
Unconventional states of matter in the quantum-wire network of
moiré systems

Chen-Hsuan Hsu

Institute of Physics, Academia Sinica (IoP, AS), Taiwan

CHH et al., Phys. Rev. B 108, L121409 (2023)

(partially done @YITP)

QIMG Workshop, YITP, Kyoto U
(Oct. 5th, 2023)

gg Jelena Klinovaja & Daniel Loss (University of Basel, Switzerland)

$$ NSTC, AS & IoP (Taiwan), Kakenhi & YITP (Japan), NSF & NCCR QSIT (Switzerland)



Fabrication of moiré systems
- twisted bilayer graphene in Kyoto University (gift shop)

design: きゐ (graduate student @Kyoto U )
commentary: Kazuaki Takasan (postdoc @UC Berkeley)



2D twisted nanostructures forming moiré systems

• Twist angle between 2D monolayers:
a tunable parameter allowing for continuously varying the band structure
⇒ band-structure engineering

Nam and Koshino, PRB 2017 Bistritzer and MacDonald, PNAS 2011

• Moiré pattern with wavelength λ = a0/[2 sin(θ/2)]
• θ: twist angle between layers; a0: lattice constant of graphene monolayer

• (Quasi-)flat bands close to the magic angle (e-e interaction > bandwidth ≈ kinetic energy)
⇒ a platform for strongly correlated electron systems



Strongly correlated systems in twisted bilayer graphene

• Magic-angle twisted bilayer graphene (TBG)

Cao et al., Nature 556, 43 (2018); Cao et al., Nature 556, 80 (2018)

• Carrier density electrically tuned by voltage gate

• Band insulator for 4e (or 4h) per moiré unit cell and semimetal at charge neutrality point

• Unconventional states of matter when the Fermi energy lies within the (quasi-)flat bands

• Phase diagram: resembling high-Tc materials
• (Mott-like) correlated insulating phase at half filling
• dome-like superconductivity regions in e- and h-doped sides of Mott phase



Anomalous Hall effect in TBG

• TBG nearly aligned to the top hBN layer

• Ferromagnetic hysteresis with a coercive field B ∼ O(0.1 T) at 3/4 filling

• Large Hall resistance and chiral edge modes at B = 0 (upper flat band)

• Indication of topological phases

Sharpe et al., Science 2019



Experimental indication of topological matter in TBG

• Quantized Hall resistance Rxy = h/e2 at 3/4 filling at B = 0 in TBG aligned to hBN
⇒ quantum anomalous Hall insulator (QAHI) or Chern insulator with Chern number C = 1

• A sequence of Chern insulator states with Chern number C = ±1,±2 and ±3 observed
at the filling factor ν = ±3/4,±2/4 and ±1/4, respectively
• complete sequence: Nuckolls et al., Nature 2020; Choi et al., Nature 2021; Das et al., Nat. Phys. 2021
• partial sequence: Park et al., Nature 2021; Saito et al., Nat. Phys. 2021; Stepanov et al., PRL 2021;

Lin et al., Science 2022; Tseng et al., Nat. Phys. 2022

⇒ topologically nontrivial phases as a common feature across samples and setups

Serlin et al., Science 2020



Challenge for theoretical analysis

Cao et al., Science 2021

• Experimental observations of unconventional
electronic states in TBG motivated numerous
theoretical works

• Challenge for theoretical analysis:
• a large number of atoms ∼ O(104) due to large

moiré unit cells
• correlation: beyond single-particle picture

• To develop tractable analytic tools, a theoretical
framework identifying relevant degrees of
freedom is highly desirable!



2D network or array of 1D channels in TBG and similar nanostructures
• STM images of domain walls between AB-

and BA-stacking areas

Kerelsky et al., Nature 2019; Jiang et al., Nature 2019

Huang al., PRL 2018

• TEM and transport features of domain walls

Alden et al., PNAS 2013; Rickhaus et al., Nano Lett. 2018

•1D channels in twisted bilayer WTe2 and
strain-engineered graphene device

Wang et al., Nature 2022; Hsu et al., Sci. Adv. 2020



Incorporating e-e interactions in 2D network of moiré bilayer systems

• 2D network of interacting quantum wires at nanoscales:

• Unconventional states of matter in 1D or quasi-1D systems:
• interacting electrons in 1D: (Tomonaga-)Luttinger liquid (TLL)
• coupled parallel interacting wires: sliding TLL

⇒ intrawire and interwire forward scattering of e-e interactions on equal footing
• triangular network of 1D wires: 3 sets of sliding TLL

Wu et al., PRB 2019; Chen et al., PRB 2020; Chou et al., PRB 2021

*related work on square network: Chou et al., PRB 2019



2D network formed by gapless domain wall modes

• Electrons in 2D network consisting of interacting quantum wires

• Fermion field operator ψ(j)
ℓmσ(x):

• array index j ∈ {1, 2, 3}
• wire index m ∈ [1,N⊥] within each array
• moving direction ℓ ∈ {R,L}
• spin index σ ∈ {↑, ↓}
• local coordinate x

• Parallel wires within an array:
• chemical potential µ and Fermi wave vector kF (identical for all wires)



Bosonization

• Bosonization of the field operator:

ψ
(j)
ℓmσ(x) =

Uj
ℓmσ√
2πa

eiℓkFxe
−i√

2
[ℓϕj

cm(x)−θj
cm(x)+ℓσϕj

sm(x)−σθj
sm(x)]

• Uj
ℓmσ: Klein factor; a: short-distance cutoff

• Commutation relation between the boson fields:[
ϕj
ξm(x), θ

j′

ξ′m′(x′)
]

= i
π

2
sign(x′ − x)δjj′δξξ′δmm′

• index ξ, ξ′ for charge (c) or spin (s) sector
• charge density operator ∝ ∂xϕ

j
cm ; spin density operator ∝ ∂xϕ

j
sm

• charge current operator ∝ ∂xθ
j
cm; spin current operator ∝ ∂xθ

j
s,m

• Intrawire or interwire Coulomb (density-density) interaction ∝ ∂xϕ
j
cm∂xϕ

j
cn

⇒ forward-scattering terms (R ↔ R & L ↔ L) in the quadratic form
⇒ diagonalizable



Bosonized model for the quantum-wire network

• Quantum-wire network with the quadratic interaction terms:

H(j)
0,c =

∑
mn

∫
ℏdx
2π

[
V j
ϕ,mn∂xϕ

j
cm∂xϕ

j
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θ,mn∂xθ
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• V j
ϕ,mn, V j

θ,mn, Ks: forward-scattering terms (Rm ↔ Rn & Lm ↔ Ln)
• ϕj

cn, θj
cn, ϕj

sn, θj
sn: boson fields



General scattering operator

• Backscatterings (R ↔ L): non-quadratic (sine-Gordon) form
• analyzed by perturbative renormalization-group (RG) technique
• potential for various electronic states

• General operator describing various scattering processes:

O{sj
ℓpσ}

(x) =
∑
m=1

∏
p

∏
j

[
ψ
(j)
R(m+p)↑(x)

]sj
Rp↑

[
ψ
(j)
L(m+p)↑(x)

]sj
Lp↑
[
ψ
(j)
R(m+p)↓(x)

]sj
Rp↓

[
ψ
(j)
L(m+p)↓(x)

]sj
Lp↓

• specific scattering process characterized by the integer set {sj
ℓpσ}

• constraints on sj
ℓpσ due to conservation laws

• Scatterings involving different arrays at intersections:
• generically allowed but typically less RG relevant
• we focus on the (intrawire/interwire) scatterings within an array (j suppressed)



Constraints on sℓpσ from conservation laws

• Energy conservation:
scatterings taking place at Fermi level

• Global particle number or charge conservation (without “external” pairing):∑
p,σ

(sRpσ + sLpσ) = 0

• Momentum conservation:
more general condition than non-moiré systems

• In moiré systems, electrons experience a moiré potential with a spatial period of λ

⇒ moiré periodic potential provides “crystal momentum” ∝ reciprocal lattice vector 2π/λ



Unconventional scatterings allowed by moiré periodic potential

• Moiré periodic potential: partially relaxing the constraint from the momentum conservation

• Generalized condition from momentum conservation (for clean systems):

kF

∑
p,σ

(sRpσ − sLpσ) =
2π
λ

× integer

⇒ momentum difference compensated by crystal momentum of the moiré potential
⇒ additional processes at certain fillings

• Resonance condition for the filling factor ν = kFλ/π:

ν =
P∑

p,σ sRpσ
, P ∈ nonzero integer

• ν = 1 corresponds to 4 electrons per moiré unit cell in TBG

• We refer to this type of processes as moiré umklapp scatterings
⇒ destabilizing the network: moiré correlated states



Examples for moiré umklapp scatterings (Oi and Oii)

• Oi: processes involving only intrawire scatterings in
individual wires

(sR0σ, sL0σ) → (Nσ,−Nσ)

Nσ ∈ N
Oi =

∑
m

(
ψ†

Lm↑ψRm↑
)N↑(ψ†

Lm↓ψRm↓
)N↓

• Oii: processes involving correlated intrawire scatterings
in multiple wires
(sR0σ, sL0σ, sRnσ, sLnσ) → (N0σ,−N0σ,Nnσ,−Nnσ)

N0σ,Nnσ ∈ N
Oii =

∑
m

(
ψ†

Lm↑ψRm↑
)N0↑(ψ†

Lm↓ψRm↓
)N0↓

×
[
ψ†

L(m+n)↑ψR(m+n)↑
]Nn↑[ψ†

L(m+n)↓ψR(m+n)↓
]Nn↓

with Nσ = 2

with N0σ = Nnσ = 1

• Further categorized into 4 subtypes: Oi–Oiv

• Moiré umklapp scatterings allowed at fractional fillings (ν = P/4 for illustration)



Examples for moiré umklapp scatterings (Oiii and Oiv)

• Oiii: processes involving interwire scatterings but still
conserving the particle number for each wire

(sR0σ, sL0σ, sRnσ, sLnσ) → (Nσ,−Nσ,Nσ,−Nσ)

Nσ ∈ N
Oiii =

∑
m

[
ψ†

L(m+n)↑ψRm↑
]N↑[ψ†

L(m+n)↓ψRm↓
]N↓

×
[
ψ†

Lm↑ψR(m+n)↑
]N↑[ψ†

Lm↓ψR(m+n)↓
]N↓

• Oiv: scattering processes that do not conserve particle
numbers for individual wires

(sR0σ, sL0σ, sRnσ, sLnσ) → (Nσ,−Mσ,Mσ,−Nσ)

Nσ,Mσ ∈ N, Nσ ̸= Mσ

Oiv =
∑

m

[
ψ†

L(m+n)↑ψRm↑
]N↑[ψ†

L(m+n)↓ψRm↓
]N↓

×
[
ψ†

Lm↑ψR(m+n)↑
]M↑[ψ†

Lm↓ψR(m+n)↓
]M↓

with Nσ = 1

with (Nσ,Mσ) = (2, 0)



Gapless chiral edge modes from Oiv process

• S̄p,c ̸= 0 for Oiv: particle number not conserved for individual wires

• Simplest case involving the n-th nearest neighbor wires:
Sn,c = S0,c, S̄n,c = −S̄0,c, and Sp,c, S̄p,c = 0 otherwise

• Introducing chiral fields Φℓm = −ℓϕcm + f θcm for each wire:[
Φℓm(x),Φℓ′m′(x′)

]
=iℓπδℓℓ′δmm′ f sign(x − x′),

f =− S̄0,c/S0,c

• The perturbation from Oiv process:

δHiv = giv

∫
dx

(
Oiv + O†

iv

)
∝ giv

∑
m=1

∫
dx cos

{S0,c√
2

[
ΦL(m+n) − ΦRm

]}
⇒ involving right- and left-moving modes in the interior of the system

• There remain gapless chiral modes:
ΦL,1, · · · ,ΦL,n at one edge and ΦR,N⊥ , · · · ,ΦR,(N⊥−n+1) at the opposite edge
(similarly for the other arrays)



Fractional excitations
• Defining Φ̃m,n = [ΦL(m+n) − ΦRm]/2:

δHiv ∝ giv

∑
m=1

∫
dx cos

(√
2S0,cΦ̃m,n

)
• gapping out bulk modes in the interior of the system
⇒ moiré correlated state with an insulating bulk and gapless edge modes

• Φ̃m,n pinned to minima: Φ̃m,n → odd integer × π/(
√

2S0,c)

• Fractional excitations with charge 2e/S0,c associated with the kink



Exploring moiré correlated states through gapless edge modes

• At certain fractional fillings, Oiv leads to an insulating bulk with gapless chiral edge modes
⇒ resembling quantum anomalous Hall effect in TBG

• It would be challenging to directly detect the fractional charge
⇒ probing the moiré correlated state through the edge modes

• Assuming a single mode ΦR,N⊥ → ϕ at an edge for simplicity, where the chiral field ϕ satisfies[
ϕ(x), ϕ(x′)

]
= iπf sign(x − x′)

• Effective edge theory from the commutator:

Sedge

ℏ
=

∫
dxdτ
4πf

[
− i∂xϕ∂τϕ+ ve

(
∂xϕ

)2
]

⇒ experimental setups to detect and characterize the edge modes



Scanning tunneling spectroscopy (STS)
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)
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• Local density of states at the edge:

ρ(ϵ) =
1
π

Re
[∫ ∞

0
dt eiϵt/ℏ

〈
ψe(t)ψ†

e (0)
〉]

• Universal scaling curve for temperature T and energy ϵ (measured from Fermi level):

ρ(ϵ,T) ∝ T
1
f −1 cosh

(
ϵ

2kBT

) ∣∣∣∣Γ(
1
2f

+ i
ϵ

2πkBT

)∣∣∣∣2
• power law |ϵ|1/f−1 at very low T
• scaling parameter determined by universal fraction f , independent of system details



Current-bias curve of interedge tunneling
• Proposed edge transport measurement:

low T

high T

V

I t(
V
,T
)

• Interedge tunneling process:

St = t0

∫
dτ ei(ϕ1−ϕ2)/f

• t0: non-universal tunnel amplitude
• ϕ1, ϕ2: chiral fields in two separate edges

• Current-bias (It − V) curve at temperature T:

It ∝ T
2
f −1 sinh

(
eV

2kBT

) ∣∣∣∣Γ(
1
f
+ i

eV
2πkBT

)∣∣∣∣2
⇒ another universal scaling formula with a scaling parameter set by f



Conductance correction induced by interedge backscattering
• Proposed edge transport measurement:

• Interedge backscattering process:

Sb = vb

∫
dτ ei(ϕ1−ϕ2)

• vb: non-universal backscattering strength
• ϕ1, ϕ2: chiral fields in two separate edges

• Conductance correction depending on the bias (V) and temperature (T):

|δG| ∝
{

V2f−2, for eV ≫ kBT
T2f−2, for eV ≪ kBT

⇒ power-law behavior with a scaling parameter set by f



Summary

• Moiré correlated states and fractional excitations from moiré umklapp scatterings

• Correlated states hosting a gapped bulk and gapless edge modes at fractional fillings
(resembling quantum anomalous Hall effect observed in experiments)

• Proposed spectroscopic and transport setups for experimental verification
CHH et al., Phys. Rev. B 108, L121409 (2023)

• Recruitment information (IoP, AS, Taiwan):
• faculty positions (all subfields in Physics):

https://tinyurl.com/2h2tj69s
• postdoc and student positions (condensed matter):

https://sites.google.com/view/qmtheory
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