Unconventional states of matter in the quantum-wire network of moiré systems

Chen-Hsuan Hsu

Institute of Physics, Academia Sinica (IoP, AS), Taiwan

<u>CHH</u> et al., Phys. Rev. B 108, L121409 (2023) (partially done @YITP)

QIMG Workshop, YITP, Kyoto U (Oct. 5th, 2023)

Jelena Klinovaja & Daniel Loss (University of Basel, Switzerland)
 \$\$ NSTC, AS & IoP (Taiwan), Kakenhi & YITP (Japan), NSF & NCCR QSIT (Switzerland)

Fabrication of moiré systems

- twisted bilayer graphene in Kyoto University (gift shop)

デザイン・製作・解説:きゐ(ベンネーム/京都大学大学院理学研究科評価) 解説協力:高三 和題(京都大学大学院理学研究科修了、現在カリフォルニア大学バークレー板所碼) ごのダリーティングカードは京部大学アンドレブレナープラットフォームにて開発されました。

design: きゐ (graduate student @Kyoto U) commentary: Kazuaki Takasan (postdoc @UC Berkeley)

2D twisted nanostructures forming moiré systems

 Twist angle between 2D monolayers: a tunable parameter allowing for continuously varying the band structure ⇒ band-structure engineering

Nam and Koshino, PRB 2017 Bistritzer and MacDonald, PNAS 2011

- Moiré pattern with wavelength $\lambda = a_0/[2\sin(\theta/2)]$
 - θ : twist angle between layers; a_0 : lattice constant of graphene monolayer
- (Quasi-)flat bands close to the magic angle (*e-e* interaction > bandwidth \approx kinetic energy)
 - \Rightarrow a platform for strongly correlated electron systems

Strongly correlated systems in twisted bilayer graphene

• Magic-angle twisted bilayer graphene (TBG)

Cao et al., Nature 556, 43 (2018); Cao et al., Nature 556, 80 (2018)

- · Carrier density electrically tuned by voltage gate
- Band insulator for 4e (or 4h) per moiré unit cell and semimetal at charge neutrality point
- Unconventional states of matter when the Fermi energy lies within the (quasi-)flat bands
- Phase diagram: resembling high-T_c materials
 - (Mott-like) correlated insulating phase at half filling
 - dome-like superconductivity regions in e- and h-doped sides of Mott phase

Anomalous Hall effect in TBG

GRAPHENE

Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene

Aaron L. Sharpe^{1,2*}, Eli J. Fox^{2,3*}, Arthur W. Barnard³, Joe Finney³, Kenji Watanabe⁴, Takashi Taniguchi⁴, M. A. Kastner^{2,3,5,6}, David Goldhaber-Gordon^{2,3}†

When two sheets of graphene are stacked at a small twist angle, the resulting flat superlatice minibands are expected to strongly enhance electron relearch interactions. Here, we present evidence that near three-quarters $(L_{2,4})$ filling of the conduction miniband, these enhance directions drive the twisted bilayer graphene into a ferromagnetic state. In a narrow density range around an apparent insulating state at 3 , we observe emergent ferromagnetic hysteress, with a giant anomalous Hall (AH) effect as large as 10.4 kilohms and indications of chiral edge states. Notably, the magnetization of the sample can be reversed by applying a small direct current. Although the AH resistance is not quantized, and dissipation is present, our measurements suggest that the system may be an incipient Chern insulator.

- TBG nearly aligned to the top hBN layer
- Ferromagnetic hysteresis with a coercive field $B \sim O(0.1 \text{ T})$ at 3/4 filling
- Large Hall resistance and chiral edge modes at B = 0 (upper flat band)
- Indication of topological phases

Experimental indication of topological matter in TBG

RESEARCH

Intrinsic quantized anomalous Hall effect in a moiré heterostructure

M. Serlin¹°, C. L. Tschirhart¹°, H. Polshyn¹°, Y. Zhang¹, J. Zhu¹, K. Watanabe², T. Taniguchi², L. Balents³, A. F. Young¹†

Serlin et al., Science 2020

- Quantized Hall resistance $R_{xy} = h/e^2$ at 3/4 filling at B = 0 in TBG aligned to hBN \Rightarrow quantum anomalous Hall insulator (QAHI) or Chern insulator with Chern number C = 1
- A sequence of Chern insulator states with Chern number $C = \pm 1, \pm 2$ and ± 3 observed at the filling factor $\nu = \pm 3/4, \pm 2/4$ and $\pm 1/4$, respectively
 - complete sequence: Nuckolls et al., Nature 2020; Choi et al., Nature 2021; Das et al., Nat. Phys. 2021
 - partial sequence: Park et al., Nature 2021; Saito et al., Nat. Phys. 2021; Stepanov et al., PRL 2021;

Lin et al., Science 2022; Tseng et al., Nat. Phys. 2022

 \Rightarrow topologically nontrivial phases as a common feature across samples and setups

Challenge for theoretical analysis

Cao et al., Science 2021

- Experimental observations of unconventional electronic states in TBG motivated numerous theoretical works
- Challenge for theoretical analysis:
 - a large number of atoms $\sim {\cal O}(10^4)$ due to large moiré unit cells
 - correlation: beyond single-particle picture
- To develop tractable analytic tools, a theoretical framework identifying relevant degrees of freedom is highly desirable!

2D network or array of 1D channels in TBG and similar nanostructures

• STM images of domain walls between ABand BA-stacking areas

Kerelsky et al., Nature 2019; Jiang et al., Nature 2019

Huang al., PRL 2018

• TEM and transport features of domain walls

Alden et al., PNAS 2013;

Rickhaus et al., Nano Lett. 2018

• 1D channels in twisted bilayer WTe₂ and strain-engineered graphene device

300 mm -300 -300

Wang et al., Nature 2022;

Hsu et al., Sci. Adv. 2020

Incorporating *e*-*e* interactions in 2D network of moiré bilayer systems

• 2D network of interacting quantum wires at nanoscales:

- Unconventional states of matter in 1D or quasi-1D systems:
 - interacting electrons in 1D: (Tomonaga-)Luttinger liquid (TLL)
 - coupled parallel interacting wires: sliding TLL
 - \Rightarrow intrawire and interwire forward scattering of *e*-*e* interactions on equal footing
 - triangular network of 1D wires: 3 sets of sliding TLL

Wu et al., PRB 2019; Chen et al., PRB 2020; Chou et al., PRB 2021

*related work on square network: Chou et al., PRB 2019

2D network formed by gapless domain wall modes

- Electrons in 2D network consisting of interacting quantum wires
- Fermion field operator $\psi_{\ell m \sigma}^{(j)}(x)$:
 - array index $j \in \{1, 2, 3\}$
 - wire index $m \in [1, N_{\perp}]$ within each array
 - moving direction $\ell \in \{R, L\}$
 - spin index $\sigma \in \{\uparrow,\downarrow\}$
 - local coordinate x
- Parallel wires within an array:
 - chemical potential μ and Fermi wave vector k_F (identical for all wires)

 $\psi_{L(m+n)\downarrow}^{(j)} = \psi_{L(m+n)\uparrow}^{(j)} = \psi_{R(m+n)\uparrow}^{(j)} = \psi_{R(m+n)\downarrow}^{(j)}$ $\psi_{L\,m\downarrow}^{(j)} \qquad \psi_{L\,m\uparrow}^{(j)} \qquad \psi_{R\,m\uparrow}^{(j)} \qquad \psi_{R\,m\downarrow}^{(j)}$

Bosonization

• Bosonization of the field operator:

$$\psi_{\ell m \sigma}^{(j)}(x) = \frac{U_{\ell m \sigma}^{j}}{\sqrt{2\pi a}} e^{i\ell k_{F}x} e^{\frac{-i}{\sqrt{2}} \left[\ell \phi_{cm}^{j}(x) - \theta_{cm}^{j}(x) + \ell \sigma \phi_{sm}^{j}(x) - \sigma \theta_{sm}^{j}(x)\right]}$$

• $U_{\ell m\sigma}^{j}$: Klein factor; *a*: short-distance cutoff

• Commutation relation between the boson fields:

$$\left[\phi_{\xi m}^{j}(x), \theta_{\xi' m'}^{j'}(x')\right] = i\frac{\pi}{2}\operatorname{sign}(x'-x)\delta_{jj'}\delta_{\xi\xi'}\delta_{mm'}$$

- index ξ , ξ' for charge (c) or spin (s) sector
- charge density operator $\propto \partial_x \phi^j_{cm}$; spin density operator $\propto \partial_x \phi^j_{sm}$
- charge current operator $\propto \partial_x \theta_{cm}^j$; spin current operator $\propto \partial_x \theta_{s,m}^j$
- Intrawire or interwire Coulomb (density-density) interaction $\propto \partial_x \phi^j_{cm} \partial_x \phi^j_{cn}$
 - \Rightarrow forward-scattering terms ($R \leftrightarrow R \& L \leftrightarrow L$) in the quadratic form
 - \Rightarrow diagonalizable

Bosonized model for the quantum-wire network

• Quantum-wire network with the quadratic interaction terms:

$$H_{0,c}^{(j)} = \sum_{mn} \int \frac{\hbar dx}{2\pi} \left[V_{\phi,mn}^{j} \partial_{x} \phi_{cm}^{j} \partial_{x} \phi_{cn}^{j} + V_{\theta,mn}^{j} \partial_{x} \theta_{cm}^{j} \partial_{x} \theta_{cn}^{j} \right]$$
$$H_{0,s}^{(j)} = \sum_{n} \int \frac{\hbar dx}{2\pi} \left[\frac{u_{s}}{K_{s}} (\partial_{x} \phi_{sn}^{j})^{2} + u_{s} K_{s} (\partial_{x} \theta_{sn}^{j})^{2} \right]$$

• $V^{j}_{\phi,mn}$, $V^{j}_{\theta,mn}$, K_{s} : forward-scattering terms ($R_{m} \leftrightarrow R_{n} \& L_{m} \leftrightarrow L_{n}$) • ϕ^{j}_{cn} , ϕ^{j}_{cn} , ϕ^{j}_{sn} , θ^{j}_{sn} : boson fields

General scattering operator

- Backscatterings ($R \leftrightarrow L$): non-quadratic (sine-Gordon) form
 - analyzed by perturbative renormalization-group (RG) technique
 - potential for various electronic states
- General operator describing various scattering processes:

$$O_{\{s_{\ell p\sigma}^{j}\}}(x) = \sum_{m=1} \prod_{p} \prod_{j} \left[\psi_{R(m+p)\uparrow}^{(j)}(x) \right]^{s_{R p\uparrow}^{j}} \left[\psi_{L(m+p)\uparrow}^{(j)}(x) \right]^{s_{L p\uparrow}^{j}} \left[\psi_{R(m+p)\downarrow}^{(j)}(x) \right]^{s_{R p\downarrow}^{j}} \left[\psi_{L(m+p)\downarrow}^{(j)}(x) \right]^{s_{L p\downarrow}^{j}}$$

- specific scattering process characterized by the integer set $\{s^j_{\ell p\sigma}\}$
- constraints on $s^{j}_{\ell p \sigma}$ due to conservation laws
- Scatterings involving different arrays at intersections:
 - generically allowed but typically less RG relevant
 - we focus on the (intrawire/interwire) scatterings within an array (j suppressed)

Constraints on $s_{\ell p\sigma}$ from conservation laws

- Energy conservation:
- scatterings taking place at Fermi level
- Global particle number or charge conservation (without "external" pairing):

$$\sum_{p,\sigma} (s_{Rp\sigma} + s_{Lp\sigma}) = 0$$

Momentum conservation:

more general condition than non-moiré systems

- In moiré systems, electrons experience a moiré potential with a spatial period of $\boldsymbol{\lambda}$

 \Rightarrow moiré periodic potential provides "crystal momentum" \propto reciprocal lattice vector $2\pi/\lambda$

Unconventional scatterings allowed by moiré periodic potential

- Moiré periodic potential: partially relaxing the constraint from the momentum conservation
- Generalized condition from momentum conservation (for clean systems):

$$k_F \sum_{p,\sigma} (s_{Rp\sigma} - s_{Lp\sigma}) = \frac{2\pi}{\lambda} \times \text{ integer}$$

- \Rightarrow momentum difference compensated by crystal momentum of the moiré potential
- \Rightarrow additional processes at certain fillings
- Resonance condition for the filling factor $\nu = k_F \lambda / \pi$:

$$\nu = \frac{P}{\sum_{p,\sigma} s_{Rp\sigma}}, P \in \text{nonzero integer}$$

- $\nu = 1$ corresponds to 4 electrons per moiré unit cell in TBG
- We refer to this type of processes as *moiré umklapp scatterings* ⇒ destabilizing the network: *moiré correlated states*

Examples for moiré umklapp scatterings (O_i and O_{ii})

- Further categorized into 4 subtypes: O_i-O_{iv}
- Moiré umklapp scatterings allowed at fractional fillings ($\nu = P/4$ for illustration)
- *O*_i: processes involving only intrawire scatterings in individual wires

$$\begin{aligned} (s_{R0\sigma}, s_{L0\sigma}) &\to (N_{\sigma}, -N_{\sigma}) \\ N_{\sigma} \in \mathbb{N} \\ O_{\mathrm{i}} &= \sum_{m} \left(\psi^{\dagger}_{Lm\uparrow} \psi_{Rm\uparrow} \right)^{N_{\uparrow}} \left(\psi^{\dagger}_{Lm\downarrow} \psi_{Rm\downarrow} \right)^{N_{\downarrow}} \end{aligned}$$

 O_{ii}: processes involving correlated intrawire scatterings in multiple wires

$$(s_{R0\sigma}, s_{L0\sigma}, s_{Rn\sigma}, s_{Ln\sigma}) \to (N_{0\sigma}, -N_{0\sigma}, N_{n\sigma}, -N_{n\sigma})$$
$$N_{0\sigma}, N_{n\sigma} \in \mathbb{N}$$
$$O_{ii} = \sum_{m} \left(\psi^{\dagger}_{Lm\uparrow}\psi_{Rm\uparrow}\right)^{N_{0\uparrow}} \left(\psi^{\dagger}_{Lm\downarrow}\psi_{Rm\downarrow}\right)^{N_{0\downarrow}}$$
$$\times \left[\psi^{\dagger}_{L(m+n)\uparrow}\psi_{R(m+n)\uparrow}\right]^{N_{n\uparrow}} \left[\psi^{\dagger}_{L(m+n)\downarrow}\psi_{R(m+n)\downarrow}\right]^{N_{n.}}$$

Examples for moiré umklapp scatterings (O_{iii} and O_{iv})

- O_{iii} : processes involving interwire scatterings but still conserving the particle number for each wire $(s_{R0\sigma}, s_{L0\sigma}, s_{Rn\sigma}, s_{Ln\sigma}) \rightarrow (N_{\sigma}, -N_{\sigma}, N_{\sigma}, -N_{\sigma})$ $N_{\sigma} \in \mathbb{N}$ $O_{\text{iii}} = \sum_{m} \left[\psi^{\dagger}_{L(m+n)\uparrow} \psi_{Rm\uparrow} \right]^{N_{\uparrow}} \left[\psi^{\dagger}_{L(m+n)\downarrow} \psi_{Rm\downarrow} \right]^{N_{\downarrow}}$ $\times \left[\psi^{\dagger}_{Lm\uparrow} \psi_{R(m+n)\uparrow} \right]^{N_{\uparrow}} \left[\psi^{\dagger}_{Lm\downarrow} \psi_{R(m+n)\downarrow} \right]^{N_{\downarrow}}$
- *O*_{iv}: scattering processes that do not conserve particle numbers for individual wires

$$(s_{R0\sigma}, s_{L0\sigma}, s_{Rn\sigma}, s_{Ln\sigma}) \rightarrow (N_{\sigma}, -M_{\sigma}, M_{\sigma}, -N_{\sigma})$$
$$N_{\sigma}, M_{\sigma} \in \mathbb{N}, N_{\sigma} \neq M_{\sigma}$$
$$O_{iv} = \sum_{m} \left[\psi^{\dagger}_{L(m+n)\uparrow} \psi_{Rm\uparrow} \right]^{N_{\uparrow}} \left[\psi^{\dagger}_{L(m+n)\downarrow} \psi_{Rm\downarrow} \right]^{N_{\downarrow}}$$
$$\times \left[\psi^{\dagger}_{Lm\uparrow} \psi_{R(m+n)\uparrow} \right]^{M_{\uparrow}} \left[\psi^{\dagger}_{Lm\downarrow} \psi_{R(m+n)\downarrow} \right]^{M_{\downarrow}}$$

Gapless chiral edge modes from O_{iv} process

- $\bar{S}_{p,c} \neq 0$ for O_{iv} : particle number not conserved for individual wires
- Simplest case involving the *n*-th nearest neighbor wires: $S_{n,c} = S_{0,c}, \bar{S}_{n,c} = -\bar{S}_{0,c}$, and $S_{p,c}, \bar{S}_{p,c} = 0$ otherwise
- Introducing chiral fields $\Phi_{\ell m} = -\ell \phi_{cm} + f \theta_{cm}$ for each wire:

$$\begin{split} \left[\Phi_{\ell m}(x), \Phi_{\ell' m'}(x') \right] = &i\ell\pi\delta_{\ell\ell'}\delta_{mm'}f\operatorname{sign}(x-x'), \\ f = &-\bar{S}_{0,c}/S_{0,c} \end{split}$$

• The perturbation from *O*_{iv} process:

$$\delta H_{
m iv} = g_{
m iv} \int dx \left(O_{
m iv} + O_{
m iv}^{\dagger}
ight) \propto g_{
m iv} \sum_{m=1} \int dx \, \cos \left\{ rac{S_{0,c}}{\sqrt{2}} \left[\Phi_{L(m+n)} - \Phi_{Rm}
ight]
ight\}$$

 \Rightarrow involving right- and left-moving modes in the interior of the system

• There remain gapless chiral modes:

 $\Phi_{L,1}, \cdots, \Phi_{L,n}$ at one edge and $\Phi_{R,N_{\perp}}, \cdots, \Phi_{R,(N_{\perp}-n+1)}$ at the opposite edge (similarly for the other arrays)

Fractional excitations

• Defining
$$\tilde{\Phi}_{m,n} = [\Phi_{L(m+n)} - \Phi_{Rm}]/2$$
:

$$\delta H_{
m iv} \propto g_{
m iv} \sum_{m=1} \int dx \, \cos \left(\sqrt{2} S_{0,c} ilde{\Phi}_{m,n}
ight)$$

• gapping out bulk modes in the interior of the system

 \Rightarrow moiré correlated state with an insulating bulk and gapless edge modes

• $\tilde{\Phi}_{m,n}$ pinned to minima: $\tilde{\Phi}_{m,n} \rightarrow \text{odd integer } \times \pi/(\sqrt{2}S_{0,c})$

• Fractional excitations with charge $2e/S_{0,c}$ associated with the kink

Exploring moiré correlated states through gapless edge modes

- At certain fractional fillings, O_{iv} leads to an insulating bulk with gapless chiral edge modes ⇒ resembling quantum anomalous Hall effect in TBG
- It would be challenging to directly detect the fractional charge
 ⇒ probing the moiré correlated state through the edge modes
- Assuming a single mode $\Phi_{R,N_{\perp}} \rightarrow \phi$ at an edge for simplicity, where the chiral field ϕ satisfies

$$[\phi(x), \phi(x')] = i\pi f \operatorname{sign}(x - x')$$

• Effective edge theory from the commutator:

$$\frac{S_{\text{edge}}}{\hbar} = \int \frac{dxd\tau}{4\pi f} \left[-i\partial_x \phi \partial_\tau \phi + v_{\text{e}} \left(\partial_x \phi \right)^2 \right]$$

 \Rightarrow experimental setups to detect and characterize the edge modes

Scanning tunneling spectroscopy (STS)

created by Microsoft Image Creator

• Local density of states at the edge:

$$\rho(\epsilon) = \frac{1}{\pi} \operatorname{Re}\left[\int_0^\infty dt \; e^{i\epsilon t/\hbar} \left\langle \psi_{\mathsf{e}}(t)\psi_{\mathsf{e}}^{\dagger}(0) \right\rangle\right]$$

• Universal scaling curve for temperature T and energy ϵ (measured from Fermi level):

$$\rho(\epsilon, T) \propto T^{\frac{1}{f}-1} \cosh\left(\frac{\epsilon}{2k_{\rm B}T}\right) \left|\Gamma\left(\frac{1}{2f} + i\frac{\epsilon}{2\pi k_{\rm B}T}\right)\right|^{2}$$

- power law $|\epsilon|^{1/f-1}$ at very low T
- scaling parameter determined by universal fraction f, independent of system details

Current-bias curve of interedge tunneling

• Proposed edge transport measurement:

• Interedge tunneling process:

$$S_{\mathrm{t}} = t_0 \int d au \; e^{i(\phi_1 - \phi_2)/f}$$

- *t*₀: non-universal tunnel amplitude
- ϕ_1 , ϕ_2 : chiral fields in two separate edges
- Current-bias $(I_t V)$ curve at temperature T:

$$I_{\rm t} \propto T^{rac{2}{f}-1} \sinh\left(rac{eV}{2k_{\rm B}T}
ight) \left|\Gamma\left(rac{1}{f}+irac{eV}{2\pi k_{\rm B}T}
ight)
ight|^2$$

 \Rightarrow another universal scaling formula with a scaling parameter set by f

.

Conductance correction induced by interedge backscattering

• Proposed edge transport measurement:

• Interedge backscattering process:

$$S_{
m b} = v_{
m b} \int d au \; e^{i(\phi_1 - \phi_2)}$$

- v_b: non-universal backscattering strength
- ϕ_1 , ϕ_2 : chiral fields in two separate edges
- Conductance correction depending on the bias (*V*) and temperature (*T*):

$$ert \delta G ert \propto egin{cases} V^{2f-2}, & ext{for } eV \gg k_{ ext{B}}T \ T^{2f-2}, & ext{for } eV \ll k_{ ext{B}}T \end{cases}$$

 \Rightarrow power-law behavior with a scaling parameter set by f

Summary

- Moiré correlated states and fractional excitations from moiré umklapp scatterings
- Correlated states hosting a gapped bulk and gapless edge modes at fractional fillings (resembling quantum anomalous Hall effect observed in experiments)
- Proposed spectroscopic and transport setups for experimental verification <u>CHH</u> et al., Phys. Rev. B 108, L121409 (2023)

- Recruitment information (IoP, AS, Taiwan):
 - faculty positions (all subfields in Physics): https://tinyurl.com/2h2tj69s
 - postdoc and student positions (condensed matter): https://sites.google.com/view/qmtheory

