

EXTREME VALUE THEORY AND

LOCALIZATION IN RANDOM SPIN CHAINS

Jeanne Colbois Nicolas Laflorencie LPT | CNRS & Toulouse University | France

arXiv:2305.10574

Soon to appear in PRB

Quantum information, quantum matter and quantum gravity | Kyoto | 27.09.2023

TOSSING A COIN

 $L = \overline{176}$

M. F. Schilling, The College Mathematics Journal 21(3), 196-207 (1990) P. Révész, Proc. 1978 Int'l Cong. of Mathematicians, 749-754 (1980)

TOSSING A COIN

176 (81 T / 95 H)

176 (83 T / 93 H)

M. F. Schilling, The College Mathematics Journal 21(3), 196-207 (1990) P. Révész, Proc. 1978 Int'l Cong. of Mathematicians, 749-754 (1980)

TOSSING A COIN

$$\mathcal{P}(\ell)\sim 2^{-\ell}$$
 $\mathcal{P}(\ell_{ ext{max}})\sim rac{1}{L}$ $\Rightarrow \ell_{ ext{max}}\sim \ln L/\ln 2\sim 7.45$

176 (83 T / 93 H)

M. F. Schilling, The College Mathematics Journal 21(3), 196-207 (1990) P. Révész, Proc. 1978 Int'l Cong. of Mathematicians, 749-754 (1980)

EXTREME VALUE THEORY

Market risks

Athletic records

E. J. Gumbel, Statistics of Extremes, Dover, (1958, 2004) S. N. Majumdar, A. Pal, G. Schehr, Physics Reports, **840**, 1 (2020)

EXTREME VALUE THEORY

Market risks

Athletic records

Condensed matter

E. J. Gumbel, *Statistics of Extremes*, Dover, (1958, 2004) S. N. Majumdar, A. Pal, G. Schehr, Physics Reports, **840**, 1 (2020)

EXTREME VALUE THEORY

Market risks

Athletic records

Condensed matter

Disordered spin chains

R. Juhász, Y,C. Lin, and F, Iglói, Phys. Rev. B 73, 224206 (2006) N. Pancotti, M. Knap, D. A. Huse, J. I. Cirac, and M. C. Bañuls, Phys. Rev. B 97, 094206 (2018) I. A. Kovács, T.Pető, and F.Iglói, Phys. Rev. Res. 3, 033140 (2021) W.-H. Kao and N, B. Perkins, Phys. Rev. B 106, L100402 (2022) J. C., N. Laflorencie, arXiv:2305.10574

E. J. Gumbel, *Statistics of Extremes*, Dover, (1958, 2004) S. N. Majumdar, A. Pal, G. Schehr, Physics Reports, **840**, 1 (2020)

4

Spin-1/2 W=h= disorder strength for random fields along S^z

Spin-1/2 W=h= disorder strength for random fields along S^z

Spin-1/2 W=h= disorder strength for random fields along S^z

Eigenstates in the middle of the many-body spectrum

Distribution over disorder realizations and high-energy eigenstates Anderson chain / XX chain

Distribution over disorder realizations and high-energy eigenstates Anderson chain / XX chain

Distribution over disorder realizations and high-energy eigenstates

Anderson chain / XX chain

Heisenberg chain

Distribution over disorder realizations and high-energy eigenstates

Anderson chain / XX chain

Heisenberg chain

Distribution over disorder realizations and high-energy eigenstates

Anderson chain / XX chain

Heisenberg chain

QUESTIONS

Spin-1/2 W = h = disorder strength for random fields

		<i>\\/</i>
Ergodic		MBL regime(s)
	?	

QUESTIONS

Spin-1/2 W = h = disorder strength for random fields

W

Ergodic | MBL regime(s) ? Fate of isolated quantum systems?

1. Spin chains in random field and localization : introduction

2. Exact diagonalization

3. Minimal deviations in the XX chain

4. Quantitative analysis: extreme value theory

5. Consequences

SPIN CHAINS IN RANDOM FIELD AND LOCALIZATION

SPIN-1/2 CHAIN IN A RANDOM FIELD

 $\mathcal{H} = \sum_i rac{J}{2} \left(S_i^+ S_{i+1}^- + S_i^- S_{i+1}^+ + 2 \Delta S_i^z S_{i+1}^z
ight) - \sum_i h_i S_i^z \qquad \qquad S^{x,y,z} = rac{1}{2} \sigma^{x,y,z}$

P. Jordan and E. Wigner, Z. Physik 47, 631–651 (1928)

7

SPIN-1/2 CHAIN IN A RANDOM FIELD

 $\mathcal{H} = \sum_{i}rac{J}{2} \left(S_{i}^{+}S_{i+1}^{-} + S_{i}^{-}S_{i+1}^{+} + 2\Delta S_{i}^{z}S_{i+1}^{z}
ight) - \sum_{i}h_{i}S_{i}^{z}$

Spin-flip Ising interaction Magnetic field $\begin{array}{c} & & \\ & & & \\ & & \\ & & & \\ & & \\$

Attraction/ repulsion

$$\mathcal{H}_f = \sum_i igg[rac{J}{2} \left(c_i^\dagger c_{i+1}^ + c_{i+1}^\dagger c_i^ + 2\Delta n_i n_{i+1}^
ight) - h_i n_i^ igg]$$
Jump On-site energy

P. Jordan and E. Wigner, Z. Physik **47**, 631–651 (1928)

ANDERSON LOCALIZATION

$$\mathcal{H} = \sum_i rac{J}{2} \left(S_i^+ S_{i+1}^- + S_i^- S_{i+1}^+ + 2\Delta S_i^z S_{i+1}^z \right) - \sum_i h_i S_i^z$$

Spin-flip

Ising interaction

Magnetic field

P. W. Anderson, Phys. Rev. 109, 1492 (1958); N.F. Mott & W.D. Twose, Advances in Physics 10, 107-163, (1961)
 B. A. Van Tiggelen, In: J. P. Fouque (eds), *Diffuse Waves in Complex Media*, NATO Science Series, 531, Springer, Dordrecht, (1999)

1 particle

ANDERSON LOCALIZATION

$$\mathcal{H}_f = \sum_i \Big[rac{J}{2} \left(c_i^\dagger c_{i+1}^{} + c_{i+1}^\dagger c_i^{}
ight) - h_i n_i \Big],$$

1 particle

P. W. Anderson, Phys. Rev. 109, 1492 (1958); N.F. Mott & W.D. Twose, Advances in Physics 10, 107-163, (1961)
 B. A. Van Tiggelen, In: J. P. Fouque (eds), *Diffuse Waves in Complex Media*, NATO Science Series, 531, Springer, Dordrecht, (1999)

ANDERSON LOCALIZATION

т /

B. A. Van Tiggelen, In: J. P. Fouque (eds), *Diffuse Waves in Complex Media*, NATO Science Series, **531**, Springer, Dordrecht, (1999)

$\mathcal{H}_f = \sum_i \left| rac{J}{2} \left(c_i^\dagger c_{i+1}^{} + c_{i+1}^\dagger c_i^{} ight) - h_i \overline{n_i} ight|$ $\mathcal{H}_f = \sum_m \epsilon_m b_m^\dagger b_m$, Em $\xi(E,W)$

P. W. Anderson, Phys. Rev. 109, 1492 (1958); N.F. Mott & W.D. Twose, Advances in Physics 10, 107-163, (1961) B. A. Van Tiggelen, In: J. P. Fouque (eds), Diffuse Waves in Complex Media, NATO Science Series, 531, Springer, Dordrecht, (1999) 9

1 particle

P. W. Anderson, Phys. Rev. **109,** 1492 (1958); N.F. Mott & W.D. Twose, Advances in Physics **10**, 107-163, (1961) B. A. Van Tiggelen, In: J. P. Fouque (eds), *Diffuse Waves in Complex Media*, NATO Science Series, **531,** Springer, Dordrecht, (1999)

$\longrightarrow \underbrace{\leftarrow} \xi(E,W)$

P. W. Anderson, Phys. Rev. **109,** 1492 (1958); N.F. Mott & W.D. Twose, Advances in Physics **10**, 107-163, (1961) B. A. Van Tiggelen, In: J. P. Fouque (eds), *Diffuse Waves in Complex Media*, NATO Science Series, **531,** Springer, Dordrecht, (1999)

P. W. Anderson, Phys. Rev. 109, 1492 (1958); N.F. Mott & W.D. Twose, Advances in Physics 10, 107-163, (1961)
 B. A. Van Tiggelen, In: J. P. Fouque (eds), *Diffuse Waves in Complex Media*, NATO Science Series, 531, Springer, Dordrecht, (1999)

P. W. Anderson, Phys. Rev. 109, 1492 (1958); N.F. Mott & W.D. Twose, Advances in Physics 10, 107-163, (1961)
 B. A. Van Tiggelen, In: J. P. Fouque (eds), *Diffuse Waves in Complex Media*, NATO Science Series, 531, Springer, Dordrecht, (1999)

 $\mathcal{H}_f = \sum_i \left[rac{J}{2} \left(c_i^\dagger c_{i+1}^{\phantom\dagger} + c_{i+1}^\dagger c_i^{\phantom\dagger}
ight) - h_i n_i^{\phantom\dagger}
ight]$

L/2 fermions

12

$$S_z = 0$$

HEISENBERG: INTRODUCING INTERACTIONS

 $\mathcal{H} = \overline{\sum_i rac{J}{2} \left(S_i^+ S_{i+1}^- + S_i^- S_{i+1}^+ + 2 \Delta S_i^z S_{i+1}^z
ight) - \overline{\sum_i h_i S_i^z}}$

$$\mathcal{H}_f = \sum_i \left[rac{J}{2} \left(c_i^\dagger c_{i+1}^{} + c_{i+1}^\dagger c_i^{} + 2\Delta n_i n_{i+1}^{}
ight) - h_i n_i
ight]$$
EFFECT OF INTERACTIONS?

 $\mathcal{H} = \overline{\sum_i rac{J}{2} \left(S_i^+ S_{i+1}^- + S_i^- S_{i+1}^+ + 2 \Delta S_i^z S_{i+1}^z
ight) - \overline{\sum_i h_i S_i^z}}$

In the Anderson basis:

 $\mathcal{H} = \sum_m \epsilon_m b_m^\dagger b_m + \sum_{j,k,l,m} V_{j,k,l,m} b_j^\dagger b_k^\dagger b_l b_m$,

Anderson orbitals *m*

$$\mathcal{H}_f = \sum_i igg[rac{J}{2} \left(c_i^\dagger c_{i+1}^{} + c_{i+1}^\dagger c_i^{} + 2\Delta n_i n_{i+1}^{}
ight) - h_i n_i igg]$$

EFFECT OF INTERACTIONS?

 $\mathcal{H} = \sum_i rac{J}{2} \left(S_i^+ S_{i+1}^- + S_i^- S_{i+1}^+ + 2\Delta S_i^z S_{i+1}^z
ight) - \sum_i h_i S_i^z \, ,$

In the Anderson basis: $\mathcal{H}=\sum_m \epsilon_m b_m^\dagger b_m + \sum_{j,k,l,m} V_{j,k,l,m} b_j^\dagger b_k^\dagger b_l b_m$

Anderson orbitals *m*

Interactions favor delocalization. Do they fully destroy localization?

$$\mathcal{H}_f = \sum_i \Big[rac{J}{2} \left(c_i^\dagger c_{i+1}^{} + c_{i+1}^\dagger c_i^{} + 2\Delta n_i n_{i+1}^{}
ight) - h_i n_i \Big]$$

$\mathcal{H} = \sum_i rac{J}{2} \left(S_i^+ S_{i+1}^- + S_i^- S_{i+1}^+ + 2 \Delta S_i^z S_{i+1}^z ight) - \sum_i h_i S_i^z$

Do interactions destroy localization?

$$\mathcal{H}_f = \sum_i \Big[rac{J}{2} \left(c_i^\dagger c_{i+1}^{} + c_{i+1}^\dagger c_i^{} + 2 \Delta n_i n_{i+1}^{}
ight) - h_i n_i \Big]$$

 $\mathcal{H} = \sum_i rac{J}{2} \left(S_i^+ S_{i+1}^- + S_i^- S_{i+1}^+ + 2\Delta S_i^z S_{i+1}^z
ight) - \sum_i h_i S_i^z \, .$

Do interactions destroy localization?

T. Giamarchi and H. J. Schulz, EPL **3** 1287 (1987); PRB **37**, 325 (1988) Z. Ristivojevic, et al PRL **109**, 026402 (2012); Doggen et al, PRB **96**, 180202(R) (2017)

T.G

EFFECT OF INTERACTIONS?

Localized

Bose glass

 \bigcirc

$\mathcal{H} = \sum_i rac{J}{2} \left(S_i^+ S_{i+1}^- + S_i^- S_{i+1}^+ + 2\Delta S_i^z S_{i+1}^z ight) - \sum_i h_i S_i^z$

Do interactions destroy localization?

What about high temperatures / high energy eigenstates?

 $-h_i n_i$

$$\mathcal{H}_f = \sum_i igg[rac{J}{2} \left(c_i^\dagger c_{i+1} + c_{i+1}^\dagger c_i + 2\Delta n_i n_{i+1}
ight)$$
amarchi and H. J. Schulz, EPL **3** 1287 (1987); PRB **37**, 325 (1988)
stivojevic, et al PRL **109**, 026402 (2012):

Doggen et al, PRB 96, 180202(R) (2017)

BKT

AV.

Superfluid

EFFECT OF INTERACTIONS?

$\mathcal{H} = \sum_i rac{J}{2} \left(S_i^+ S_{i+1}^- + S_i^- S_{i+1}^+ + 2\Delta S_i^z S_{i+1}^z ight) - \sum_i h_i S_i^z \, .$

What about high temperatures / high energy eigenstates? Localized BKT Bose glass Thermal average $\leftarrow ?$ ETHTime average ? $H_f = \sum_i \left[\frac{J}{2} \left(c_i^{\dagger} c_{i+1} + c_{i+1}^{\dagger} c_i + 2\Delta n_i n_{i+1} \right) - h_i n_i \right]$

T. Giamarchi and H. J. Schulz, EPL **3** 1287 (1987); PRB **37**, 325 (1988) Z. Ristivojevic, et al PRL **109**, 026402 (2012); Doggen et al, PRB **96**, 180202(R) (2017) J. M. Deutsch , PRA. **43,** 2046–2049, (1991) , M. Srednicki, PRE **50,** 888–901, (1994) L. D'Alessio, Y. Kafri, A. Polkovnikov, and M. Rigol, Adv. Phys. **65**, 239 (2016)

$$\mathcal{H}_f = \sum_i \Big[rac{J}{2} \left(c_i^\dagger c_{i+1}^{} + c_{i+1}^\dagger c_i^{} + 2\Delta n_i n_{i+1}^{}
ight) - h_i n_i \Big]$$

Analytical, general picture:

- L. Fleischman, P. W. Anderson, PRB **2**, 2336 (1980) \rightarrow single-particle excitations and conditions for Anderson transition
- B. Altschuler, Y. Gefen, A. Kamenev, L. S. Levitov, PRL 78, 2803, (1997) → quasi particle lifetime & localization in Fock space
- P. Jacquod, D. L. Shepelyansky, PRL **79**, 1837 (1997) \rightarrow Gap ratio statistics, finite systems
- I. V. Gornyi, A. D. Mirlin, D. G. Polyakov, PRL **95**, 206603 (2005) → zero conductivity at low temperature
- *D. M. Basko, I. L. Aleiner, B. L. Altschuler, Annals of Physics **321**, 1126 (2006) → metal-insulator transition, localization in Fock space
- I.L. Aleiner, B. L. Altshuler, G. V Shlyapnikov, Nature Physics **6**, 900-904 (2010) \rightarrow weakly interacting bosons

WEAK INTERACTIONS AND DISORDER

$$\mathcal{H}_f = \sum_i igg[rac{J}{2} \left(c_i^\dagger c_{i+1}^{} + c_{i+1}^\dagger c_i^{} + 2\Delta n_i n_{i+1}^{}
ight) - h_i n_i^{} igg]$$

Analytical, general picture:

Interactions \Rightarrow transition between weak and strong disorder

L. Fleischman, P. W. Anderson, PRB **2**, 2336 (1980) \rightarrow single-particle excitations and conditions for Anderson transition

B. Altschuler, Y. Gefen, A. Kamenev, L. S. Levitov, PRL 78, 2803, (1997) → quasi particle lifetime & localization in Fock space

- P. Jacquod, D. L. Shepelyansky, PRL **79**, 1837 (1997) \rightarrow Gap ratio statistics, finite systems
- I. V. Gornyi, A. D. Mirlin, D. G. Polyakov, PRL **95**, 206603 (2005) → zero conductivity at low temperature

*D. M. Basko, I. L. Aleiner, B. L. Altschuler, Annals of Physics **321**, 1126 (2006) \rightarrow metal-insulator transition, localization in Fock space

I.L. Aleiner, B. L. Altshuler, G. V Shlyapnikov, Nature Physics **6**, 900-904 (2010) \rightarrow weakly interacting bosons

 $\mathcal{H} = \sum_{i} rac{J}{2} \left(S_{i}^{+} S_{i+1}^{-} + S_{i}^{-} S_{i+1}^{+} + 2\Delta S_{i}^{z} S_{i+1}^{z}
ight) - \sum_{i} h_{i} S_{i}^{z}$

A. Pal, D. Huse, PRB 82, 174411 2010

(See series of works by V. Oganesyan, A. Pal, D. Huse, 2007-2010)

Probes: gap ratio

D. A. Abanin, E. Altman, I. Bloch, and M. Serbyn, Rev. Mod. Phys. 91, 021001 (2019) F. Alet, N. Laflorencie, C. R. Phys. 19,498 (2018)

 $\mathcal{H} = \sum_{i} rac{J}{2} \left(S_{i}^{+} S_{i+1}^{-} + S_{i}^{-} S_{i+1}^{+} + 2\Delta S_{i}^{z} S_{i+1}^{z}
ight) - \sum_{i} h_{i} S_{i}^{z}$

Gaussian orthogonal ensemble statistics = random matrix level repulsion ↔ ergodic

(See series of works by V. Oganesyan, A. Pal, D. Huse, 2007-2010)

D. A. Abanin, E. Altman, I. Bloch, and M. Serbyn, Rev. Mod. Phys. **91**, 021001 (2019) F. Alet, N. Laflorencie,

Gaussian orthogonal ensemble statistics = random matrix level repulsion ↔ ergodic

A. Pal, D. Huse, PRB **82**, 174411 2010

(See series of works by V. Oganesyan, A. Pal, D. Huse, 2007-2010)

D. A. Abanin, E. Altman, I. Bloch, and M. Serbyn, Rev. Mod. Phys. **91**, 021001 (2019)

 $\mathcal{H}=\sum_i rac{J}{2}\left(S_i^+S_{i+1}^-+S_i^-S_{i+1}^++2\Delta S_i^zS_{i+1}^z
ight)-\sum_i h_iS_i^z$ A few among many...

Initial *S*^z basis random product state + TEBD W = 5

Probes: gap ratio | entanglement entropy

D. A. Abanin, E. Altman, I. Bloch, and M. Serbyn, Rev. Mod. Phys. **91**, 021001 (2019)

 $\mathcal{H} = \sum_{i} rac{J}{2} \left(S_{i}^{+} S_{i+1}^{-} + S_{i}^{-} S_{i+1}^{+} + 2\Delta S_{i}^{z} S_{i+1}^{z}
ight) - \sum_{i} h_{i} S_{i}^{z}$

A few among many...

Initial *S*^z basis random product state + TEBD W = 5

Many body Log growth of entanglement Anderson No growth of entanglement

J. H. Bardarson, F. Pollmann, and J. E. Moore, PRL **109**, 017202 (2012) M. Znidaric, T. Prosen, and P. Prelovsek PRB 77, 064426 (2008)

Probes: gap ratio | entanglement entropy

D. A. Abanin, E. Altman, I. Bloch, and M. Serbyn, Rev. Mod. Phys. **91**, 021001 (2019)

F. Alet, N. Laflorencie, C. R. Phys. 19,498 (2018)

19

$$\mathcal{H} = \sum_{i} rac{J}{2} \left(S_{i}^{+} S_{i+1}^{-} + S_{i}^{-} S_{i+1}^{+} + 2 \Delta S_{i}^{z} S_{i+1}^{z}
ight) - \sum_{i} h_{i} S_{i}^{z}$$

A few among many...

$$|\Psi
angle = \sum_{lpha=1}^{\mathcal{N}} \psi_lpha |lpha
angle$$

$$S_q = rac{1}{1-q} \ln \left(\sum_{lpha=1}^{\mathcal{N}} |\psi_lpha|^{2q}
ight)$$

 $S_q = a_q \ln(\mathcal{N})$

Configuration space

D. J. Luitz, N. Laflorencie, F. Alet, PRB **91**, 081103(R) (2015) Probes: gap ratio | entanglement entropy | participation entropy

D. A. Abanin, E. Altman, I. Bloch, and M. Serbyn, Rev. Mod. Phys. **91**, 021001 (2019) F. Alet, N. Laflorer

J. COLBOIS | QIMG 2023 , KYOTO | 27.09.2023

HEISENBERG IN RANDOM FIELD : A PARADIGMATIC EXAMPLE 20

 $\mathcal{H}=\sum_irac{J}{2}\left(S_i^+S_{i+1}^-+S_i^-S_{i+1}^++2\Delta S_i^zS_{i+1}^z
ight)-\sum_ih_iS_i^z$ A few among many...

$$\hat{H} = -J \sum_{i,\sigma} (\hat{c}^{\dagger}_{i,\sigma} \hat{c}^{}_{i+1,\sigma} + \mathrm{h.c.}) + \Delta \sum_{i,\sigma} \cos(2\pi\beta i + \phi) \hat{c}^{\dagger}_{i,\sigma} \hat{c}^{}_{i,\sigma} + U \sum_{i} \hat{n}^{}_{i,\uparrow} \hat{n}^{}_{i,\downarrow}$$

$$\mathcal{I} = \frac{N_{\rm e} - N_{\rm o}}{N_{\rm e} + N_{\rm o}}$$

M. Schreiber et al. (I. Bloch), Science 349, 842 (2015)

Probes: gap ratio | entanglement entropy | participation entropy | imbalance [...]

D. A. Abanin, E. Altman, I. Bloch, and M. Serbyn, Rev. Mod. Phys. 91, 021001 (2019) F. Alet, N. Laflorencie, C. R. Phys. 19,498 (2018)

DEBATE

21

- Finite-size scaling? Location of the transition?
- Destabilization by ergodic bubbles even at strong disorder?
- Immediate onset of quantum chaos? Intermediate phase(s)?

J. Šuntajs, J. Bonča, T. Prosen, and L. Vidmar, PRE **102**, 062144 (2020); D.A. Abanin, et al, Annals of Physics **427**, 168415, (2021); D. Sels, A. Polkovnikov, JCCM January 2023_1 (2023); Tyler LeBlond, Dries Sels, Anatoli Polkovnikov, and Marcos Rigol, PRB **104**, L201117 (2021); A. Morningstar et al, PRB **105**, 174205 (2022); L. Colmenarez, D. Luitz, W. De Roeck, arXiv:2308.01350 (2023); P, Sierant and J. Zakrzewski, PRB 105, 224203 (2022)...

- Finite-size scaling? Location of the transition?
- Destabilization by ergodic bubbles even at strong disorder?
- Immediate onset of quantum chaos? Intermediate phase(s)?

For today : Magnetization, ED data and comparison to the Anderson line

J. Šuntajs, J. Bonča, T. Prosen, and L. Vidmar, PRE **102**, 062144 (2020); D.A. Abanin, et al, Annals of Physics **427**, 168415, (2021); D. Sels, A. Polkovnikov, JCCM January 2023_1 (2023); Tyler LeBlond, Dries Sels, Anatoli Polkovnikov, and Marcos Rigol, PRB **104**, L201117 (2021); A. Morningstar et al, PRB **105**, 174205 (2022); L. Colmenarez, D. Luitz, W. De Roeck, arXiv:2308.01350 (2023); P, Sierant and J. Zakrzewski, PRB 105, 224203 (2022)...

EXACT DIAGONALIZATION

CHALLENGE

• Many-body
$$\mathcal{N} = rac{L!}{\left(rac{L}{2}!
ight)^2}$$

Simulations of Many-Body Localizable (MBL) lattices models | Fabien Alet | Cargese

CHALLENGE

• Many-body
$$\mathcal{N} = rac{L!}{\left(rac{L}{2}!
ight)^2}$$

• Disorder \rightarrow translation invariance, high number of realisations

CHALLENGE

• Many-body
$$\mathcal{N} = rac{L!}{\left(rac{L}{2}!
ight)^2}$$

• Disorder \rightarrow translation invariance, high number of realisations

- High-energy eigenstates
- High density of eigenstates
- Potential absence of thermalization

 $\mathcal{N} = rac{L!}{\left(rac{L}{2}!
ight)^2}$

High energy eigenstates close to $\epsilon=\sigma,$ high dos

 $L=14, S_{
m tot}^z=0$, clean case

 $\mathcal{N} = rac{L!}{\left(rac{L}{2}!
ight)^2}$

 $L=14, S_{
m tot}^z=0$, clean case

Idea : transform the spectrum!

$$F = (H - \sigma)^2$$

 $\mathcal{N} = rac{L!}{\left(rac{L}{2}!
ight)^2}$

 $L=14, S_{
m tot}^z=0$, clean case

Idea : transform the spectrum!

$$F=(H-\sigma)^2$$

 $\mathcal{N} = rac{L!}{\left(rac{L}{2}!
ight)^2}$

 $L=14, S_{
m tot}^z=0$, clean case

High energy eigenstates close to $\epsilon = \sigma$, high dos

Idea : transform the spectrum!

$$F = (H - \sigma)^2$$

8

$$G = (H - \sigma)^{-1}$$

 $\mathcal{N} = rac{L!}{\left(rac{L}{2}!
ight)^2}$

 $L=14, S_{
m tot}^z=0$, clean case

High energy eigenstates close to $\epsilon = \sigma$, high dos

Idea : transform the spectrum!

$$F=(H-\sigma)^2$$

8

$$G = (H - \sigma)^{-1}$$

Do not invert!

Solve
$$(H-\sigma)ec{y}=ec{x}$$

 $\mathcal{N} = rac{L!}{\left(rac{L}{2}!
ight)^2}$

 $L=14, S_{
m tot}^z=0$, clean case

High energy eigenstates close to $\epsilon = \sigma$, high dos

Idea : transform the spectrum!

$$F=(H-\sigma)^2$$

$$(\mathbf{x})$$

$$G = (H - \sigma)^{-1}$$

$$G = "\sum_k lpha_k H^k "$$

 $\mathcal{N} = rac{L!}{\left(rac{L}{2}!
ight)^2}$

 $L=14, S_{
m tot}^z=0$, clean case

Up to 22, 24 sites $\mathcal{N}>2\cdot 10^6$ # non-zero el. $>3\cdot 10^7$

$$G = (H - \sigma)^{-1}$$

$$G = "\sum_k lpha_k H^k "$$

Anderson chain / XX chain

N. Laflorencie, G. Lemarié, N. Macé, PRR **2**, 042033(R) (2020) **J. C.**, N. Laflorencie, arXiv:2305.10574

Anderson chain / XX chain

N. Laflorencie, G. Lemarié, N. Macé, PRR **2**, 042033(R) (2020) **J. C.**, N. Laflorencie, arXiv:2305.10574

Anderson chain / XX chain

Heisenberg chain

Anderson chain / XX chain

Heisenberg chain

Anderson chain / XX chain

Heisenberg chain

Heisenberg chain

MINIMAL DEVIATIONS IN THE XX CHAIN - TOY MODEL

$$|\delta_i=1/2-|\langle S_i^z
angle|$$

J. C., N. Laflorencie, arXiv:2305.10574

$$|\delta_i = 1/2 - |\langle S_i^z
angle|$$

$$\delta_i = 1/2 - |\langle S_i^z
angle|$$

26

$$\delta_i = 1/2 - |\langle S_i^z
angle|$$

$$\delta_i = 1/2 - |\langle S_i^z
angle|$$

J. COLBOIS | QIMG 2023, KYOTO | 27.09.2023

J. C., N. Laflorencie, arXiv:2305.10574

J. C., N. Laflorencie, arXiv:2305.10574

TOY MODEL: ANALYTICAL DESCRIPTION

$$\phi_m(i)|^2 \propto \exp\left(-rac{|i-i_0^m|}{\xi}
ight)$$

$$|\phi_m(i)|^2 \propto \exp\left(-rac{|i-i_0^m|}{\xi}
ight)$$

$$\Rightarrow \langle n_i
angle = \langle S^z_i
angle + 1/2 = \sum_{m \in ext{occ}} |\phi_m(i)|^2$$

 $egin{aligned} \delta_i &= 1/2 - \left| \langle n_i
angle - 1/2
ight| \ &|\phi_m(i)|^2 \propto \exp\left(- rac{|i - i_0^m|}{\xi}
ight) \end{aligned}$

$$\delta_i = 1/2 - |\langle n_i
angle - 1/2|$$

$$|\phi_m(i)|^2 \propto \exp\left(-rac{|i-i_0^m|}{\xi}
ight)$$

 $\mathsf{O}:\;\;\delta_i=\langle n_i
angle$

$$\delta_i = 1/2 - |\langle n_i
angle - 1/2|$$

 $|\phi_m(i)|^2 \propto \exp\left(-rac{|i-i_0^m|}{\xi}
ight)$

$$\mathsf{O}: \;\; \delta_i = \langle n_i
angle pprox e^{-rac{r}{\xi}} + \dots$$

 $\delta_i = 1/2 - |\langle n_i
angle - 1/2| \qquad \qquad \mathsf{O}: \ \ \delta_i = \langle n_i
angle pprox e^{-rac{r}{\xi}} + \dots$

$$|\phi_m(i)|^2 \propto \exp\left(-rac{|i-i_0^m|}{\xi}
ight) \qquad \Rightarrow \quad \delta_{\min} pprox e^{-rac{\ell_{ ext{cluster}}}{2\xi}}$$

Laflorencie, Lemarié, Macé, PRR **100**, 134201, (2019) Laflorencie, Lemarié, Macé, PRR **2**, 042033(R), (2020) **JC**, N. Laflorencie, arXiv:2305.10574

cluster $\delta^{ ext{typ}}$

MINIMAL DEVIATION? cluster $\delta^{ ext{typ}}$. $\ell_{ m cluster}$

 \bigcirc $\overline{\ell_{\text{cluster}}} \approx \frac{\ln L}{\ln 2}$

cluster \approx $\ell_{ m cluster}$

$$^{
m p} pprox L^{-rac{1}{2\xi\ln 2}}$$

EXPONENT : TOY MODEL

J. COLBOIS | QIMG 2023 , KYOTO | 27.09.2023

W

3

5 6

7 8

9

··••·· 10

 $\tilde{\mathcal{R}}$

SCALING

33

SCALING

SCALING

QUANTITATIVE DESCRIPTION : EXTREME VALUE STATISTICS

TAILS AND EXTREMES

Tails

TAILS AND EXTREMES

Tails

Extreme value

$$\{X_i\}_{i=1,2,\ldots,L} \sim p(x) \longrightarrow Y = \max(X_i)$$

The power (1958-2004) $Z = \operatorname{rescaled}(Y)$

$$\{X_i\}_{i=1,2,\ldots,L} \sim p(x) \longrightarrow Y = \max(X_i)$$

S. N. Majumdar, A. Pal, G. Schehr, Physics Reports, 840, 1 (2020)

EXTREME VALUE THEORY - XX CHAIN

 $|\, {\cal P}(\delta) \stackrel{\delta o 0}{\sim} A \overline{\delta^lpha}$

E. J. Gumbel, *Statistics of Extremes*, Dover, (1958, 2004) S. N. Majumdar, A. Pal, G. Schehr, Physics Reports, **840**, 1 (2020)

36

EXTREME VALUE THEORY - XX CHAIN

Fréchet
$$\mathcal{P}(\ln \delta_{\min}) o AL \delta^lpha_{\min} \exp\left(-rac{AL}{lpha+1} \delta^{lpha+1}_{\min}
ight)$$

 $|\mathcal{P}(\delta) \stackrel{\delta o 0}{\sim} A \delta^lpha|$

EXTREME VALUE THEORY - XX CHAIN

réchet
$$\mathcal{P}(\ln \delta_{\min}) o AL \delta^lpha_{\min} \exp\left(-rac{AL}{lpha+1} \delta^{lpha+1}_{\min}
ight)$$

 $|{\cal P}(\delta) \stackrel{\delta o 0}{\sim} A \delta^lpha|$

CONSEQUENCES : INTERACTING SYSTEM

 $\mathcal{H} = \mathcal{H}_{XX} + \Delta \sum_i S^z_i S^z_{i+1}$

"Stability" of the cluster with respect to the interactions?

disorder increases

 $\delta_i
ightarrow$ 1/2 ($\langle S_i^z
angle
ightarrow$ 0)

EXPONENT

At strong disorder, $\gamma \sim 1/\xi$

⇒ Interpretation of the exponent as related to a many-body localization length

EXPONENT

At strong disorder, $\gamma \sim 1/\xi$

⇒ Interpretation of the exponent as related to a many-body localization length

 Λ : disorder-dependent non-ergodicity volume λ : interpreted as a localization length

Conjecture : Gumbel (?) on the Ergodic side, Fréchet on the MBL side.

Conjecture : Gumbel (?) on the Ergodic side, Fréchet on the MBL side.

EXTREME VALUE DISTRIBUTIONS

Conjecture : Gumbel (?) on the Ergodic side, Fréchet on the MBL side.

EXTREME VALUE DISTRIBUTIONS

Conjecture : Gumbel (?) on the Ergodic side, Fréchet on the MBL side.

Kullback-Leibler divergence : $\mathrm{KL}(p|q) = \sum_i q_i \ln rac{q_i}{p_i}$

Kullback-Leibler divergence :

$$\mathrm{KL}(p|q) = \sum_i q_i \ln rac{q_i}{p_i}$$

S. Kullback and R. A. Leibler, The annals of mathematical statistics 22, 79 (1951)

KULLBACK-LEIBLER DIVERGENCE

Kullback-Leibler divergence :

$$\mathrm{KL}(p|q) = \sum_i q_i \ln rac{q_i}{p_i}$$

E. H. V. Doggen et al., PRB 98, 174202 (2018) See e.g. D. Sels, PRB 106 , L020202 (2022)

S. Kullback and R. A. Leibler, The annals of mathematical statistics **22**, 79 (1951) **JC**, N. Laflorencie, arXiv:2305.10574

CONSEQUENCES : HEISENBERG

Kullback-Leibler divergence :

$$ext{KL}(p|q) = \sum_i q_i \ln rac{q_i}{p_i}$$

Transition in the extreme value distributions

S. Kullback and R. A. Leibler, The annals of mathematical statistics **22**, 79 (1951) **JC**, N. Laflorencie, arXiv:2305.10574

E. H. V. Doggen et al., PRB 98, 174202 (2018) See e.g. D. Sels, PRB 106 , L020202 (2022)

CONSEQUENCES : HEISENBERG

Kullback-Leibler divergence :

$$ext{KL}(p|q) = \sum_i q_i \ln rac{q_i}{p_i}$$

Transition in the extreme value distributions Coinciding with the MBL transition?

E. H. V. Doggen et al., PRB 98, 174202 (2018) See e.g. D. Sels, PRB 106, L020202 (2022)

TAKE HOME MESSAGE

SPIN FREEZING!

TAKE HOME MESSAGE

SPIN FREEZING!

XX chain:

- controlled by largest
 - cluster of occupied orbitals

TAKE HOME MESSAGE

SPIN FREEZING!

XX chain:

- controlled by largest
 - cluster of occupied orbitals

• Excellent fits & collapses with a Fréchet Law
TAKE HOME MESSAGE

Heisenberg chain at strong disorder: Chain breaks!

No chain breaks | Chain breaks

XX chain:

- controlled by largest
 - cluster of occupied orbitals

• Excellent fits & collapses with a Fréchet Law

W

TAKE HOME MESSAGE

XX chain:

controlled by largest

• Excellent fits & collapses with a Fréchet Law

Heisenberg chain at strong disorder: Chain breaks!

No chain breaks | Chain breaks

Comparing δ_{\min} deviation in Heisenberg vs Many-body Anderson:

Extreme value transition characterized by the KL divergence.

TAKE HOME MESSAGE

XX chain:

controlled by largest
cluster of occupied orbits

• Excellent fits & collapses with a Fréchet Law

Heisenberg chain at strong disorder: Chain breaks!

No chain breaks | Chain breaks

Comparing δ_{\min} deviation in Heisenberg vs Many-body Anderson:

Extreme value transition characterized by the **KL divergence.**

arXiv:2305.1057

Thank you for your attention!

W

GOOD QUESTION!

PROBES

Increasing

number

of involved

states

"Dynamical" probes

two-eigenstates correlation functions Many-body resonances between eigenstates Minimal gap Distribution of matrix elements? Gap ratio Level compressibility

KL divergence between eigenstates

Spectral repulsion

Spectral form factor

Imbalance

Out-of-Time-Order Correlator (OTOC)

Evolution / autocorrelation of a prepared state and these probes --> Multifractality (participation entropy)

> Magnetization & extremal magnetization -> Lcluster, delta min

Entanglement entropy (EE)

Entanglement spectrum (ES)

(minimal correlator)

"Static" probes

Dream: LIOMs