Hamiltonian lattice gauge theory based on spin networks

Based on Hayata, YH, Phys. Rev. D 103 (2021) 9, 094502, 2305.05950, 2306.12324 Hayata, YH, Kikuchi Phys. Rev. D 104 (2021) 7, 074518 Hayata, YH, Nishimura, 2309.xxxxx

Yoshimasa Hidaka(KEK)

Motivation Big problem in QCD

manybody dynamics of QCD

Dense QCD

lemperature sQGP Critical

high-energy heavy ion collisions

How is the quark gluon plasma created?

What phases are realized in the interior of a neutron star?

Difficulty

Sign problem: Difficulties in first-principles calculations based on importance sampling

$\langle O \rangle = \mathscr{D}A \det(D+m)e^{iS}O$

In real-time, finite-density problems, the weight is complex

Hamiltonian approach

Directly solve Schrodinger equation to avoid sign problem

Smaller systems can be simulated directly

Tensor Networks

Quantum simulation

Difficulty of Hamiltonian gauge theory

Infinite degrees of freedom Link variable is continuous (regularization required)

Large gauge redundancy $U \in SU(N)$ What approximation is continuous symmetry?

 $\dim \mathscr{H}_{\rm phys} \ll \dim \mathscr{H}_{\rm total}$ need to solve Gauss law constraint

Formalism - Kogut-Susskind Hamiltonian formalism - Quantum deformation as regularization Application

- in mean field approximation (2306.12324)
- Quantum scar (2305.05950) - Scrambling (Phys. Rev. D 104 (2021) 7, 074518) - Finite density in (1+1) dimensions (work in progress) Summary

- spin network = Gauge invariant Hilbert space

- Confinement-deconfinement phase transition - Thermalization on a small lattice (Phys. Rev. D 103, 094502(2021))

Kogut-Susskind Hamiltonian formalism

SU(N) Gauge theory ($A_0 = 0$ gauge)

Commutation relation

Hamiltonian $H = \int d^3x \left(\frac{g^2}{2}E^2(x) + \frac{1}{2g^2}B^2(x)\right)$

Magnetic field $B_l^i = \frac{1}{2} \epsilon_{lnm} (\partial_m A_n^i - \partial_m A_n^i + f_{jk}^i A_m^j A_n^k)$

 $[A_n^i(x), E_{mj}(x')] = i\delta_{nm}\delta_j^i\delta(x - x')$

Gauge field **Electric field**

Gauss law constraint $(D \cdot E)^i |\Psi_{phys}\rangle = 0$

Time is continuous, space is discretized

 $L_i(e)$ and $R_i(e)$ are not independent $[U_{adj}(e)]_{i}^{j}L_{j}(e) = R_{i}(e) \implies R_{i}^{2}(e) = L_{i}^{2}(e) =: E_{i}^{2}(e)$

Kogut-Susskind Hamiltonian formalism Kogut, Susskind, Phys. Rev. D 11, 395 (1975)

> $e^{i \int A} \rightarrow U(e)$:link variable $\in SU(N)$ on edge e $L_i(e), R_i(e)$: Left and right electric fields $\in su(N)$

Commutation relation

$[A_n^i(x), E_{mj}(x')]$ = $i\delta_{nm}\delta_j^i\delta(x - x')$

 C_1 :set of edges, s,t: source and target functions

 $[R_i(e), U(e')] = U(e)T_i\delta_{e,e'}$ $[L_i(e), U(e')] = T_i U(e) \delta_{e,e'}$ $[L_{i}(e), L_{j}(e')] = -if_{ij}^{k}L_{k}(e)\delta_{e,e'}$ $[R_{i}(e), R_{j}(e')] = if_{ij}^{k}R_{k}(e)\delta_{e,e'}$

Gauss law constraint $(D \cdot E)^i | \Psi_{\text{phys}} \rangle = 0$ $\sum_{e \in C_1 | s(e) = v} R_i(e) - \sum_{e \in C_1 | t(e) = v} L_i(e) \left| \Psi_{\text{phys}} \right\rangle = 0$

$H = \frac{1}{2} \sum_{e \in C_1} (E(e))^2 - \frac{K}{2} \sum_{f \in C_2} (\operatorname{tr} U(f) + \operatorname{tr} U^{\dagger}(f))$ C_2 :set of faces

$_{e_2} U(f) := U(e_4)U(e_3)U(e_2)U(e_1)$

In order to solve, we need Construction of basis Solve Gauss law constraint \Rightarrow Spin netwoark in the case of SU(2)

Regularization

•Calculate the action of an operator on a spin network

Two types of bases:

Eigenstates of Wilson lines $\begin{bmatrix} U_a \end{bmatrix}_n^m |g\rangle = \begin{bmatrix} \rho_a \end{bmatrix}_n^m (g) |g\rangle$ Wilson line with Rep a representation matrix

Eigenstates of Electric fields (for SU(2)) $R_i^2(e) | j, m, n \rangle = C_2(j) | j, m, n \rangle$ Casimir $C_2(j) = j(j+1)$ $R_3(e) | j, m, n \rangle = n | j, m, n \rangle$ $L_3(e) | j, m, n \rangle = m | j, m, n \rangle$

$g \in SU(2)$

m J j, m, n

State can be generated by Wilson line

 $\sqrt{d_a} [U_a]_{n_a}^{m_a} | 0,0,0\rangle = |j_a,m_a,n_a\rangle$

 $d_a = 2j_a + 1$ Quantum dimension

Graphical
representation: $a \leftrightarrow \sqrt{d_a} [U_a]_{n_a}^{m_a} \leftrightarrow |j_a, m_a, n_a\rangle$
operator $|j_a, m_a, n_a\rangle$
state

Physical state: Spin network Gauss law constraint: SU(2) invariant of each vertex

 $\left(R_{i}(c) - L_{i}(a) - L_{i}(b)\right) |\Psi_{\text{phys}}\rangle = 0$

Physical state: spin network with three vertices Angular momentum labels on the edges At each vertex the labels satisfy the triangle inequality

 $c \longrightarrow \sum_{n_a, n_b, m_c} \frac{1}{\sqrt{d_c}} \langle j_a n_a \, j_b n_b \, | j_c m_c \rangle \, | j_a, m_a, n_a \rangle \, | j_b, m_b, n_b \rangle \, | j_c, m_c, n_c \rangle$ $Clebsch-Gordan \ coefficients$

If the composition rules of the Wilson line are known, the action of an operator on a state is determined:

 $[U_a]_{n_a}^{m_a}[U_b]_{n_b}^{m_b} = \sum \langle j_a m_a j_b m_b | j_c, m_c \rangle \langle j_c, n_c | j_a n_a j_b n_b \rangle [U_c]_{n_c}^{m_c}$

Algebra of Networks **Fusion rule** $a \times b = \sum N_{ab}^c C$ $N_{ab}^c = \delta_{abc} = \begin{cases} 1 & |j_a - j_b| \le j_c \le j_a + j_b, j_a + j_b + j_c \in \mathbb{Z} \\ 0 & \text{else} \end{cases}$

 $a \qquad b = \sum_{c} \sqrt{\frac{d_c}{d_a d_b}} \qquad a \qquad b$ $= \sum_{f} [F_d^{abc}]_{ef}$

Wigner 6-j symbol

 $[F_{d}^{abc}]_{ef} = (-1)^{j_a + j_b + j_c + j_d} \sqrt{d_e d_f} \begin{cases} j_a & j_b & j_e \\ j_a & j_d & j_e \end{cases}$

 $b = \delta_c^{c'} \int \frac{d_a d_b}{d}$

+consistency condition

Action of Wilson loop on network

 $= \prod_{i=1}^{4} \sum_{b_i} [F_{b_i}^{c_i a_{i-1} d}]_{a_i b_i}$ C_{Δ} b_3 C_3

 \Rightarrow Quantum group $SU(2)_k$

Integer n is replac

e.g., $C_2(j) = [j][j+1]$

Regularization by representation labels

Cut off the maximum value of the representation $j \leq k/2$ by an integer k to satisfy the composition rule

ed by
$$[n] = \frac{\sin \frac{\pi}{k+2}n}{\sin \frac{\pi}{k+2}}$$

 $\delta_{abc} = \begin{cases} 1 & |j_a - j_b| \le j_c \le j_a + j_b, j_a + j_b + j_c \in \mathbb{Z} \text{ and } j_a + j_b, j_a + j_b + j_c \le k/2 \\ 0 & \text{else} \end{cases}$

 $Q | j_a, j_b, j_c \rangle = \delta_{abc} | j_a, j_b, j_c \rangle$

 $H \to H - t \qquad \qquad D_v \qquad t \to \infty$ $v \in C_0$ set of vertices

Spin networks are non-local We do not impose the triangular inequality on the state. Instead, we add a penalty term in the Hamiltonian.

d.o.f. on edges : $j = 0, 1/2, \dots, k/2$ $e \in C_1$ Action on a state $E_i^2 \bullet a = C_2(a)$ $\checkmark c_4$

 C_3

 a_2

$SU(3)_k$ Yang-Mills theory

A difference is the existence of multiplicity of composition N_{ab}^c **Example** $SU(2)_k$ $SU(3)_k$ $\mathbf{8}\otimes\mathbf{8}=\mathbf{1}\oplus\mathbf{8}\oplus\mathbf{8}\oplus\mathbf{10}\oplus\mathbf{10}\oplus\mathbf{27}$ $\mathbf{3}\otimes\mathbf{3}=\mathbf{1}\oplus\mathbf{3}\oplus\mathbf{5}$ $N_{33}^a = 0 \text{ or } 1$ $\implies N_{88}^8 = 2$

We need an additional label to represent a state of $SU(3)_k$

Algebra of Networks for $SU(3)_{k}$

a'

In my best knowledge, general form of F symbol for $SU(3)_k$ are not known.

+consistency condition

Hamiltonian $H = \frac{1}{2} \sum_{e \in C_1} (E(e))^2 - \frac{K}{2} \sum_{f \in C_2} (\operatorname{tr} U(f) + \operatorname{tr} U^{\dagger}(f)) - t \sum_{v \in C_0} Q(v)$ set of edges

Action on a state $E_i^2 \bullet a = C_2(a) \bullet a$

 $\operatorname{tr} U = a_1 \prod_{\substack{\mu_1 \\ \mu_2 \\ \mu_2 \\ \mu_3 \\ \mu_4 \\ \mu_1 \\ \mu_1 \\ \mu_1 \\ \mu_1 \\ \mu_2 \\ \mu_3 \\ \mu_1 \\ \mu_2 \\ \mu_3 \\ \mu_3 \\ \mu_3 \\ \mu_1 \\ \mu_2 \\ \mu_3 \\ \mu_3 \\ \mu_3 \\ \mu_1 \\ \mu_2 \\ \mu_3 \\ \mu_3 \\ \mu_3 \\ \mu_1 \\ \mu_2 \\ \mu_3 \\ \mu_3 \\ \mu_3 \\ \mu_1 \\ \mu_2 \\ \mu_3 \\ \mu_3 \\ \mu_3 \\ \mu_3 \\ \mu_1 \\ \mu_2 \\ \mu_3 \\ \mu_3$

set of faces set of vertices

Application

- in mean field approximation
- Thermalization on a small lattice

- Confinement-deconfinement phase transition

in (2+1) dimensions

Confinement-deconfinement phase transition in mean field approximation for $SU(3)_k$

Variational ansatz for wave function

Dusuel, Vidal, Phys. Rev. B 92 (2015) 12, 125150, Zache, González-Cuadra, Zoller, 2304.02527, Hayata, YH, 2306.12324

$f \in \mathcal{F} \ a_f$ Graphical representation $\int \operatorname{tr} U_{a_f}(f) \left| 0 \right\rangle = \widehat{\left\langle \cdot \right\rangle}$ $f \in \mathcal{F}$

We minimize the energy expectation value open boundary condition, infinite volume limit

 $E = \min \left\langle \Psi \right| H \left| \Psi \right\rangle$ ψ

 $|\Psi\rangle = \int \psi(a_f) \operatorname{tr} U_{a_f}(f) |0\rangle$

We can calculate observables for given wave function Energy density $h = \frac{1}{V} \langle H \rangle = \sum_{a,b,c} C_2(c) N_{\bar{a}b}^c \frac{d_c}{d_a d_b} |\psi(a)|^2 \langle H \rangle = \sum_{a,b,c} C_2(c) N_{\bar{a}b}^c \frac{d_c}{d_a d_b} |\psi(a)|^2 \langle H \rangle = \sum_{a,b,c} C_2(c) N_{\bar{a}b}^c \frac{d_c}{d_a d_b} |\psi(a)|^2 \langle H \rangle = \sum_{a,b,c} C_2(c) N_{\bar{a}b}^c \frac{d_c}{d_a d_b} |\psi(a)|^2 \langle H \rangle = \sum_{a,b,c} C_2(c) N_{\bar{a}b}^c \frac{d_c}{d_a d_b} |\psi(a)|^2 \langle H \rangle = \sum_{a,b,c} C_2(c) N_{\bar{a}b}^c \frac{d_c}{d_a d_b} |\psi(a)|^2 \langle H \rangle = \sum_{a,b,c} C_2(c) N_{\bar{a}b}^c \frac{d_c}{d_a d_b} |\psi(a)|^2 \langle H \rangle = \sum_{a,b,c} C_2(c) N_{\bar{a}b}^c \frac{d_c}{d_a d_b} |\psi(a)|^2 \langle H \rangle = \sum_{a,b,c} C_2(c) N_{\bar{a}b}^c \frac{d_c}{d_a d_b} |\psi(a)|^2 \langle H \rangle = \sum_{a,b,c} C_2(c) N_{\bar{a}b}^c \frac{d_c}{d_a d_b} |\psi(a)|^2 \langle H \rangle = \sum_{a,b,c} C_2(c) N_{\bar{a}b}^c \frac{d_c}{d_a d_b} |\psi(a)|^2 \langle H \rangle = \sum_{a,b,c} C_2(c) N_{\bar{a}b}^c \frac{d_c}{d_a d_b} |\psi(a)|^2 \langle H \rangle = \sum_{a,b,c} C_2(c) N_{\bar{a}b}^c \frac{d_c}{d_a d_b} |\psi(a)|^2 \langle H \rangle = \sum_{a,b,c} C_2(c) N_{\bar{a}b}^c \frac{d_c}{d_a d_b} |\psi(a)|^2 \langle H \rangle = \sum_{a,b,c} C_2(c) N_{\bar{a}b}^c \frac{d_c}{d_a d_b} |\psi(a)|^2 \langle H \rangle = \sum_{a,b,c} C_2(c) N_{\bar{a}b}^c \frac{d_c}{d_a d_b} |\psi(a)|^2 \langle H \rangle = \sum_{a,b,c} C_2(c) N_{\bar{a}b}^c \frac{d_c}{d_a d_b} |\psi(a)|^2 \langle H \rangle = \sum_{a,b,c} C_2(c) N_{\bar{a}b}^c \frac{d_c}{d_a d_b} |\psi(a)|^2 \langle H \rangle = \sum_{a,b,c} C_2(c) N_{\bar{a}b}^c \frac{d_c}{d_a d_b} |\psi(a)|^2 \langle H \rangle = \sum_{a,b,c} C_2(c) N_{\bar{a}b}^c \frac{d_c}{d_a d_b} |\psi(a)|^2 \langle H \rangle = \sum_{a,b,c} C_2(c) N_{\bar{a}b}^c \frac{d_c}{d_a d_b} |\psi(a)|^2 \langle H \rangle = \sum_{a,b,c} C_2(c) N_{\bar{a}b}^c \frac{d_c}{d_a d_b} |\psi(a)|^2 \langle H \rangle = \sum_{a,b,c} C_2(c) N_{\bar{a}b}^c \frac{d_c}{d_a d_b} |\psi(a)|^2 \langle H \rangle = \sum_{a,b,c} C_2(c) N_{\bar{a}b}^c \frac{d_c}{d_a d_b} |\psi(a)|^2 \langle H \rangle = \sum_{a,b,c} C_2(c) N_{\bar{a}b}^c \frac{d_c}{d_a d_b} |\psi(a)|^2 \langle H \rangle = \sum_{a,b,c} C_2(c) N_{\bar{a}b}^c \frac{d_c}{d_a d_b} |\psi(a)|^2 \langle H \rangle = \sum_{a,b,c} C_2(c) N_{\bar{a}b}^c \frac{d_c}{d_a d_b} |\psi(a)|^2 \langle H \rangle = \sum_{a,b,c} C_2(c) N_{\bar{a}b}^c \frac{d_c}{d_a d_b} |\psi(a)|^2 \langle H \rangle = \sum_{a,b,c} C_2(c) N_{\bar{a}b}^c \frac{d_c}{d_a d_b} |\psi(a)|^2 \langle H \rangle = \sum_{a,b,c} C_2(c) N_{\bar{a}b}^c \frac{d_c}{d_a d_b} |\psi(a)|^2 \langle H \rangle = \sum_{a,b,c} C_2(c) N_{\bar{a}b}^c \frac{d_c}{d_a d_b} |\psi(a)|^2 \langle H \rangle = \sum_{a,b,c} C_2(c) N_{\bar{a}b}^c \frac{d_c}{d_b} |\psi(a)|^2 \langle H \rangle = \sum_{a,b,c} C_2(c) N_{\bar{a}b}^c \frac{d_c}{d_b} |\psi($

Wilson loop $\langle \operatorname{tr} U_d(\partial S) \rangle = d_d \exp(-|S|\sigma_d)$ String tension $\sigma_d \coloneqq \ln \frac{1}{\sum_{a,b} N^a_{db} \psi^*(a) \psi(b)}$ Hayata, YH, 2306.12324

$$|\psi(b)|^2 |\psi(b)|^2 - \frac{K}{2} \sum_{a,b} \psi^*(a) \left(N^a_{(1,0)b} + N^a_{(0,1)b} \right) \psi^{ab}$$

Numerical results

Numerical results

Phase transition occurs

Topological phase: String-net condensation: $\psi(a) \sim d_a$ where string tension vanishes

Comparison with Monte-Carlo simulation Plaquette (small Wilson loop) String tension

Good agreement for large k!

Thermalization on a small lattice

Small lattice system

Basis $|j_1, \dots, j_{12}\rangle = |j_1, j_2, j_6\rangle |j_2, j_3, j_7\rangle |j_3, j_4, j_8\rangle |j_1, j_4, j_5\rangle$ $|j_6, j_9, j_{10}\rangle |j_7, j_{10}, j_{11}\rangle |j_8, j_{11}, j_{12}\rangle |j_5, j_9, j_{12}\rangle$

Naive cutoff $j_i \leq j_{\max} = k/2$

Dimension of Hilbert space

We employ $j_{max} = 4$: dim $\mathcal{H} = 87,426,119$

Setup In order to mimic heavy ion collision experiments, the interaction quenching

Temperature and Canonical Ensemble

Energy is fixed by an initial condition $E = \langle H \rangle = \langle \Psi(t) | H | \Psi(t) \rangle$

 $E = \langle H \rangle_{eq} := tr \rho_{eq} H$ with $\rho_{eq} = \frac{1}{2}$ tre-\$H

- (Independent of time)
- For a given energy, a canonical distribution that reproduces the expected value can be defined

Numerical results

K-dependence of temperature

The first excitation energy $\Delta E_1: E_1 - E_0$ Typical energy scale $\beta \Delta E_1 > 1$ Low T $\beta \Delta E_1 < 1$ Hight T

25

Expected value of Wilson loop Strong coupling (low T)

Fluctuations are not small.

Expected value of Wilson loop Weak coupling (high T)

Steady state observed

Long-time average vs canonical ensemble

Difference is less than 1% for K > 5

Close to Boltzmann time $2\pi\beta$.

Goldstein, Hara, Tasaki, New J. Phys. 17 (2015) 045002

Formalism Kogut-Susskind Hamiltonian formalism Spin network or stringnet is useful in Hamiltonian formalism Application $SU(3)_k$ gauge theory in (2 + 1) dimensions **Confinement-topological phase transition Thermalization of Yang-Mills theory** in (3+1)-dimensional small systems **Relaxation time of thermalization**

Summary

 $\tau_{\rm eq} \sim 2\pi/T$ Boltzmann time

$$j_a$$
 j_b j_c \sim

⇒Evaluate EE and NE using TQFT technique

Hilbert space of gauge thoery \simeq Topological field theory with defects

How to treat square lattice

another auxiliary links

By the composition rule of the network Matrix elements do not depend on the inclusion of auxiliary links

Vacuum persistency probability (Loschmidt echo) $P_{\text{vac}} := |\langle \Psi(0) | \Psi(t) \rangle|^2$

 t/β

I max dependence

Extrapolation

$j_{\rm max}$ dependence for relaxation time

$SU(3)_k$ fusion coefficients

$$N_{ab}^c = (k_0^{\max} - k_0^{\max})$$

 $k_0^{\max} = \min(\mathcal{A}, \mathcal{B}),$

 $\mathcal{A} = \frac{1}{3} (2(p_a + p_b + q_c) + q_a + q_b + p_c),$ $\mathcal{B} = \frac{1}{3}(p_a + p_b + q_c + 2(q_a + q_b + p_c)),$ $\delta_{ab}^{c} = \begin{cases} 1 & \text{if } k_{0}^{\max} > k_{0}^{\min} \text{ and } \mathcal{A}, \mathcal{B} \in \mathbb{Z}_{+} \\ 0 & \text{otherwise} \end{cases}$ Begin, Walton, Mod. Phys. Lett. A 7 (1992) 3255

- $(11) \frac{1}{\delta_{ab}^c}$
- $k_0^{\min} = \max(p_a + q_a, p_b + q_b, p_c + q_c, \mathcal{A} \min(p_a, p_b, q_c), \mathcal{B} \min(q_a, q_b, p_c)),$

Quantum dimension

e.g., Coquereaux, Hammaoui, Schieber, Tahri, J. Geom. Phys. 57 (2006) 269

$$d_a = \frac{1}{[2]} [p_a + 1] [q_a + 1] [p_a + q_a + 2]$$

Casimir invariant

e.g., Bonatsos, Daskaloyannis, Prog. Part. Nucl. Phys. 43 (1999) 537

$$C_{2}(a) = \frac{1}{2} \left(\left[\frac{p_{a}}{3} - \frac{q_{a}}{3} \right]^{2} + \left[\frac{2p_{a}}{3} + \frac{q_{a}}{3} + 1 \right]^{2} + \left[\frac{p_{a}}{3} + \frac{2q_{a}}{3} + 1 \right]^{2} - 2 \right)$$

$$q \quad p \quad (\pi, \pi)$$

$$\frac{-q^{-\frac{n}{2}}}{-q^{-\frac{1}{2}}} = \frac{\sin\left(\frac{\pi}{k+3}n\right)}{\sin\left(\frac{\pi}{k+3}\right)}$$

 2π

 $\sqrt{3+k}$

Casimir scaling

Casimir scaling

