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A WORD ON HOLOGRAPHIC EXPECTATIONS

▶ Maldacena’s AdS/CFT: duality between two single theories:
type IIB string theory on AdS5 × S5 ←→ N = 4 SYM

▶ More generally:
different bulk compactification ←→ different boundary CFT

▶ The holographic dictionary is non-trivial: spacetime emergence,
quantum error correction, non-isometric embeddings, etc.

▶ Some standard bulk operations: KK-truncations, EFT in
semiclassical gravity, near-horizon limits, spacetime
complexifications, sums over topologies...

▶ How do these operations affect the boundary dual?
Perhaps not inconceivable that neglecting bulk details leads to
disorder-averaging on the boundary
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GENERAL PHILOSOPHY

▶ AdS/CFT is fundamentally a duality between single theories

▶ A tool that the CMT has long utilized to study complicated
systems is disorder averages

▶ If boundary ensemble averages make bulk gravitational physics
more tractable, then let’s just use this to our advantage

▶ We just must make sure we are computing the quantities that are
sensible for an ensemble of theories!
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A SIMPLE THERMODYNAMIC FACT
Common definitions:
◦ Spectral density: ρ : R≥0 → R≥0 ∪ {∞} (may be distributional)
◦ Ground state energy: E0 ≡ inf supp ρ

◦ Partition function: Z(β) ≡
∫∞

0 dE ρ(E) e−βE (Laplace transform)

◦ Free energy: F(β) ≡ − 1
β logZ(β)

◦ Thermal entropy: S(β) ≡ β2F′(β) = (1− β∂β) logZ(β)

Claim: S(β) ≥ 0 ⇐⇒ ρ(E) ⊃ nδ(E− E0) with n ≥ 1

Otherwise: ∃β∗ > 0 s.t. S(∀β > β∗) < 0, and lim
β→∞

S(β) = −∞ if n = 0

Proof sketch: Write S(β) = logZ(β) (1 − f (β)) with f (ex) = ∂x log(− logZ(ex))

◦ Use dominated convergence to show lim
β→∞

Z(β) = 0

◦ Use Bernstein–Widder to show λ ≡ lim
β→∞

f (β) ≤ 1

◦ Show λ = 1 implies ρ ⊃ nδ with n > 0 and lim
β→∞

S(β) = log n
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A GENERIC PATHOLOGY NEAR EXTREMALITY
▶ Negativity of S(β) at large β ⇐⇒ Neglect of the ground state

▶ Generic (non-near-BPS) near-extremal black holes suffer from
this due to quantum corrections that are relevant at β ≳ O(S0):

[Ghosh-Maxfield-Turiaci ’19, Iliesiu-Turiaci ’20]

1/β

S(β)

non-near-BPS

near-BPS

▶ The singular β-dependence comes from universal AdS2 × X
near-horizon/near-extremal physics governed by JT theories

▶ Near-BPS black holes ruled by N = 4 super-JT: ρ(E) ⊃ eS0δ(E)
(e.g. 4DN = 2 SUGRA w/Λ = 0 or (4, 4) SUGRA in AdS3)

[Heydeman-Iliesiu-Turiaci-Zhao ’20]
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POSSIBLE RESOLUTIONS

1. Non-near-BPS near-extremal black holes do not exist:
ZBH(β →∞)→ 0 means some other object must dominate Z(β)

Fuzzballs?

2. Non-perturbative O(e−S0) contributions should fix this:
Reasonable, as S(β) negativity sets on at β ∼ O(eS0)... But the
(naive) SSS expansion doesn’t fix it [Engelhardt-Fischetti-Maloney ’20]

3. Doubly non-perturbative O(e−eS0 ) contributions should fix this:
Matrix integral formulation could hint at this [Johnson ’19, ’20]
But why then would O(e−S0) suffice to capture ground state
degeneracy in the BPS case? [Iliesiu-Murthy-Turiaci ’22]

4. We are not even computing a sensible quantity to begin with:
Regardless of the above, this is a correct statement from the
perspective of the matrix integrals dual to JT theories

[Saad-Shenker-Stanford ’19, Stanford-Witten ’19]
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DISSECTING SPECTRAL ENSEMBLES
▶ SSS: the non-perturbative O(e−S0) topological expansion of JT

gravity precisely matches the perturbative O(1/N) expansion of
a matrix integral over an ensemble of Hamiltonians (N ≡ eS0 )

▶ What JT gravity computes is an ensemble average:

⟨Z(β)⟩ =
∫ ∞

0
dE ⟨ρ(E)⟩ e−βE

▶ The ensemble of discrete spectra underlying ⟨ρ(E)⟩ contribute as

⟨ρ(E)⟩ =
∞∑

n=0

pn(E), pn(E) = “PDF of the nth eigenvalue”
[Johnson ’22]

▶ At large β, the entropy S(β) computed from ⟨Z(β)⟩ behaves:
◦ Pathologically for non-near-BPS because p0 ̸∝ δ (smoothed out E0)
◦ Sensibly for near-BPS because p0 ∝ δ (SUSY-protected E0)

▶ Emphasis: no matter to what order, O(S0), O(e−S0), O(e−eS0 ), or
even exactly, one computes ⟨Z(β)⟩: S(β) will generically be
pathological because it is simply the wrong quantity!
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▶ What JT gravity computes is an ensemble average:

⟨Z(β)⟩ =
∫ ∞

0
dE ⟨ρ(E)⟩ e−βE

▶ The ensemble of discrete spectra underlying ⟨ρ(E)⟩ contribute as

⟨ρ(E)⟩ =
∞∑

n=0

pn(E), pn(E) = “PDF of the nth eigenvalue”
[Johnson ’22]

▶ At large β, the entropy S(β) computed from ⟨Z(β)⟩ behaves:
◦ Pathologically for non-near-BPS because p0 ̸∝ δ (smoothed out E0)
◦ Sensibly for near-BPS because p0 ∝ δ (SUSY-protected E0)

▶ Emphasis: no matter to what order, O(S0), O(e−S0), O(e−eS0 ), or
even exactly, one computes ⟨Z(β)⟩: S(β) will generically be
pathological because it is simply the wrong quantity!



INTRODUCTION SPECTRAL ENSEMBLES REPLICA MATRICES CONCLUSION

EMBRACING ENSEMBLES

▶ Revisit what we are doing through the lens of disorder averaging

▶ For any quantity/observable f (Z) (e.g. entropies, correlation
functions), in an ensemble of theories one can compute:

◦ Annealed quantities: fa ≡ f (⟨Z⟩), i.e. f for the averaged theory
◦ Quenched quantities: fq ≡ ⟨f (Z)⟩, i.e. f averaged over theories

▶ Annealing makes sense e.g. in real life: ∃ a single theory (we just
ignore details), so we let our noisy system equilibrate, and
compute f on it after averaging away the noise

▶ On the boundary we have a genuine ensemble of theories: we
want to evaluate f on each, and only average at the very end

▶ fa is a proxy to fq when f is self-averaging, fq/fa = 1 +O(1/N)

▶ Example quantity: entropy, linear in the free energy, for which:

Fa(β) ≡ −
1
β
log⟨Z(β)⟩ and Fq(β) ≡ −

1
β
⟨logZ(β)⟩
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THE NO-REPLICA TRICK

▶ How to compute ⟨logZ⟩? Mathematical identity:

log x = lim
m→0

∂mxm

▶ Then the ensemble average corresponds to:

⟨logZ(β)⟩ = lim
m→0

∂m⟨Z(β)m⟩

▶ Usual subtlety: the analytic continuation in m!

▶ Explorations of ⟨logZ(β)⟩ using the gravitational PI:
◦ Full quantum JT [Engelhardt-Fischetti-Maloney ’20]
◦ Semiclassical JT+matter [Chandrasekaran-Engelhardt-Fischetti-SHC ’22]

[Engelhardt-SHC-Verheijden WIP]

▶ But... is (semiclassical) gravity even able to capture ⟨logZ(β)⟩?
What if it only differs from log⟨Z(β)⟩ at O(e−eS0 )? Ask RMT!
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MATRIX INTEGRALS
▶ An N ×N matrix ensemble is specified by a partition function:

Z ≡
∫

dM e−N Tr V(M)

◦ V(M) is the matrix potential (usually analytic)
◦ dM is the ensemble measure (e.g a Vandermonde determinant)

▶ Symmetries on M determine the form of dM upon
diagonalization and turn Z into a canonical eigenvalue integral:

Z =

∫
dΛ µ(Λ) e−N Tr V(Λ), Λ ≡ {λk}N

k=1

e.g. for the Wigner-Dyson ensembles, V(x) = 1
2 x2 (Gaussian) and

µ(Λ) ∝
∏

1≤i<j≤N

∣∣λi − λj
∣∣b N∏

k=1

dλk, b = 1, 2, 4 (O,U,S)

▶ Our observables of interest are moments of Z(β) ≡ Tr e−βM:

⟨Z(β)m⟩ ≡
∫

dΛµ(Λ) (Tr e−βΛ)m e−N Tr V(Λ)
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MATRIX INTEGRALS

▶ Standard RMT machinery concerns obtaining the

ensemble-averaged spectrum ⟨ρ(λ)⟩ ≡

〈
N∑

k=1

δ(λ− λk)

〉
◦ Topological recursion of loop equations gives O(1/N) expansion
◦ Orthogonal polynomials and the string equation give both O(1/N)

and O(e−N) contributions

▶ Common problem: no matter how exactly ⟨ρ(λ)⟩ is obtained, this
just gives the annealed log⟨Z(β)⟩. Must compute ⟨Z(β)m⟩ directly
and perform the m→ 0 replica trick to obtain ⟨logZ(β)⟩1

▶ For semiclassical gravity to capture quenched quantities, we
hope O(e−S0) effects suffice: work perturbatively in O(1/N)

▶ Ideally leading order is enough, so look for saddles at large N

1Even when ⟨Z(β)m⟩ can be obtained exactly for integer m, the continuation to real
m may not be unique, and the connection to gravity may remain unclear
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LARGE-N SADDLES

▶ Writing ⟨Z(β)m⟩ =
∫

dΛ e−Im(Λ), the matrix action to extremize is:

Im(Λ) ≡ N
N∑

k=1

V(λk)−
∑
j<k

log
∣∣λk − λj

∣∣b −m log

N∑
k=1

e−βλk

where we have picked a Wigner-Dyson measure for concreteness

▶ Naive large-N kills the m-dependent term, takes the continuum
limit

∑
→
∫

dλ ρ(λ), searches for an extremum δρIm[ρ] = 0 and
lands on Wigner’s semicircle saddle

▶ But recall pathologies occurred at large β = O(N), for which

log

N∑
k=1

e−βλk = −βmin{Λ}+ · · · = O(N)

so expect a new saddle in this regime!
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LARGE-(N, β) SADDLES

▶ We want to take the large-N limit keeping β/N constant

▶ Similarly, try going to the continuum
∑
→
∫

dλ ρ(λ), etc.
Naive! The resulting Im[ρ] is unbounded from below!

▶ Need a more refined ρ ansatz to find such double-limit saddles

▶ Get intuition from the GUE by computing ρ(λ) exactly at small N
(obtained by integrating over all eigenvalues but one in ⟨Z(β)m⟩)
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INTUITION FROM THE GUE
Plot exact ρ(λ) from the ⟨Z(β)m⟩ integral for N = 4, 5 and varying β:

-15 -10 -5 5
λ

0.05

0.10

0.15

0.20

0.25

0.30

0.35

ρ(λ)

N=5, 
mβ

N
=0

N=4, m=0

For the picky: eigenvalues are rescaled by λ →
√

Nλ using the corre-
sponding N, and ρ is normalized to 1 for N = 5 and to 4/5 for N = 4
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INTUITION FROM THE GUE
Plot exact ρ(λ) from the ⟨Z(β)m⟩ integral for N = 4, 5 and varying β:
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GENERAL LARGE-(N, β) ANSATZ

▶ Without loss of generality, perform extremization on:

ρ(λ) = δ(λ− λ0) + σ(λ)

i.e., the ansatz is a function of λ0 and a functional of σ
(cf. a single-eigenvalue instanton with λ0 pulled out of the cut)

▶ Extremizing Im[ρ] perturbatively in O(1/N) at fixed κ = mβ
2N :

1. ∂λδσ(λ)Im[ρ] = F[σ] = 0

2. ∂λ0 Im[ρ] = G[σ;λ0] = 0

▶ Same structure for any matrix potential V and ensemble measure

▶ General strategy: Solve eq. 1 for σ, then use it to solve eq. 2 for λ0
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EXAMPLE: WIGNER-DYSON (GAUSSIAN)

▶ Large-(N, β) saddle ρ0 for ⟨Z(β)m⟩:

σ(λ) =

{
N
bπ

√
2b
(
1− 1

N

)
− λ2 if |λ| ≤

√
2b
(
1− 1

N

)
0 otherwise

λ0 = −

√
2b
(

1− 1
N

)
+ (2κ)2

(neglect O(1/N) normalizing factors for ρ0 below)

▶ The saddle result ⟨Z(β)m⟩ = exp
(
−
(

Im[ρ
(m)
0 ]− I0[ρ

(0)
0 ]
))

is:

e
N
(√

2bκ
√

1+ 2κ2
b +b sinh−1

√
2κ2

b

)(
1 +

m e−
N
√

8bκ
m

√
2bκ

I1

(
N
√

8bκ
m

))m
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CONSISTENCY CHECKS

▶ For small κ = mβ
2N , we recover a factorized Wigner I1 result

⟨Z(β)m⟩ =

(√
2
b

N
β

I1

(√
2bβ
))m

= ⟨Z(β)⟩m

In this small-β regime: ⟨logZ(β)⟩ ≈ log⟨Z(β)⟩

▶ For finite κ > 0, strictly to leading O(N):

⟨Z(β)m⟩ = e
N
(√

2bκ
√

1+ 2κ2
b +b sinh−1

√
2κ2

b

)

which matches the GUE (b = 2) result for 1/2 BPS Wilson loops
of N = 4 SYM at large N and large winding number of O(N)

[Drukker-Gross ’00, Drukker-Fiol ’05, Okuyama ’18]

▶ Key question: does the large-(N, β) saddle succeed in computing
the quenched free energy through the m→ 0 replica trick?
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GUE RESULTS
Free energies for the GUE with N = 10:

0.010 0.100 1
1/β

-2.4

-2.2

-2.0

-1.8

F(β)

Exact Fa

Wigner Fa

Quenched Fq

Sanity check: lim
β→∞

Fq gives the edge of the Wigner saddle spectrum−2

The large-(N, β) saddle gives a well behaved quenched entropy!
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GUE RESULTS
Entropies for the GUE with N = 10:

0.05 0.10 0.50 1 5
1/β

-2

-1

1

2

S(β)

Exact Sa

Wigner Sa

Quenched Sq

Sanity check: lim
β→∞

Sq = 0 (non-degenerate ground) and lim
β→0

Sq = logN

The large-(N, β) saddle gives a well behaved quenched entropy!
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CONNECTING TO GRAVITY
▶ Connected topologies compute cumulants: must explore if RSB

is relevant at the level of cumulants in the m→ 0 limit

E.g. moment P(5) in terms of cumulants Pc(k ≤ 5):
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1/β
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X/P(5)

Pc(1)
5
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15Pc(1)Pc(2)
2

10Pc(1)
2 Pc(3)

10Pc(2)Pc(3)

5Pc(1)Pc(4)

Pc(5)

▶ This suggests only the largest cumulant contributes at large β (no
RSB). However, this m > 1 intuition is misleading: recall mβ
often appear together, so the m→ 0 limit competes with large β
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CONCLUSION

▶ We have argued that generic pathologies in thermal entropies of
near-extremal black holes are consistent with the duality between
their universal JT-sector dynamics and matrix ensembles

▶ This explained why entropies turned negative at low
temperatures (we were computing the wrong quantity, an
annealed free energy): the correct objects to compute in
disorder-averaged theories are quenched quantities

▶ Expect leading order nonsense for more general quantities when
annealing instead of quenching: late-time correlation function
decay, infinite extremal wormhole throat sizes, . . .

▶ Leading order in matrix integrals suffices to compute quenched
quantities. How does semiclassical gravity capture these?
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MAIN OPEN QUESTION
The matrix integral says quenched quantities are correctly accounted
for perturbatively in O(N). What are the corresponding large-β
gravitational saddles at O(eS0)?

A hint: N = 4 SYM Wilson loops can be computed in AdS/CFT by a string
world-sheet anchored to the loop asymptotically. For many overlapping
loops (interacting), or at large winding number, or at large λ, a better
effective description is in terms of the dynamics of a D-brane on which the
strings end. This large-winding-number regime is equivalent to our
large-(N, β) regime. In this limit the classical D-brane action exactly
reproduces the GUE matrix dual result. So semiclassical gravity is able to
capture β = O(eS0) physics! More generally:

Who are the semiclassical gravity saddles that capture these
large-(N, β) physics? E.g. in JT, is there an alternative description to
that of SSS that reorganizes the genus expansion (cf. from
perturbative strings to D-branes)

Thank you!
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APPENDIX

GENERAL REMARKS

▶ The large-(N, β) saddle that computes ⟨Z(β)m⟩ exists for any
matrix potential and ensemble measure, and the strategy for
solving the saddle equations works as well

▶ These low-temperature matrix saddles exist for all m and allow
to compute arbitrary moments which generically do not factorize
(cf. high temperatures, for which ⟨Z(β)m⟩ ≈ ⟨Z(β)⟩m. These will
give nontrivial cumulants ⟨Z(β)m⟩c (see later)

▶ The quenched logarithm that results turns out to take a
remarkably simple form at leading order for any ensemble:

⟨logZ(β)⟩ = log
(
n e−βλ0 + ZW(β)

)
w/ ZW(β) the LT of the Wignerian ρ0 and λ0 + gap = inf supp ρ0

▶ For double-scaled matrix integrals the DSL can be taken at the
end and the same results apply (one can also use the leading
resolvent and the effective potential for the saddle EoM)
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