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Fabrication of moiré systems
- twisted bilayer graphene in Kyoto University (gift shop)
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2D twisted nanostructures forming moiré systems

e Twist angle between 2D monolayers:
a tunable parameter allowing for continuously varying the band structure
= band-structure engineering

Nam and Koshino, PRB 2017  Bistritzer and MacDonald, PNAS 2011

e Moiré pattern with wavelength A = ay/[2sin(6/2)]
e 0: twist angle between layers; ay: lattice constant of graphene monolayer

e (Quasi-)flat bands close to the magic angle (e-¢ interaction > bandwidth ~ kinetic energy)
= a platform for strongly correlated electron systems



Strongly correlated systems in twisted bilayer graphene

e Magic-angle twisted bilayer graphene (TBG)
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Cao et al., Nature 556, 43 (2018); Cao et al., Nature 556, 80 (2018)
e Carrier density electrically tuned by voltage gate
Band insulator for 4e (or 4h) per moiré unit cell and semimetal at charge neutrality point
Unconventional states of matter when the Fermi energy lies within the (quasi-)flat bands
e Phase diagram: resembling high-T, materials
o (Mott-like) correlated insulating phase at half filling
e dome-like superconductivity regions in e- and h-doped sides of Mott phase



Anomalous Hall effect in TBG
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Emergent ferromagnetism near
three-quarters filling in twisted
bilayer graphene
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When two sheets of graphene are stacked at a small twist angle, the resulting flat 10
superlattice minibands are expected to strongly enhance electron-electron interactions.
Here, we present evidence that near three-quarters (*/4) filling of the conduction miniband,
these enhanced interactions drive the twisted bilayer graphene into a ferromagnetic

state. In a narrow density range around an apparent insulating state at 3/, we observe
emergent ferromagnetic hysteresis, with a giant anomalous Hall (AH) effect as large as
10.4 kilohms and indications of chiral edge states. Notably, the magnetization of the sample
can be reversed by applying a small direct current. Although the AH resistance is not
quantized, and dissipation is present, our measurements suggest that the system may be 075 080 08
an incipient Chern insulator. ning
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Sharpe et al., Science 2019
TBG nearly aligned to the top hBN layer

Ferromagnetic hysteresis with a coercive field B ~ 0(0.1 T) at 3/4 filling
Large Hall resistance and chiral edge modes at B = 0 (upper flat band)
Indication of topological phases



Experimental indication of topological matter in TBG
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Intrinsic quantized anomalous Hall effect in a
moiré heterostructure
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Serlin et al., Science 2020

e Quantized Hall resistance R,, = h/e” at 3/4 filling at B = 0 in TBG aligned to hBN
= quantum anomalous Hall insulator (QAHI) or Chern insulator with Chern number C = 1
e A sequence of Chern insulator states with Chern number C = +1,+2 and +3 observed
at the filling factor v = +3/4,+2/4 and +1/4, respectively
e complete sequence: Nuckolls et al., Nature 2020; Choi et al., Nature 2021; Das et al., Nat. Phys. 2021
° partial sequence: Park et al., Nature 2021; Saito et al., Nat. Phys. 2021; Stepanov et al., PRL 2021;
Lin et al., Science 2022; Tseng et al., Nat. Phys. 2022
= topologically nontrivial phases as a common feature across samples and setups




Challenge for theoretical analysis

e Experimental observations of unconventional
electronic states in TBG motivated numerous
theoretical works

e Challenge for theoretical analysis:

e a large number of atoms ~ O(10*) due to large
moiré unit cells
e correlation: beyond single-particle picture

e To develop tractable analytic tools, a theoretical
framework identifying relevant degrees of
freedom is highly desirable!

Cao et al., Science 2021



2D network or array of 1D channels in TBG and similar nanostructures

e STM images of domain walls between AB- e TEM and transport features of domain walls
and BA-stacking areas RTINS N TSR }‘3 ﬁ

R,
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Alden et al., PNAS 2013; Rickhaus et al., Nano Lett. 2018

Kerelsky et al., Nature 2019; Jiang et al., Nature 2019 ¢ 1p channels in twisted bilayer WTe, and
strain-engineered graphene device

Wang et al., Nature 2022; Hsu et al., Sci. Adv. 2020
Huang al., PRL 2018



Incorporating e-e interactions in 2D network of moiré bilayer systems

e 2D network of interacting quantum wires at nanoscales:

e Unconventional states of matter in 1D or quasi-1D systems:
e interacting electrons in 1D: (Tomonaga-)Luttinger liquid (TLL)
e coupled parallel interacting wires: sliding TLL
= intrawire and interwire forward scattering of e-e interactions on equal footing
e triangular network of 1D wires: 3 sets of sliding TLL
Wu et al., PRB 2019; Chen et al., PRB 2020; Chou et al., PRB 2021
*related work on square network: Chou et al., PRB 2019



2D network formed by gapless domain wall modes

e Electrons in 2D network consisting of interacting quantum wires ,
e Fermion field operator gbemg( x):
BA
e array index j € {1,2,3}
e wire index m € [1, N ] within each array
e moving direction ¢ € {R,L}
e spinindex o € {1, ]}
e local coordinate x
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e Parallel wires within an array:
e chemical potential 1 and Fermi wave vector kr (identical for all wires)
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Bosonization

e Bosonization of the field operator:

) (x) = Ufma oitkrx \/[f%n() 8],,()+Lo ¢, (x) =08, (x)]
Imo /27'((,1

e U}, : Klein factor; a: short-distance cutoff
e Commutation relation between the boson fields:

LT
[n0), 0o ()] = i sign(o’ )y G G

e index &, &' for charge (c) or spin( ) sector
e charge density operator o 0, ¢/ spin density operator o 9.,
e charge current operator « 0,¢, spin current operator oc 9,/ .

e Intrawire or interwire Coulomb (density-density) interaction o 8,¢/.,,0;
= forward-scattering terms (R <+ R & L <+ L) in the quadratic form
= diagonalizable
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Bosonized model for the quantum-wire network
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e Quantum-wire network with the quadratic interaction terms:
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&, mn? ngm,,, K;: forward-scattering terms (R,, <> R, & L, ++ L,)
o ¢, &, &, 0, boson fields



General scattering operator }

interarray

“. intrawire
e,

e Backscatterings (R <+ L): non-quadratic (sine-Gordon) form .
e analyzed by perturbative renormalization-group (RG) technique X
e potential for various electronic states | "

e General operator describing various scattering processes:

O{YW Z H H ¢R(m+p [¢L(m+p)¢(x)]% Wz(ejgmﬂn(x)]%[ E’A()mw)i(x)ww

m=1 p

e specific scatterlng process characterized by the integer set { ZW}
e constraints on s, due to conservation laws

e Scatterings involving different arrays at intersections:
e generically allowed but typically less RG relevant
e we focus on the (intrawire/interwire) scatterings within an array (j suppressed)



Constraints on sy,, from conservation laws

e Energy conservation:
scatterings taking place at Fermi level

e Global particle number or charge conservation (without “external” pairing):

Z(Skpg + SL,,U) =0

p,o

¢ Momentum conservation:
more general condition than non-moiré systems

e In moiré systems, electrons experience a moiré potential with a spatial period of A
U
\‘\\
\lﬂ‘/{’m(r
V(x)

= moiré periodic potential provides “crystal momentum”  reciprocal lattice vector 27/ A



Unconventional scatterings allowed by moiré periodic potential

o Moiré periodic potential: partially relaxing the constraint from the momentum conservation
e Generalized condition from momentum conservation (for clean systems):

2 .
kp Z(SR[)U - sta') = 7 X 1nteger
pso

= momentum difference compensated by crystal momentum of the moiré potential
= additional processes at certain fillings
e Resonance condition for the filling factor v = kg /m:

P .
v = ————, P &nonzero integer

Zp,o’ SRpa
e v = 1 corresponds to 4 electrons per moiré unit cell in TBG

o We refer to this type of processes as moiré umklapp scatterings
= destabilizing the network: moiré correlated states



Examples for moiré umklapp scatterings (O; and Oj)

e Further categorized into 4 subtypes: 0;—0;,
e Moiré umklapp scatterings allowed at fractional fillings (v = P/4 for illustration)

e O;: processes involving only intrawire scatterings in
individual wires
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e O;;: processes involving correlated intrawire scatterings
in multiple wires
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Examples for moiré umklapp scatterings (O;; and Oyy)

e Oy;: processes involving interwire scatterings but still
conserving the particle number for each wire
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e 0;,: scattering processes that do not conserve particle
numbers for individual wires

(SR007SLOO'7SRn07sLn0') — (Nay _MO'7M0'7 _Na')
No'aMO' €N7 NO’ #Mo'

N.
Oiv = Zm [wz(ern)TmeT} ' [wi(m+n)¢me\L] M

X [Vt Ryt MT K- "

On
with (N, M,) = (2,0)



Gapless chiral edge modes from O;, process

° SP ¢ # 0 for O;y: particle number not conserved for individual wires

Simplest case involving the n-th nearest neighbor wires:
Snc = S0, Sne = —So,c, and S, ¢, S, - = 0 otherwise

Introducing chiral fields ®,, = —l¢cm + f6. for each wire: \ : /I
[® 4 (), oo (X')] =it Gy f sign(x — X'),

f = - SO,C/SO,C

The perturbation from O;, process:

5Hiv = 8iv /dx (Oiv + OT X Ziv Z/dx COS (PL(m-‘,-n) (PRm}}

= involving right- and left-moving modes in the interior of the system

There remain gapless chiral modes:
@11, , P, atone edge and Pry, -+, Pr (v, —ny1) at the opposite edge
(similarly for the other arrays)



Fractional excitations
o Defining @y = [@r(nin) — Prml/2:

O0H,, gi\,Z/dx cos (\ﬁSo7ci>m7n)

m=1

e gapping out bulk modes in the interior of the system
=- moiré correlated state with an insulating bulk and gapless edge modes

e &, , pinned to minima: ®,,,, — odd integer x 7/(/2S0.)
o Fractional excitations with charge 2¢/S; . associated with the kink



Exploring moiré correlated states through gapless edge modes

At certain fractional fillings, O;, leads to an insulating bulk with gapless chiral edge modes
= resembling quantum anomalous Hall effect in TBG

It would be challenging to directly detect the fractional charge
= probing the moiré correlated state through the edge modes

Assuming a single mode ®r y, — ¢ at an edge for simplicity, where the chiral field ¢ satisfies

[¢(x), p(x)] = inf sign(x — x)

Effective edge theory from the commutator:

e _ / ‘fffjf [~ i0:60:6 + v.(0.0)’]

= experimental setups to detect and characterize the edge modes



Scanning tunneling spectroscopy (STS)

p(e.T)

(e, Ty T/

1/£-1
€]
€

€lkgT
created by Microsoft Image Creator
e Local density of states at the edge:

high T
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e Universal scaling curve for temperature T and energy ¢ (measured from Fermi level)
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o power law |¢|'//~! at very low T
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e scaling parameter determined by universal fraction f, independent of system details



Current-bias curve of interedge tunneling
e Proposed edge transport measurement:

high T /
: — = N; —_— low T
= low T ’; / l
high T
2 eVikgT
e Interedge tunneling process:
s, — to/dT Sile1—02)/1

e fy: non-universal tunnel amplitude
e ¢, ¢,: chiral fields in two separate edges
e Current-bias (I, — V) curve at temperature T

24 . eV 1 . eV
I T7 h r _
v s <2kBT)‘ (f+’27rkBT>

= another universal scaling formula with a scaling parameter set by f
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Conductance correction induced by interedge backscattering
e Proposed edge transport measurement:
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e Interedge backscattering process:
Sy = w [ dr £l (é1—¢2)
e v,: non-universal backscattering strength
e ¢1, ¢,: chiral fields in two separate edges
e Conductance correction depending on the bias (V) and temperature (7):

6G] o V¥=2 for eV > kgT
TY=2, for eV < kgT

= power-law behavior with a scaling parameter set by f



Summary

Moiré correlated states and fractional excitations from moiré umklapp scatterings

Correlated states hosting a gapped bulk and gapless edge modes at fractional fillings
(resembling quantum anomalous Hall effect observed in experiments)

Proposed spectroscopic and transport setups for experimental verification

CHH et al., Phys. Rev. B 108, L121409 (2023)
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