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Hilbert’s formalism vs Geometric formalism

Hilbert formalism Geometrical formalism

Linear space Hermitian d × d R`=d2

Unit effect 1d u`

Normalization Tr[ρ] = 1 u` · s = 1

Measurements
∑n

j=1 πj = 1d MTun = u`

Inner product Hilbert-Schmidt Dot prod.

Born rule pj = Tr[ρπj ] p = Ms
Purity Tr[ρ2] |s|2



Measurements in the geometrical formalism

The fact that for any state s one has uT
n Ms = 1 is equivalent to the

condition

MTun = u`.



Operational setup

A set of correlations (i.e. conditional probability distributions) be-
tween an input and an output is given.

We regard these correlations as generated by some (unspecified)
quantum measurement upon the input of some (also unspecified)
states.

A measurement is consistent with a correlation if there exist a state
upon the input of which the measurement produces the correlation.

Our aim is to produce an inference for a consistent measurement.

However, the measurement consistent with any given correlations is
in general not unique. How should we proceed?



Quantum measurement tomography

Quantum measurement tomography addresses this issue by addi-
tionally imposing that the given correlation has been generated by
a given set of states.

The linearity of the theory allows to recover the measurement by
linear inversion.

The set of states cannot itself be obtained via quantum state to-
mography, because the latter, in a symmetric fashion, would require
an assumption on the measurement which, by definition of our prob-
lem, is instead unspecified and the target of the inference.

Tomography cannot “bootstrap” itself!



Bayesian inference of quantum measurements

Likelihood of set P of probability distributions given measurement
M:

P
(
P
∣∣∣M) = δ (P ⊆ MS)P

(
M+P

) 1

volMS
.



Bayesian inference of quantum measurements

I Assume states are i.i.d. and uniformly sampled, that is
P(M+P) =

∏
k P(M+pk) is constant.

I Also, volMS ∝
√

detMTM.

P
(
P
∣∣∣M) ∝ δ (P ⊆ MS)

1√
detMTM

.

I Assume (improper) uniform prior P(M).

I δ(P ⊆ MS) is the consistency requirement.

I detMTM is the committal degree.

argmax
M∈Rn×`

MT un=u`

P
(
M
∣∣∣P) = argmin

M∈Rn×`

MT un=u`
P⊆MS

detMTM.



Data-driven inference

Our approach is to infer the minimally committal measurements
among all measurements consistent with the given correlation.

The committal degree of a measurement is the volume of its prob-
ability range.

Indeed, for any two measurements, range inclusion is a necessary
and sufficient condition for one measurement to be able to simulate
the other through a suitable statistical transformation.

Since this inferential protocol does not require any additional input
other than the given correlation, it is referred to as data-driven.

Data-driven inference can be used to bootstrap tomography!



Data-driven inference

For any spanning set S ⊆ R` of admissible states and any set P ⊆ Rn

of probability distributions spanning an `-dimensional subspace, we
denote with MS(P) the set of quasi-measurements from S consis-
tent with P, that is

MS (P) :=
{
M ∈ Rn×`

∣∣∣MTun = u` ∧ P ⊆ MS
}
.

Definition (Data-driven inference)

Upon the input of any set P of quasi-probability distributions span-
ning R`, the output of the data-driven inference map ddiS(P) is the
set of quasi-measurements consistent with P with minimum-volume
probability range, that is

ddiS (P) := argmin
M∈MS(P)

detMTM.



Spherical 2-designs

A probability distribution p over a set S of states is a tight frame if
and only if ∑

s∈S
p (s) s⊗ s ∝ 1` .

A probability distribution p over a set S of states is a 2-design if
and only if it is indistinguishable from the uniform distribution on
the surface of S when given two copies.

Lemma

Any 2-design is a tight frame.



Characterization theorem for the data-driven inference

Theorem (Data-driven inference)

Upon the input of any set P of quasi-probability distributions
spanning R`, quasi-measurement M belongs to the output of the
data driven inference map ddiS(P) if the counter-image S of P,
that is

P = MS,

supports a spherical 2-design.

This represents a closed-form characterization of M whenever P
contains ` linearly independent probability distributions. Indeed, in
this case the only S that supports a spherical 2-design is the regular
simplex, and linear inversion directly provides M.



The emergence of the role of designs

Designs have the property that their minimum volume enclosing
ellipsoid is the unit ball.

IC structures do NOT have this property in general.



How about the inference of states?
The Bayesian inference of states works similarly, just with a more
cumbersome Math due to the more complex structure of the set of
admissible effects.

A d-conical outer approximation of the set of admissible effects re-
places the sperical outer approximation of the set of adimissible
states.



Conclusion

Our results shines new light on the role played by symmetric, infor-
mationally complete (SIC) structures, and more generally designs,
in the quantum Bayesian inferential process.

So far, such a role has been justified based on the symmetry of the
tomographic reconstruction formula (inherited by the symmetry of
the structures themselves) when such structures are adopted.

However, any informationally complete (not necessarily symmetric)
structure is universal for tomographic reconstruction, albeit with a
less-symmetric formula.

Instead, if the tomographic task is replaced with the data-driven in-
ferential task we consider, as a consequence of our result not any
informationally complete structure will do, and thus the role of de-
signs emerges naturally.
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