triangular lattice. We find excellent agreement be-
tween the time evolution and the quasiparticle ansatz.
In the ordered phase, we observe the avoided decay of
the lowest magnon-branch previously shown to occur in
an anisotropic Heisenberg model [47]. In the candidate
QSL phase, our numerical MPS results for the Heisen-
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[A, Wietek, M. Schuler, A. M. Läuchli, arXiv:1704.08622 (2017)]

Anderson’s tower of states: Néel order
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(a)
QED3 vacuum

(b)
bilinear excitations

(c)

monopole excitations

°t

(d) photon excitations
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momentum space
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 Construct “vacuum” state by filling the Dirac sea with fermions 

 Perform Gutzwiller projection numerically to compute a spin wavefunction  

 Compute overlaps with exact eigenstates from exact diagonalization 

↑ / ↓

|ψGW⟩

on = |⟨ψGW |ψn⟩ | |ψn⟩

Filled Dirac sea = QED3 vacuum
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 Energy spectrum of ansatz has two-degenerate zero modes 

 Filling all modes below zero, 3 choices to zero modes as singlet, 3 choices as triplet  6 monopole excitations 

 Highly non-trivial prediction from 

2π

→

[X.-Y. Song, C. Wang, A. Vishwanath, Y.-C. He, Nat. Commun. 10, 4254 (2019)]

 Singlet monopoles → k = X Triplet monopoles → k = K

Monopole excitations



36
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 Particle-hole excitations out of the Dirac sea implement “bilinear” excitations  
 
 
 
 
 
 
 
 
 
 

 In total, this yields 144 excited states, Gutzwiller projection conserves momentum 
(much larger than the expected Nf2=16 on the sphere) 

 Overlaps with bilinear space: 

Ψ̄MΨ

(oℬ
n )2 ≡

dim(ℬ)

∑
α=1

|⟨ϕα |ψn⟩ |2
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deg: 6 (momentum) x 2 (spin)

deg: 12 (momentum) x 2 (spin)

deg: 6 (momentum) x 2 (spin)

deg: 12 (momentum) x 2 (spin)

Bilinear excitations
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Bilinear excitations



Low-energy excitations
Overlaps between variational states and exact eigenstates on N=36

Note that all variational states have no free parameters !
Example: ground-state overlap reaches 0.92; moreover quantum numbers are in agreement



Low-energy excitations : summary

5

FIG. 3. Overlaps |h | EDi| of low-energy levels of the J1-J2 model with various ansatz wave functions constructed out of various excitations
above the QED3 vacuum. The area of the colored circles is proportional to the overlap with the state at the center of the circle. (a) The vacuum
state has significant overlap (up to ⇡ 0.92) with the ground state. One particular bilinear excitation with momentum k = Y0 has significant
overlap (⇡ 0.67) with a low-lying Y0.B energy level. (b) The singlet monopole has significant overlap with the low-lying X.A level (⇡ 0.65)
while the triplet monopole has sizeable overlap with the low-lying triplet K.A1 (⇡ 0.69) level. (c) Among the bilinear-excitations there is
significant overlap with the low-lying �.B1 and M.B2 levels. (d) numerical values of the maximal overlap of the aforementioned states with
eigenstates from ED. For every excitation, the maximum is attained in the paramagnetic regime.

number is indeed quite large and adapting the calculation done
in [18], the field theory predicts 3N

2
f � 2 at zero momentum

(in the folded BZ, e.g. they should appear at momenta � and
M in the microscopic model) and 6N

2
f � 1 at the minimum

k distance around the Dirac nodes. For the spin model, we
expect the first group of states to distribute equally on � and
3 equivalent M points and between singlet and triplet states
i.e. 3N

2
f = 48 over 4 ⇥ 4 equal 3 states. Regarding the point-

group quantum numbers, some quantitative predictions have
been made in Ref. [27]: the bilinear excitations are expected
at � or M and they are all odd under reflection. We do con-
firm large overlaps with odd states (�.E2 or M .B2), but we
also find states which are even under reflection. We note that
Ref. [27] have only considered 16 bilinear excitations, which
may explain this discrepancy.

[SC: why the overlap with GS is zero ?]
[AMLH: I also know the quantum numbers of the 9 S=0

and the 12 S=1 multiplets this way: S=0: [2] G.D6.E2.S0,
[3] M.D2.B2.S0, [1] G.D6.A2.S0, [3] M.D2.B1.S0 S=1:
[1] G.D6.B1.S1, [3] M.D2.A1.S1, [3] M.D2.A1.S1, [3]
M.D2.A2.S1, [2] G.D6.E1.S1 this set includes the levels of
the bilinear mass terms we were looking for previously (in
bold), but importantly also some more levels, which are also
low lying in the many body spectrum.]

I Signatures of some low-energy bilinears were discussed
in [12], only 10 singlets though.

E. Gauge fluctuations a.k.a. Photons [AMLH: Andreas]

While we have a way to construct ”model states” for the
monopoles and the fermion bilinear excitations, there is no
correspondingly simple way (known to us) to construct the
”photon” states of QED3.

We therefore pursue a different avenue here. If we were to

FIG. 4. Overlaps |h | EDi| of low-energy levels at J2/J1 = 0.125
with the vacuum state, singlet and triplet monopole states, as well as
all bilinear excitations with Sz = 0 and two-monopoles. The area of
the colored circles is proportional to the overlap with the state at the
center of the circle. We observe that almost every state in the dense
low-energy spectrum has significant overlap with states constructed
as elementary excitations of QED3.

come up with a lattice gauge theory of QED3 at Nf = 4 where
the spatial lattice has a square symmetry, then we could start
with staggered fermions on the vertices of a square lattice, and
then adopt a quantum link model formulation for the gauge
field degrees of freedom by putting a two level system (i.e. a
spin 1/2) on the links of the square lattice. Such formulations
have been put forward in the context of the 1+1D Schwinger
model (a.k.a QED2 I think), or in 2+1D [? ? ? ? ]. While such
models have been studied numerically using tensor network
approaches (at smaller values of Nf ), we are not aware of
a similar study of the torus energy spectrum. Interestingly
these models reduce to quantum dimer models or quantum

Overlaps on low-energy states for J2/J1=1/8 (N=36)
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Gauge field ? Look at the quantum dimer model ! 

Dynamics of the quantum dimer model on the triangular lattice:
Soft modes and local resonating valence-bond correlations
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We report on an exhaustive investigation of the dynamical dimer-dimer correlations in imaginary time for
the quantum dimer model on the triangular lattice using the Green’s function Monte Carlo method. We show
in particular that soft modes develop upon reducing the dimer-dimer repulsion, indicating the presence of a
second-order phase transition into an ordered phase with broken translational symmetry. We further investigate
the nature of this ordered phase, for which a 12-site unit cell has been previously proposed, with the surprising
result that significant Bragg peaks are only present at two of the three high-symmetry points consistent with
this unit cell. We attribute the absence of a detectable peak to its small magnitude due to the nearly uniform
internal structure of the 12-site crystal cell.
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I. INTRODUCTION

Resonating valence-bond !RVB" states constitute a major
theme in strongly correlated systems, both in the context of
Mott insulators and of superconductors.1,2 In his milestone
paper, Anderson proposed that high-temperature supercon-
ductors are intimately related to Mott insulators and that the
pairing mechanism is due to “preformed” pairs already
present in the strongly correlated insulating phase.1 Origi-
nally, the RVB phase was defined by a fully projected BCS
wave function where the electron pairs have an arbitrary
range. A simplification of the RVB construction was further
proposed by Rokhsar and Kivelson, who considered an ef-
fective quantum dimer model !QDM" with only local pro-
cesses and orthogonal dimer coverings.3 The conditions un-
der which such a Hamiltonian could be an accurate
description of an SU!2" Heisenberg model are not fully un-
derstood yet, but it is expected to be a reasonable approxi-
mation if the dimer coverings constitute a natural variational
basis, and specific quantum dimer models have recently been
derived for the trimerized Kagome antiferromagnet4 by
Zhitomirsky,5 and for a spin-orbital model by Vernay and
collaborators.6

Regardless of its actual validity for microscopic spin
models, the QDM of Rokhsar and Kivelson has attracted a
lot of attention as a promising way to investigate RVB phys-
ics. In particular, the QDM on the triangular lattice has been
shown to possess a liquid phase with an exponential decay of
all correlations.7 The Hamiltonian of that model is

!1"

where the sum runs over all plaquettes including the three
possible orientations. The kinetic term controlled by the am-
plitude t changes the dimer covering of every flippable

plaquette, i.e., of every plaquette containing two dimers fac-
ing each other, while the potential term controlled by the
interaction V describes a repulsion !V#0" or an attraction
!V$0" between dimers facing each other.

Using the Green’s function Monte Carlo !GFMC" algo-
rithm to probe the ground-state properties of large clusters,
we recently proved the existence, in the thermodynamic
limit, of topological degeneracy in the disordered !i.e., RVB"
phase.8 This degeneracy persists over an extended parameter
range below the Rokhsar-Kivelson point V / t=1. With de-
creasing V / t, the RVB phase is replaced by a crystalline
phase with a 12-site unit cell, the so-called #12%#12 phase.
Upon further decreasing the dimer-dimer repulsion, this
phase is ultimately followed by a columnar phase for suffi-
ciently large and negative V / t.

From the point of view of RVB physics, one of the most
interesting questions is the nature of the crystallization tran-
sition between the RVB and the #12%#12 phases. In the
present work, we analyze this phase transition by extending
the GFMC algorithm to calculate dynamical dimer-dimer
correlations, as done in Ref. 9 at the Rokhsar-Kivelson point
with a simpler algorithm. This has allowed us to extract the
energy of the first dimer excitation throughout the Brillouin
zone !BZ". In the RVB phase, we expect this dimer excita-
tion branch to have a gap.10 Having in mind that the #12
%#12 phase has dimer order in the thermodynamic limit,
this gap must close at some k points of the BZ upon entering
that phase. An analysis of the gap behavior !on the disor-
dered side" and of the structure factor !on the ordered side"
near the transition point gives a strong evidence in favor of a
second order phase transition.

The paper is organized as follows. In Sec. II, we give a
brief explanation of how we calculate the dynamical corre-
lations and discuss the importance of the choice of the finite-
size clusters. Then, in Sec. III we discuss the excitation spec-
trum, as well as the location and the nature of the phase
transition between the RVB liquid and the crystalline phase.
Finally, Sec. IV is dedicated to the internal structure of the
#12%#12 phase. Concluding remarks are given in Sec. V.

PHYSICAL REVIEW B 74, 134301 !2006"

1098-0121/2006/74!13"/134301!6" ©2006 The American Physical Society134301-1

Rokhsar-Kivelson quantum dimer model

This represents a lattice gauge theory, but symmetry is only Z2

Zero-temperature properties of the quantum dimer model on the triangular lattice
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Using exact diagonalizations and Green’s function Monte Carlo simulations, we have studied the zero-
temperature properties of the quantum dimer model on the triangular lattice on clusters with up to 588 sites. A
detailed comparison of the properties in different topological sectors as a function of the cluster size and for
different cluster shapes has allowed us to identify different phases, to show explicitly the presence of topo-
logical degeneracy in a phase close to the Rokhsar-Kivelson point, and to understand finite-size effects inside
this phase. The nature of the various phases has been further investigated by calculating dimer-dimer correla-
tion functions. The present results confirm and complement the phase diagram proposed by Moessner and
Sondhi on the basis of finite-temperature simulations #Phys. Rev. Lett. 86, 1881 !2001"$.
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I. INTRODUCTION

The investigation of spin-liquid phases is currently a very
active field of research, partly—but not only—because of
their possible connection to the superconductivity observed
in several cuprates. The definition of a “spin liquid” is itself
a matter of debate. Following the work of Shastry and Suth-
erland on a two-dimensional model whose exact ground state
is a product of dimer singlets,1 the word is sometimes used to
designate phases in which the spin-spin correlation function
decays exponentially fast with distance at zero temperature.
However, such phases often exhibit other types of long-range
order, such as dimer order, which manifest themselves as
nondecaying correlation functions involving more than two
spins.2 In that respect, the word liquid is not appropriate, and
it should arguably be reserved for systems in which all cor-
relation functions decay exponentially fast at large distance.
This discussion would be quite academic if the only charac-
teristic of such liquids was the absence of any kind of order,
but following the pioneering work of Wen,3 it is well admit-
ted by now that such liquids can exhibit another property
known as topological order: In the thermodynamic limit, the
ground state !when defined on a topologically nontrivial do-
main" exhibits a degeneracy not related to any symmetry and
referred to as topological degeneracy. These degenerate
ground states live in topological sectors which cannot be
connected by any local operator.

The realization of such phases in quantum spin models is
still preliminary though. The best candidates are frustrated
magnets for which quantum fluctuations are known to de-
stroy magnetic long-range order, but their ground-state prop-
erties are very difficult to access, and when definite conclu-
sions are reached, it is usually because the presence of some
kind of long-range order !dimer, plaquette, etc." can be
established.4 The main difficulty is in a sense technical: A
good diagnosis would require us to study large enough clus-
ters, but this is not possible since quantum Monte Carlo
simulations of frustrated antiferromagnets are plagued with a
very severe minus sign problem.

In that respect, effective models such as the quantum
dimer model !QDM" are extremely interesting. Although

their relationship to actual Heisenberg antiferromagnets is
not a simple issue,5 they describe resonance processes typical
of strongly fluctuating frustrated quantum magnets while re-
taining the possibility to be analyzed by standard techniques
such as quantum Monte Carlo. This possibility was first ex-
ploited by Moessner and Sondhi,6 who developed a finite-
temperature Monte Carlo algorithm to study the QDM on a
triangular lattice defined by the Hamiltonian

where the sum runs over all plaquettes including the three
possible orientations. The kinetic term controlled by the am-
plitude t changes the dimer covering of every flippable
plaquette, i.e., of every plaquette containing two dimers fac-
ing each other, while the potential term controlled by the
interaction v describes a repulsion !v#0" or an attraction
!v$0" between dimers facing each other. Since a positive v
favors configurations without flippable plaquettes while a
negative v favors configurations with the largest possible
number of flippable plaquettes, the so-called maximally flip-
pable plaquette configurations !MFPC", one might expect a
phase transition between two phases as a function of v / t. The
actual situation is far richer, though. As shown by Moessner
and Sondhi, who calculated the temperature dependence of
the structure factor, there are four different phases !see Fig.
1": !i" A staggered phase for v / t#1, in which the ground-

FIG. 1. Phase diagram of the QDM on the triangular lattice as a
function of v / t after Ref. 6.
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I. INTRODUCTION

The investigation of spin-liquid phases is currently a very
active field of research, partly—but not only—because of
their possible connection to the superconductivity observed
in several cuprates. The definition of a “spin liquid” is itself
a matter of debate. Following the work of Shastry and Suth-
erland on a two-dimensional model whose exact ground state
is a product of dimer singlets,1 the word is sometimes used to
designate phases in which the spin-spin correlation function
decays exponentially fast with distance at zero temperature.
However, such phases often exhibit other types of long-range
order, such as dimer order, which manifest themselves as
nondecaying correlation functions involving more than two
spins.2 In that respect, the word liquid is not appropriate, and
it should arguably be reserved for systems in which all cor-
relation functions decay exponentially fast at large distance.
This discussion would be quite academic if the only charac-
teristic of such liquids was the absence of any kind of order,
but following the pioneering work of Wen,3 it is well admit-
ted by now that such liquids can exhibit another property
known as topological order: In the thermodynamic limit, the
ground state !when defined on a topologically nontrivial do-
main" exhibits a degeneracy not related to any symmetry and
referred to as topological degeneracy. These degenerate
ground states live in topological sectors which cannot be
connected by any local operator.

The realization of such phases in quantum spin models is
still preliminary though. The best candidates are frustrated
magnets for which quantum fluctuations are known to de-
stroy magnetic long-range order, but their ground-state prop-
erties are very difficult to access, and when definite conclu-
sions are reached, it is usually because the presence of some
kind of long-range order !dimer, plaquette, etc." can be
established.4 The main difficulty is in a sense technical: A
good diagnosis would require us to study large enough clus-
ters, but this is not possible since quantum Monte Carlo
simulations of frustrated antiferromagnets are plagued with a
very severe minus sign problem.

In that respect, effective models such as the quantum
dimer model !QDM" are extremely interesting. Although

their relationship to actual Heisenberg antiferromagnets is
not a simple issue,5 they describe resonance processes typical
of strongly fluctuating frustrated quantum magnets while re-
taining the possibility to be analyzed by standard techniques
such as quantum Monte Carlo. This possibility was first ex-
ploited by Moessner and Sondhi,6 who developed a finite-
temperature Monte Carlo algorithm to study the QDM on a
triangular lattice defined by the Hamiltonian

where the sum runs over all plaquettes including the three
possible orientations. The kinetic term controlled by the am-
plitude t changes the dimer covering of every flippable
plaquette, i.e., of every plaquette containing two dimers fac-
ing each other, while the potential term controlled by the
interaction v describes a repulsion !v#0" or an attraction
!v$0" between dimers facing each other. Since a positive v
favors configurations without flippable plaquettes while a
negative v favors configurations with the largest possible
number of flippable plaquettes, the so-called maximally flip-
pable plaquette configurations !MFPC", one might expect a
phase transition between two phases as a function of v / t. The
actual situation is far richer, though. As shown by Moessner
and Sondhi, who calculated the temperature dependence of
the structure factor, there are four different phases !see Fig.
1": !i" A staggered phase for v / t#1, in which the ground-

FIG. 1. Phase diagram of the QDM on the triangular lattice as a
function of v / t after Ref. 6.
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Resonating Valence Bond Phase in the Triangular Lattice
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We study the quantum dimer model on the triangular lattice, which is expected to describe the singlet
dynamics of frustrated Heisenberg models in phases where valence bond configurations dominate their
physics. We find, in contrast to the square lattice, that there is a truly short ranged resonating valence
bond phase with no gapless excitations and with deconfined, gapped, spinons for a finite range of pa-
rameters. We also establish the presence of crystalline dimer phases.
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The search for a resonating valence bond (RVB) phase
of frustrated magnets, inspired by ideas of Pauling [1] and
begun in earnest by Anderson [2], has been one of the
recurrent themes in research on the cuprate superconduc-
tors over the past decade and somewhat more. Shortly
after Anderson’s 1987 paper on the cuprates [3], RVB the-
ory bifurcated —with a gapless RVB state (with valence
bonds on many length scales) pursued largely by means
of gauge theoretic treatments introduced by Baskaran and
Anderson [4] defining one track, while Kivelson, Rokhsar,
and Sethna [5] hewed closely to the original vision and
pursued the study of a short ranged RVB state. The latter
proposal, of a state with exponentially decaying spin-spin
correlations and no long range valence bond order, was ex-
pected to lead to a gapped collective excitation spectrum
and deconfined, gapped, spinons. Unfortunately, it turned
out that this was hard to arrange on the square lattice—the
simplest implementation of RVB ideas, the quantum dimer
model [6], exhibits crystalline order and confined spinons,
except at a critical point [7]. This fact is of a piece with an
instability of the paramagnetic phase of the O!3" nonlinear
sigma model to breaking translational symmetry due to
Berry phase effects [8].

In this Letter, we report that the simplest quantum dimer
model on the triangular lattice does possess a short ranged
RVB phase with gapped collective modes, gapped decon-
fined spinons, and spin-charge separation in its charged
excitation spectrum. We establish the presence of nearby
crystalline phases with confined spinons. We also sug-
gest that a connection, made previously by Chandra and
ourselves [9], between quantum dimer models and frus-
trated transverse field Ising models can, in this problem, be
plausibly extended to track the transition out of the RVB
phase. This conjecture is closely connected to the spinon
deconfinement mechanism proposed by Read and Sachdev
[10,11], Wen [12], Mudry and Fradkin [13], and the ideas
of Senthil and Fisher [14].

We study the Rokhsar-Kivelson quantum dimer Hamil-
tonian generalized to the triangular lattice (as the contrasts
are instructive, we will comment on the square lattice re-

sults along the way):

3

α=1

3

α=1

)

+H.c.)(
pN

H=-tT+vV= {
+v ( +

-t
i=1

}. (1)

Here the sum on i runs over all of the Np plaquettes, and
the sum on a over the three different orientations of the
dimer plaquettes, namely # rotated by 0 and 660±. We
refer to the plaquettes with a parallel pair of dimers as
flippable plaquettes. As a complete orthonormal basis set
we use #jc$ j c ! 1, . . . , Nc%, where jc$ stands for one of
the Nc possible hard-core dimer coverings of the triangular
lattice. V̂ is diagonal in this basis, with V̂ jc$ & nfl!c" jc$
measuring the number, nfl!c", of flippable plaquettes in
configuration c.

Rokhsar and Kivelson (RK) [6] derived the square lat-
tice version of Ĥ as the leading effective Hamiltonian in
the singlet manifold consisting of nearest neighbor valence
bond coverings of the lattice by utilizing their overlaps as
small parameters; subsequently, it was shown by Read and
Sachdev [15] that the purely kinetic energy (T̂ ) piece de-
scribed the 1'N dynamics of the nearest-neighbor SU!N"
bipartite Heisenberg magnet in an extreme quantum limit.
The validity of such approaches for Heisenberg magnets
depends on whether the perturbation theories remain con-
trolled even when their expansion parameters are O!1";
this will depend on details of the lattice and the Hamilto-
nian. The perturbative scheme of RK can be generalized
to the triangular lattice; by extending the phase conven-
tion introduced by Sutherland for the square lattice [16],
one can obtain t . 0 in Eq. (1), which we assume in the
remainder.

T ¿ y, t.—At high temperatures, but less than the gap
to nonvalence bond states, static properties are obtained
by a classical sum over all dimer configurations. Most
crisply, consider T ! ` where equal time correlators are
given by unweighted averages. The square lattice problem
is critical in this limit, with algebraically decaying dimer-
dimer correlations [17], whence it is not surprising that at
T ! 0 it orders everywhere except at a point.
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Crystalline phases / Z2 topological spin liquid

Gauss’ law ~ dimer constraint



 Strong similarities between the paramagnetic 
regime and a VBC phase observed in the quantum        
dimer model (many refs.) 
 
 
 
 
 
 
 
 

 Ground state dimer correlations have same  
  sign structure 
 
              

 Key features of many body spectrum agree 
(Including singlets at , K, M, X)

𝒟 = ⟨(S0 ⋅ S1)(Si ⋅ Sj)⟩c
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(b)

J2/J1 = 0.125

(c)

QDMV/t = °1
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Possible valence-bond crystal

See also the Peierls instability with phonons: U. Seifert et al. 
preprint arXiv:2307.12295
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 J1-J2 spin-1/2 triangular Heisenberg has a rich phase diagram 

 Most of it can be understood via the Dirac spin liquid on the triangular lattice 

 DSL can serve as a parent state of several orders on the triangular lattice 

 We have discovered a one-to-one relation between excitations of J1-J2 Heisenberg 
model and excitations of QED3 

  Indications of a possible valence bond crystal in the paramagnetic regime 

 Deconfined quantum critical point between the  Néel phase and a VBS phase? 

 Similar ideas could be used in other numerical methods (VMC, DMRG…) 

120∘

(a)
QED3 vacuum

(b)
bilinear excitations

(c)

monopole excitations
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(d) photon excitations
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(e) º-flux ansatz
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momentum space
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Conclusion and outlook
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