MAX-PLANCK-INSTITUT FUR QUANTENOPTIK

Quantum Computation and Simulation with NISQ devices
J. Ignacio Cirac

ExU-YITP Conference "Quantum Information and Theoretical Physics" Yukawa Institute for Theoretical Physics, Kyoto University, October 3th, 2023

(g) Loschmidt Amplitude

Easy to simulate

Easy to meaure
Easy to prepare

(g) Loschmidt Amplitude

$$
\left\langle\Psi_{1}\right| e^{-i H t}\left|\Psi_{0}\right\rangle
$$

- Example:

$$
\begin{array}{ll}
\left|\Psi_{0}\right\rangle=|p\rangle \text { product state } & \langle p| e^{-i H t}|p\rangle \\
\left|\Psi_{1}\right\rangle=|p\rangle & \text { return amplitude }
\end{array}
$$

- Example:

$$
\begin{aligned}
& \left|\Psi_{0}\right\rangle=U|p\rangle \\
& \left|\Psi_{1}\right\rangle=U|p\rangle
\end{aligned}
$$

$$
\langle p| U^{\dagger} e^{-i H t} U|p\rangle
$$

U is a low depth circuit
return amplitude

- Example:

$$
\begin{array}{ll}
\left|\Psi_{0}\right\rangle=U|p\rangle & \left\langle\Psi_{0}\right| U^{\dagger} e^{-i H t^{\prime}} \sigma_{x}^{1} e^{-i H t} U\left|\Psi_{0}\right\rangle \\
\left|\Psi_{1}\right\rangle=\sigma_{x}^{1} e^{-i t t t^{\prime}} U|p\rangle &
\end{array}
$$

（g）Loschmidt Amplitude

$$
\begin{aligned}
\left\langle\Psi_{1}\right| e^{-i H t}\left|\Psi_{0}\right\rangle= & r(t) e^{i \phi(t)} \\
& \left.r(t)=\left|\left\langle\Psi_{1}\right| e^{-i H t}\right| \Psi_{0}\right\rangle \mid
\end{aligned}
$$

－$r(t)$ is easy in practice
－$\phi(t)$ is difficult in practice

－Example：$\langle p| e^{-i H t}|p\rangle$

Prepare state p ：

け】ゝけゆけゆ		
けいけしゃtゝ】		けいけしゃtゝ】
	Evolve with H	
\downarrow 切けけt		

- Quantum algorithm for finite temperature / energy

Sirui Lu, Mari Carmen Bañuls, JIC, PRXQuantum (2021)

- Microcanonical
- Canonical: Hybrid Quantum Monte Carlo + Quantum simulation
- Measuring the generalized Loschmidt amplitude
- Review: Hadamard test

Cleve, Ekert, Macchiavello, Mosca PRSL (1998)

- Sequential

Sirui Lu, Mari Carmen Bañuls, JIC, PRXQuantum (2021)

- Complex analysis

Yilun Yang, Arthur Christianen, Mari Carmen Bañuls, Dominik S. Wild, JIC, arxiv: 2308.10796

- Comparison

QUANTUM SIMULATION: Dynamics and Zero Temperature

Quantum Many-body Problems

Quantum Simulation:

(NISQ)

- DIGITAL
- ANALOG

Dynamics

- We want to compute $\langle\Psi| O|\Psi\rangle$
up to some precision ε

$$
\begin{aligned}
|\Psi\rangle= & e^{-i H t}\left|\Psi_{0}\right\rangle \\
& \text { easy to prepare, } \\
& \text { eg, product state }
\end{aligned}
$$

- Prepare the state Ψ and measure O : Lloyd, Science (1996)
- Digital Q Computers: Trotterization

$$
e^{-i H t}=\left(e^{-i H t / M}\right)^{M} \approx\left(e^{-i h_{1} t / M} \ldots e^{-i h_{N^{\prime}} t / M}\right)^{M}
$$

- Efficient:

$$
\tau \approx(N\|h\| t)^{2} / \varepsilon^{2}
$$

Ground State ($\mathrm{T}=0$)

- We want to compute $\left\langle\Psi_{0}\right| O\left|\Psi_{0}\right\rangle$
up to some precision ε
- Difficult:

Kempe, Kitaev, Regev, SIAM 5, 1070 (2006)

$$
\tau \approx 2^{\alpha N}
$$

Ground State ($\mathrm{T}=0$)

Heuristic Quantum Algorithms

- Adiabatic algorithm

See, eg, Farhi, Goldstone, Gutmann, Sipser, Science (2001)

$$
H(0)=\sum_{n=1}^{N} \sigma_{z}^{n} \quad H(s) \quad H(1)=\sum_{n=1}^{N} h_{n}
$$

- Computational time: $\tau \sim N \delta^{-3} \varepsilon^{-1}$

Jansen, Ruskai, Seiler, JMP (2007) $\quad \delta=\min _{t} \Delta(t)$

- Typical physics problems: $\delta=$ const or $\delta=1 / N^{\alpha}$

For many physics problems, adiabatic is efficient and can be used with analog devices

Ground State ($\mathrm{T}=0$)

Heuristic Quantum Algorithms

- Variational algorithms

Farhi, Goldstone, Gutmann, arXiv:1411.4028
A. Peruzzo et al Nat. Comm. (2014)

$$
|\Psi(p)\rangle=U_{m}\left(p_{m}\right) \ldots U_{1}\left(p_{1}\right)|0\rangle^{\otimes N}
$$

- Variational-adiabatic algorithm

Schiffer, Tura, JIC, PRXq (2021)

$$
H=\sum_{j=1}^{N} J \sigma_{i}^{z} \sigma_{i+1}^{z}+h \sigma_{i}^{x}+g \sigma_{i}^{z}
$$

Adiabatic spectroscopy
VAQA

QUANTUM SIMULATION: Finite energies / temperatures

- We want to compute $\langle O\rangle=\operatorname{tr}(\rho O)$

Canonical

- Exponential, in general:

Kempe, Kitaev, Regev, SIAM 5, 1070 (2006)
Temme et al, Nature 471, 87 (2011)
Mota et al, Nat. Phys. 16, 205 (2020) Cohn et al, arXiv:1812.03607 and many other....

- There may be an advantage

+ physics problems

Density of States

(local Hamiltonians)

Strategy 1:

random (product state)

- Prepare state:
$e^{-H / 2 T}|r\rangle$
- Sample r : $\quad \sum_{r}\langle r| e^{-H / 2 T} O e^{-H / 2 T}|r\rangle=\operatorname{tr}\left(e^{-H / t} O\right)$

Quantum circuit?
Normalization

Density of States

(local Hamiltonians)

Strategy 2:

- Prepare a state with the right energy: $\left|\Psi_{0}\right\rangle$
- Measure O: $\left\langle\Psi_{0}\right| O\left|\Psi_{0}\right\rangle$

It will not be an eigenstate Wrong result

Should have a low variance $\delta=\frac{1}{\operatorname{poly}(N)}$

Finite Energy

PROBLEM:

Formulation (not precise):

- Fix the energy density: e
- Take an observable: O
- Compute $\langle\Psi| O|\Psi\rangle$

For some Ψ with $\langle\Psi| H|\Psi\rangle=E$
$\langle\Psi|(H-E)^{2}|\Psi\rangle=\delta$
with some prescribed precision, ε and variance δ
How does the computational time scale with N ?
and ε and δ ?
*For physically relevant problems, $\delta=1 / \operatorname{poly}(N)$
Dymarsky, Liu (2019).

Finite Energy:
 Classical Algorithms

Finite energies: Tensor networks (in 1D)

Banuls, Huse, JIC (2020)

- To compute expectation values of a state with a variance δ

$$
\tau \sim \min [\exp (1 / \delta), \exp (N)]
$$

- To obtain relevant information, we need $\delta \sim 1 / \operatorname{poly}(N)$

Classical algorithms require exponential time

Finite Energy:
 Quantum Algorithm

1. Take a state that is easy to prepare

restriction

2. Apply a spectral filter to decrease the variance

$$
\begin{aligned}
& |\Psi\rangle=G_{\delta}(H)|p\rangle \\
& G_{\delta}(H)=e^{-(H-E)^{2} / / \delta^{2}}=\sum c_{m} e^{i E_{1} k_{m}} e^{-i H H_{m}}
\end{aligned}
$$

$$
\langle O\rangle=\frac{\langle\Psi| O|\Psi\rangle}{\langle\Psi \mid \Psi\rangle}
$$

$$
a(t)=\langle p| e^{-i f t \mid}|p\rangle
$$

$b\left(t_{n}, t_{m}\right)=\langle p| e^{i t_{n}}, O e^{-i t_{m}}|p\rangle$

INITIALIZATION

1. Take a state that is easy to prepare

- For instance, a product state $\quad|p\rangle=\left|p_{1,} p_{2}, \ldots\right\rangle \quad$ with $\quad E=\langle p| H|p\rangle$

$$
|p\rangle=\sum_{n} \alpha_{n}\left|e_{n}\right\rangle
$$

- This is always possible for some

$$
e \geq e_{\min }
$$

- For lower energies, use adiabatic or other algorithm

What is the minimal energy?

- In general, $\mathrm{E}_{0} / 9$

Lieb, Bravy, Anshu, Gosset, König, ...

- For nearest-neighbor interactions: $\mathrm{E}_{0} / 3$
- By blocking $\log ^{1 / d}(N)$, we can get $E_{0}\left(1-k / \log ^{1 / d}(N)\right)$
and prepare the state efficiently
- The energy variance will be too big

SPECTRAL FILTER

2. Apply a spectral filter to decrease the variance

- Apply an operator: $\quad|\Psi\rangle=G_{\delta}(H)|p\rangle$

Gaussian filter

$$
G_{\delta}(H)=e^{-(H-E)^{2} / 2 \delta^{2}}
$$

Fourier transform

$$
G_{\delta}(H)=\sum c_{m} e^{i E t_{m}} e^{-i H t_{m}}
$$

 evolution operator

The procedure creates the state

$$
|\Psi\rangle=\sum_{m} c_{m}(t) e^{-i H t_{m}}|p\rangle
$$

FINITE ENERGY

REMARKS:

- Number of terms:

$$
\text { scale as } 1 / \delta
$$

- Maximum time:
- The state is not normalized. Probabilistic method
- The state is highly entangled

MEASUREMENTS

3. Do not create the state:

- We want to compute

$$
\langle O\rangle=\frac{\langle\Psi| O|\Psi\rangle}{\langle\Psi \mid \Psi\rangle} \quad \text { with }
$$

$$
|\Psi\rangle=\sum_{m} c_{m}\left(t_{m}\right) e^{-i H t_{m}}|p\rangle
$$

- Express it explictely: $\langle O\rangle=\ldots$

$$
\begin{aligned}
a(t) & =\langle p| e^{-i H t}|p\rangle \\
b\left(t_{n}, t_{m}\right) & =\langle p| e^{i H t_{n}} O e^{-i H t_{m}}|p\rangle
\end{aligned}
$$

(g) Loschmidt Amplitudes

- Measure $a\left(t_{n}\right)$ and $b\left(t_{n}, t_{m}\right)$

$$
\text { compute }\langle O\rangle \text { with a classical computer }
$$

Finite Energy:
 Summary

PROBLEM:

EFFICIENCY:

- Time: $\tau=\operatorname{poly}(N, 1 / \delta, 1 / \varepsilon)$
- Efficient to physical properties: $\delta \prec 1 / \operatorname{poly}(N)$
- Can be used with both analog and NISQ devices
as long as one can measure generalized Loschmidt Amplitudes

FINITE TEMPERATURE

PROBLEM

Finite temperature

$$
\rho=\frac{e^{-H / k T}}{Z}
$$

More precise formulation:

- Fix the temperature: T
- Take an observable: O
- Compute $\langle O\rangle=\operatorname{tr}(\rho O)$ with some prescribed precision, ε where $\rho=\frac{e^{-H / k T}}{Z}$
- How does the computational time scale with N ? and ε and T ?
- Heuristic algorithm that overcomes the sign problem

QUANTUM MONTE CARLO
 Classical algorithm

THERMAL EQUILIBRIUM:

- Sample configuration n with probability P_{n}

$$
\operatorname{tr}(O \rho)=\frac{\sum_{n}\langle n| e^{-H / T}|n\rangle O_{n}}{\sum_{n}\langle n| e^{-H / T}|n\rangle}=\frac{\sum_{n} P_{n} O_{n}}{\sum_{n} P_{n}}
$$

$$
\rho=\frac{e^{-H / k T}}{\operatorname{tr}\left[e^{-H / k r}\right]}
$$

- We need to compute $\quad P_{n}=\langle n| e^{-H / T}|n\rangle$

This is a many-body calculation

- Approximate

$$
P_{n}=\sum_{n_{1}, n_{2}, \ldots, n_{M}} Q_{n, n_{1}} Q_{n_{1}, n_{2}} \cdots
$$

- If $Q_{n, m} \geq 0$, then we can sample n_{1}, n_{2}, \ldots with a Metropolis algorithm
- Heuristics: $\quad \tau \prec \frac{f(N)}{\varepsilon^{2}}$

QUANTUM MONTE CARLO
 Classical algorithm

THERMAL EQUILIBRIUM:

- Sample configuration n with probability P_{n}

$$
\operatorname{tr}(O \rho)=\frac{\sum_{n}\langle n| e^{-H / T}|n\rangle O_{n}}{\sum_{n}\langle n| e^{-H / T}|n\rangle}=\frac{\sum_{n} P_{n} O_{n}}{\sum_{n} P_{n}}
$$

- We need to compute $\quad P_{n}=\langle n| e^{-H / T}|n\rangle$

This is a many-body calculation

- Approximate

$$
P_{n}=\sum_{n_{1}, n_{2}, \ldots, n_{M}} Q_{n, n_{1}} Q_{n_{1}, n_{2}} \cdots
$$

SIGN PROBLEM: This is not possible, in general

With sign problem, the computational time is exponential

FINITE TEMPERATURE
 Sampling

Use the quantum simulator to sample and avoid the sign problem

- Observables:

$$
\langle O\rangle=\frac{\operatorname{tr}\left(O e^{-H / T}\right)}{\operatorname{tr}\left(e^{-H / T}\right)}=\lim _{\delta \rightarrow 0} \frac{\int d E e^{-E / T} \operatorname{tr}\left[G_{\delta}(E) O\right]}{\int d E e^{-E / T} \operatorname{tr}\left[G_{\delta}(E)\right]}
$$

where $G_{\delta}(E)=e^{-(H-E) / 2 \delta^{2}}$ is the Gaussian filter we used before

- Discretize:

$$
\langle O\rangle \approx \frac{\sum_{E} \sum_{p} P_{p}(E)\left\langle\Psi_{p}\right| O\left|\Psi_{p}\right\rangle}{\sum_{E} \sum_{p} P_{p}(E)}
$$

sum over product states and energies

- P_{p} and $\left\langle\Psi_{p}\right| O\left|\Psi_{p}\right\rangle$ can be computed if we know $a\left(t_{n}\right), b\left(t_{n}, t_{m}\right)$
- We can compute the sums using (classical) Monte-Carlo

FINITE TEMPERATURE Sampling

- No sign problem: we use the simulator to compute probabilities
- More measurements because of sampling
- Heuristic since sampling may take long to converge

Can be used with both analog and NISQ devices
as long as one can measure generalized Lochschmidt Amplitudes

Generalized Loschmidt Amplitude

Cleve, Ekert, Macchiavello, Mosca PRSL (1998)

- Goal: Retrieve $\left\langle\Psi_{1}\right| e^{-i H t}\left|\Psi_{0}\right\rangle=r(t) e^{i \phi(t)}$

Conditional

$$
\begin{aligned}
& \left|\Psi_{0}\right\rangle \otimes\left(e^{i \phi}|0\rangle_{a}+|1\rangle_{a}\right) \stackrel{\text { preparation }}{ } e^{i \varphi}\left|\Psi_{0}\right\rangle \otimes|0\rangle_{a}+\left|\Psi_{1}\right\rangle \otimes|1\rangle_{a} \\
& \text { Conditional } \\
& \text { dynamics } \\
& e^{i p} e^{-i H t}\left|\Psi_{0}\right\rangle \otimes|0\rangle_{a}+\left|\Psi_{1}\right\rangle \otimes|1\rangle_{a} \\
& \widehat{H}=H \otimes|0\rangle_{a}\langle 0| \\
& \text { Measure } \\
& \text { ancilla } \\
& \left\langle\sigma_{x}\right\rangle_{a}=\frac{1}{2}\left[1+\operatorname{Re}\left(e^{i \varphi}\left\langle\Psi_{1}\right| e^{-i H t}\left|\Psi_{0}\right\rangle\right)\right]
\end{aligned}
$$

- Requires non-local interactions
- Can be made local by using several ancillas in a GHZ state

$$
\left|\Psi_{0}\right\rangle \otimes\left(e^{i \varphi}|000 \ldots 0\rangle_{a}+|111 \ldots 1\rangle_{a}\right)
$$

Sequential Method

Sirui Lu, Mari Carmen Bañuls, JIC, PRXQuantum (2021)

- Goal: Retrieve $\langle p| e^{-i H t}|p\rangle=r(t) e^{i \phi(t)}$ where $|p\rangle=\left|p_{1}, p_{2}, \ldots\right\rangle$ is a product state
- Assume there is a reference state: $\langle a a \ldots a| e^{-i H t}|a a \ldots a\rangle=r_{0} e^{i \phi_{0}} \quad$ Can be computed
- Eg: $|a a \ldots a\rangle$ is an eigenstate
- This can be implemented with three-level systems
- Measure $\left.\left|\langle b a \ldots a| e^{-i H t}\right| b \ldots a\right\rangle\left.\right|^{2}$ with $|b\rangle=\left\{\begin{array}{c}|b\rangle=|a\rangle \pm\left|p_{1}\right\rangle \\ |b\rangle=\left|p_{1}\right\rangle\end{array}\right.$
- With those outcomes, and knowing r_{0} and ϕ_{0}, compute $\left\langle p_{1} a \ldots a\right| e^{-i H t}\left|p_{1} a \ldots a\right\rangle$
- Continue in the same way with $\left\langle p_{1} p_{2} \ldots a\right| e^{-i H t}\left|p_{1} p_{2} \ldots a\right\rangle$

$$
\left\langle p_{1} p_{2} \ldots p_{n}\right| e^{-i H t}\left|p_{1} p_{2} \ldots p_{n}\right\rangle
$$

Sequential Method

Sirui Lu, Mari Carmen Bañuls, JIC, PRXQuantum (2021)

- Advantages:
- No ancillas, local
- one only has to measure the absolute values

$$
\left.\left|\left\langle p_{1} b \ldots a\right| e^{-i H t}\right| p_{1} b \ldots a\right\rangle\left.\right|^{2}
$$

- one only has to prepare product states

$$
\left.\left|\left\langle p_{1} b \ldots a\right| e^{-i H t}\right| p_{1} b \ldots a\right\rangle\left.\right|^{2}
$$

- Drawback: Errors accumulate

Complex Analysis Method

- Goal: Retrieve $\langle p| e^{-i H t}|p\rangle=r(t) e^{i \phi(t)}$ where $|p\rangle=\left|p_{1}, p_{2}, \ldots\right\rangle$ is a product state
- Analytical extension $G(z)=\langle p| e^{-i H z}|p\rangle=r(z) e^{i \phi(z)}$

$$
z=t+i \beta
$$

- The real and imaginary part of $G(z)$ are related
- Are the modulus and the phase connected?

$$
\frac{\partial}{\partial t} \phi(z)=\frac{\partial}{\partial \beta} \log [r(z)] \quad \phi \quad \phi\left(t_{2}\right)-\phi\left(t_{1}\right)=\left.\int_{t_{1}}^{t_{2}} \frac{\partial}{\partial \beta} \ln [r(z)]\right|_{\beta=0} d t
$$

- Approximate

$$
\left.\frac{\partial}{\partial \beta} \ln [r(z)]\right|_{\beta=0} \approx \frac{\ln r(t-i h)-\ln r(t+i h)}{h} \quad \text { for } h \text { small }
$$

- Measure

$$
\left.r(t \pm i h)=\left|\langle p| e^{-i H t} e^{ \pm h H}\right| p\right\rangle|=q|\langle p| e^{-i H t}|\varphi\rangle \mid
$$

Complex Analysis Method

- Advantages:
- No ancillas, local
- one only has to measure the absolute values

$$
\left.r(t \pm i h)=\left|\langle p| e^{-i H t} e^{ \pm h H}\right| p\right\rangle|=q|\langle p| e^{-i H t}|\varphi\rangle \mid
$$

one only has to prepare product states and apply a low depth circuit

- There is a simple error-mitigation method

Yilun Yang, Arthur Christianen, Sandra Coll-Vinent, Vadim Smelyanskiy, Mari Carmen Bañuls, Thomas E. O'Brien, Dominik S. Wild, JIC, arXiv: 2303.08461

- Drawback: Errors accumulate

Complex Analysis Method

Illustration: Ising chain

$$
N=24 \text { spins }
$$

Initial state: $\quad|p\rangle=|000 \ldots 0\rangle$
Trotter step: $\quad \tau=h=0.3$

Dashed lines: error after each gate with a probability 0.003
Simulation of 100 experiments using 10^{6} measurements

Circuit Depth \# measurements

Method		
Hadamard test $\mathcal{O}\left(t^{1+\frac{1}{p}} \left\lvert\, N^{1+\frac{1}{d}+\frac{1}{p}} / \epsilon^{\frac{1}{p}}\right.\right)$	$\mathcal{O}\left(1 / \epsilon^{2}\right)$	
Sequential	$\mathcal{O}\left(r^{\frac{1}{p}} t^{1+\frac{1}{p}} N^{\frac{2}{p}}\left(\epsilon^{\frac{1}{p}}\right)\right.$	$\mathcal{O}\left(\tilde{I}^{2} r^{2} N^{2} / \epsilon^{2}\right)$
interferometry	$\mathcal{O}\left(r^{\frac{1}{p}} t^{1+\frac{2}{p}} N^{\frac{1}{p}}\right)\left(\epsilon^{\frac{1}{p}}\right)$	$\mathcal{O}\left(I^{2} r r^{3} t^{3} N / \epsilon^{3}\right)$

d : spatial dimension
ε : prescribed error in $G(t)$
I : constants that depend on $G(t)$
p :Trotter order
N : Number of qubits

- Quantum simulation is (arguably) the most suitable application of quantum computers
- Currently, analog and NISQ quantum computers are very well suited for quantum simulation
- There exists a variety of quantum algorithms for dynamics and thremal equilibrium
- Generalize Loschmidt Amplitudes play important role in those and other algorithms
- One can avoid Hadamard Tests which may have practical advantages

M.C. Banuls
S. Lu
Y. Yang
D. Wild

Ar. Christianen
B. Schieffer
T. O’Brien (Google)
V. Smelyanskiy (Google)
J. Tura (Leiden)
A.Molnar (Vienna)
N. Schuch (Vienna)
E. Cruz

Ad. Franco-Rubio
R. Trivedi (Washington)
G. Gonzalez
L. Escalera

Al. Alhambra
F. Baccari

