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Bulk EntanglementWedges

In AdS/CFT, given a boundary subregionR, we can reconstruct bulk operators that lie
in the entanglement wedge E(R) of R. Recent conjectures suggest that this should
be extended to bulk subregions. We focus on time symmetric slices.
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Figure 1. On a static slice Σ, a causally complete region a and its entanglement wedge E(a)

Awedge is a subset of spacetime such that a = a′′. This wedge is uniquely determined

by Σ ∩ ∂a ≡ ða, the “corner” of a. A bulk entanglement wedge E(a) of any wedge a is:
1. a ⊂ E(a)
2. E(a) has the smallest generalized entropy of all such wedges.

This reduces to the usual RT formula if a approaches the boundary.

Edge Modes of theWedge: Defining a Subsystem Consistently

Even in U(1) lattice gauge theory, the Hilbert space does not factorize by Gauss’ Law.

This leads directly to the introduction of edge modes when restricting to a subsystem.
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Figure 2. AWilson line is cut open when taking a subsystem, leading to auxiliary edge mode degrees of freedom.

In gravity, edge modes correspond to the coordinate embedding Y a(σ) of ða.

Extended Phase Space: No Boundary Conditions Needed

System of a, relative to a specific embedding φ : a → M, is specified by an action:

S =
∫
a

φ∗L[g, Y ] +
∫
∂a

φ∗`[g, Y ].

A diffeomorphism which moves the embedding is described by field dependent χ:

σ → Y (σ) + χ(σ).
Under such variations, δ does not commute with φ

δ

∫
a

φ∗L =
∫
a

φ∗(δL + LχL).

Let ξ be a generator of a diffeomorphism which is potentially allowed to move ða.

Hξ = Hbulk
ξ +Hða

ξ =
∫

Σ
Cξ +

∫
ða
Qξ

Because we are using extended phase space:

{Hξ, Hη} = −H[ξ,η]
independent of boundary conditions

The Algebra of theWedge Before Imposing The Constraints

Maximal subalgebra of diff(M) which supports nonzero charges:

ucs = diff(ða) n gl(2,R) nR2

Given a generator ξ ∈ g, define g = exp{ξ} ∈ G. This leads to a representation of G:

Vg = exp
(
iHbulk

ξ

)
: diffeomorphisms on a

Ug = exp(iðaξ): diffeomorphisms on edge modes

Wg: corner symmetries (physical transformations, not gauged)

Kinematical operators: Okin = {Aa, V U(G),W (G)}′′

Kinematical Hilbert space: Ha ⊗ L2(G)
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The Algebra of theWedge After Imposing The Constraints

Gauge invariance under diffeomorphisms implies commuting with the constraint.

Ea = {â ∈ Okin|∀g ∈ G, (V U)gâ(V U)†
g = â}′′

More explicitly:

â =
∫
dµgV

†
g aVg ⊗ |g〉〈g|

(V U)hâ(V U)†
h =

∫
dµgV

†
gh−1aVgh−1

∣∣gH−1〉〈gH−1∣∣ =
∫
dµgV

†
g aVg ⊗ |g〉〈g| = â

(V U)hWg(V U)†
h = Wg

Dynamical algebra is Ea = {Âa,W (G)}′′.

This holds to all orders in perturbation theory.

Computing The Entropy of a State Using The Replica Trick

One can show Ea defined above is type II, so traces and density matrices are well

defined. We compute the entropy of a state Φ̂ = |Ψ〉 ⊗ψ(g) in this algebra. Define

|Ψg〉 = Vg |Ψ〉. Using the replica trick:

S(ρΨ̂) = lim
n→1

1
1 − n

log trE⊗n(ρ⊗n
Ψ̂ τE)

= lim
n→1

1
1 − n

log

[∫ n∏
i=1

[
dµi|ψ(gi)|2

]
〈Ψn|V †

~g τAV~g |Ψn〉

]
Make the following assumptions:

Replica symmetry (take diagonal of n dµg integrals)
Saddle approximation (dominated by some g∗)

Hamiltonians Hg are bounded below (a ⊂ φg(a))

S(ρΨ̂) = −∂n
[〈

Ψn
g∗

∣∣ τA
∣∣Ψn

g∗

〉]
n=1 −

∫
dµg|ψ(g)|2 log |ψ(g)|2

Path Integral Interpretation of This Calculation

g∗

Compute Replica Trick for Minimal Embedding (Saddle Approximation)

S(ρΨ̂) ≈ −∂n
[

〈Ψg∗
n| τA |Ψg∗

n〉
〈Ψg∗

n|Ψg∗
n〉

]
n=1

This Reduces to the Usual Formula:

S(ρΨ̂) =
[
∂In
∂n

∣∣∣∣
n=1

− I1

]
(g∗) = Sgen(φg∗(a))

g∗ represents embedding which minimizes Sgen

E(a) = φg∗(a) ⊃ a

Discussion

Bulk subregions a have an entanglement wedge E(a) which is generally larger

than a.

Extended phase space allows for integrable charges independent of boundary

conditions.

This allows for quantization of the charges even if the corner ða moves under a

diffeomorphism.

We use these charges to construct the gauge invariant operators Ea.
We compute the entropy of an arbitrary quantum-classical state Ψ̂ = Ψψ(g).
These form a basis: there is no loss of generality in a saddle point analysis.

We find a renormalized entropy that agrees with the generalized entropy.

This saddle represents the entanglement wedge E(a) = φg∗(a) of a.
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