

RICE

Gravitational wave analogues in spin nematics and cold atoms

L. Chojnacki¹, R. Pohle², H. Yan³, Y. Akagi², N. Shannon¹

¹Okinawa Institute of Science and Technology, Okinawa, Japan ²The University of Tokyo, Japan ³Rice University, USA

Abstract: Many large-scale phenomena in our Universe, such as gravitational waves, are challenging to reproduce in laboratory settings. However, parallels with condensed matter systems can provide alternative routes for experimental accessibility. Here we show how spin nematic phases provide a low-energy avenue for accessing the physics of linearized gravity, and in particular that their Goldstone modes are relativistically-dispersing massless spin-2 excitations, analogous to gravitational waves. Finally, we suggest a route to experimental observation.

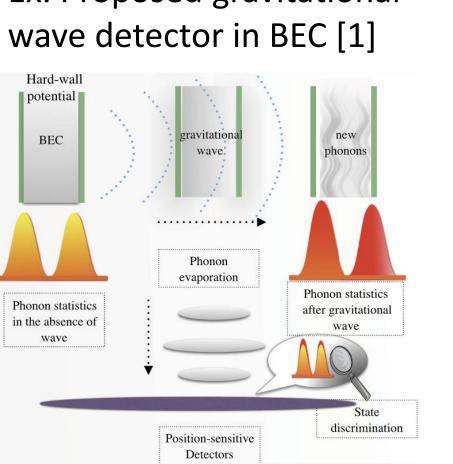
Context	"Gravitational waves" in a spin nematic
Ex. Proposed gravitational	Quantum spin nematic order parameter Promote by construction

2 Linearly dispersing

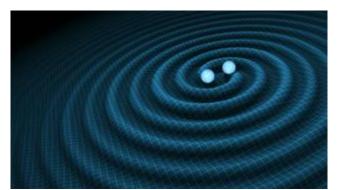
Goldstone bosons

Spin-2 modes

- Development of QFT simulators within condensed matter and quantum fluids communities is attracting much interest.
- Currently no accessible realizations of spin-2 (quadrupolar) waves akin to gravitational waves.
- We here propose an avenue to realizing an analogue of spin-2 gravitational waves in condensed matter systems.



Gravitational waves in linearized gravity



Gravitational action in curved space-time

$$\mathcal{S} = \frac{c^3}{16\pi G} \int dx^4 \sqrt{-g}R$$

Animation by R. Hurt, Caltech/JPL, LIGO (2015)

Weak field limit (linearized gravity)

$$g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$$

Coordinate transformations act like the gauge freedom

Dynamics only occurs in spatial components

 $z(t_0) = \lambda/2$

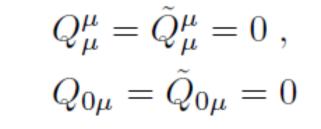
 $z(t_0) = \lambda/4$

 $z(t_0) = \lambda$

Effective field theory for linearized gravity

 $\mathcal{S}_{LGR} = -\frac{c^4}{16\pi G} \int dx^4 \left[\partial^{\nu} h^{\mu\rho} \partial_{\nu} h_{\mu\rho} \right]$

 $Q^{\alpha\beta} = S^{\alpha}S^{\beta} + S^{\beta}S^{\alpha} - \frac{2}{3}S(S+1)\delta^{\alpha\beta}$



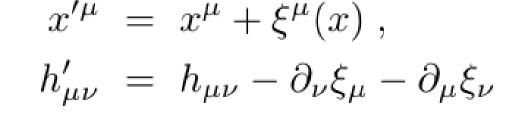
Effective low energy field theory

$$\mathcal{S}_{FQ} = -\frac{1}{2} \int dt dr^d \bigg[\chi_{\perp} (\partial^t Q^{\alpha\beta} \partial_t Q_{\alpha\beta}) - \rho_s (\partial^i Q^{\alpha\beta} \partial_i Q_{\alpha\beta}) \bigg]$$

Dictionary for excitations

Gravitational wave polarizations for a wave propagating along z	Ferroquadrupolar wave polarizations for a ground state ordered along z
$\boldsymbol{h}^{+} = e^{ik^{\mu}x_{\mu}} \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & h_{+} & 0 & 0 \\ 0 & 0 & -h_{+} & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$	$\boldsymbol{Q}^{1} = e^{ik^{\mu}x_{\mu}} \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & Q^{1} \\ 0 & 0 & 0 & 0 \\ 0 & Q^{1} & 0 & 0 \end{pmatrix}$
$\boldsymbol{h}^{\times} = e^{ik^{\mu}x_{\mu}} \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & h_{\times} & 0 \\ 0 & h_{\times} & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$	$\boldsymbol{Q}^{2} = e^{ik^{\mu}x_{\mu}} \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 &$
Mapping to a nematic basis for h	Mapping to a strain-like basis for $\ Q$
$h_{\mu\nu} = R[\vec{v_k}, \phi]^{\alpha}{}_{\mu}R[\vec{v_k}, \phi]_{\nu}{}^{\beta} \left[R[\vec{v_d}, \theta]^{\gamma}{}_{\rho}R[\vec{v_d}, \theta]_{\sigma}{}^{\kappa} \right]$	$Q_{\mu\nu} = R[\vec{v_d}, \theta]^{\alpha}{}_{\mu}R[\vec{v_d}, \theta]_{\nu}{}^{\beta} \bigg[R[\vec{v_k}, \phi]^{\gamma}{}_{\rho}R[\vec{v_k}, \phi]_{\sigma}{}^{\kappa}$
$Q_{\gamma\kappa} \Big[\lambda_4 \otimes \lambda_1 + \lambda_6 \otimes \lambda_{3xy} \Big]^{\rho\sigma}_{\ \alpha\beta} \Big]$	$h_{\gamma\kappa} \Big[\lambda_1 \otimes \lambda_4 + \lambda_{3xy} \otimes \lambda_6 \Big]^{\rho\sigma}_{\ \alpha\beta} \Big]$
Surface of constant strain	Surface of equal wavefunction amplitude
$\pm \epsilon = \left(\frac{h_{\mu\nu}(x-x')^{\mu}(x-x')^{\nu}}{ (x-x') ^2}\right)^{\frac{1}{2}}$	$\pm \sqrt{p} = \frac{d^i \tilde{Q}_{ij} d^j}{ d ^2}$

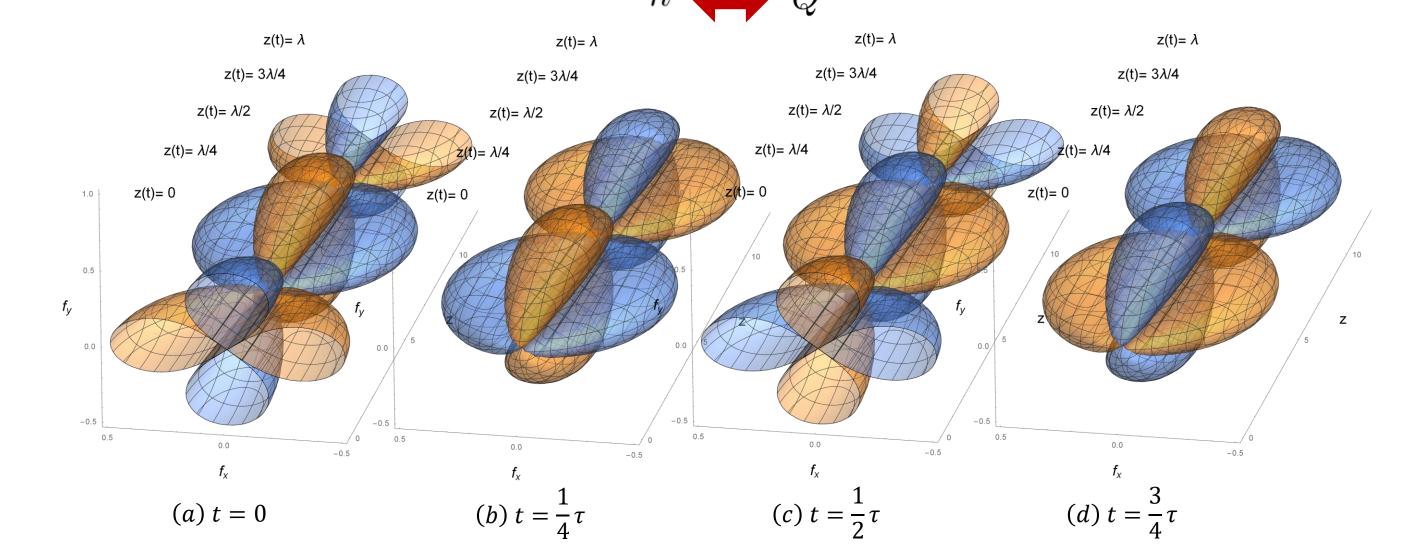
We can therefore identify



In transverse-traceless gauge, we see

 $h^{\mu}_{\ \mu} = 0$, [traceless] $h_{0\mu} = 0$, [no scalar or vector components] $\partial^n h_{nm}(x) = 0$, [no longitudinal dynamics]

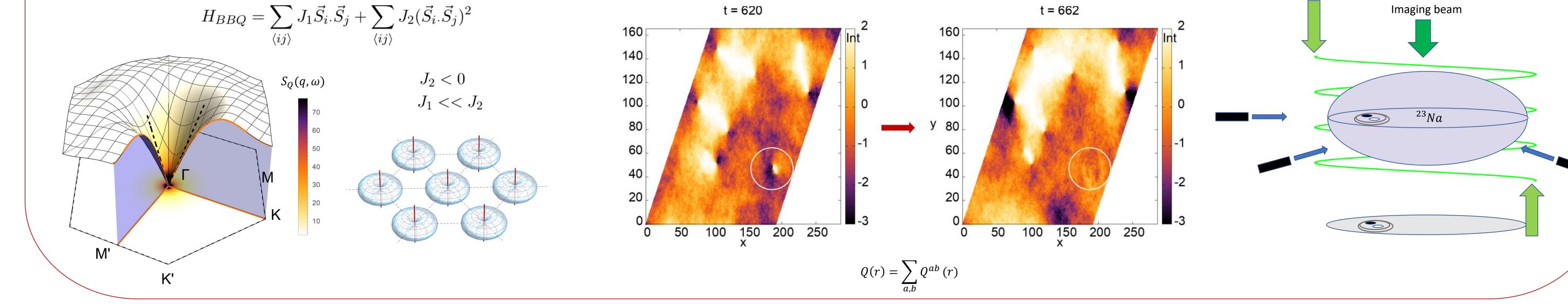
2 Dynamically non-trivial, relativistically dispersing, spin-2 modes

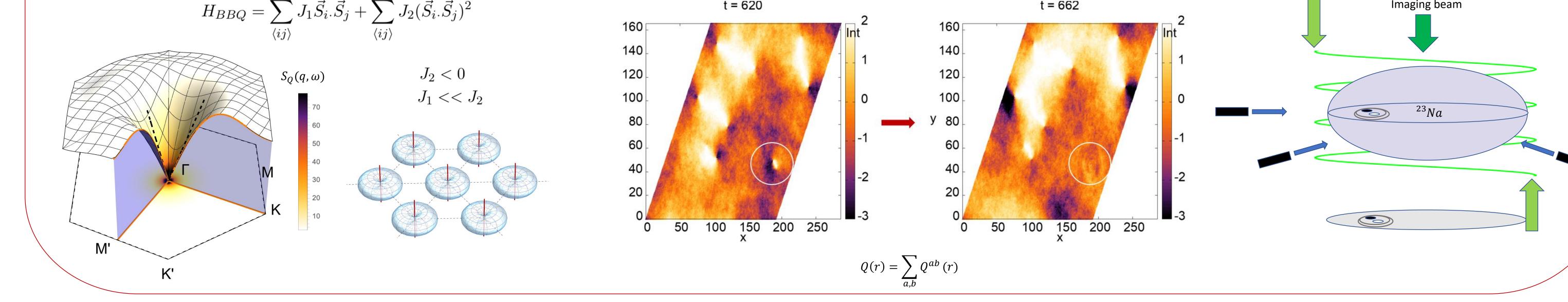


Microscopic model realization and experimental proposal

Simulating the FQ phase using method in [4]

Microscopic model for ferroquadrupolar spin nematic, with candidate realizations in QLC materials [2] and cold atoms [3]





Imaging quadrupolar waves in cold atoms using methods in [5]

2D confinement lattice

References

Conclusions

- [1] T. Bravo, et al, EPJ Quant. Tech. 2, 3 (2015); C. Sabín et al EPJ Quant. Tech. 3, 8 (2016).
- [2] S. Nakatsuji, et al, Science 309, 1697 (2005).
- [3] A. Imambekov, M. Lukin, and E. Demler, Physical Review A, 68, 063602 (2003).
- [4] K. Remund et al, Phys. Rev. Research 4, 033106 (2022).
- [5] I. Carusotto and E. J. Mueller, Journal of Physics B: Atomic, Molecular and Optical Physics 37, S115 (2004); P. Kunkel, et al, Physical Review Letters 123, 063603 (2019).
- [6] L. Chojnacki, R. Pohle, H. Yan, Y. Akagi, N. Shannon (*In preparation*); L. Chojnacki, H. Yan, N. Shannon (*In preparation*)

We have identified

- A one-to-one correspondence between Goldstone modes of a ferroquadrupolar ordered spin nematic and gravitational waves in linearized gravity.
- The SU(3) exchange model as a microscopic model to realize these waves in condensed matter.
- A route to their experimental production and observation using ²³Na spinor condensates.

Contact information: leilee.chojnacki@oist.jp