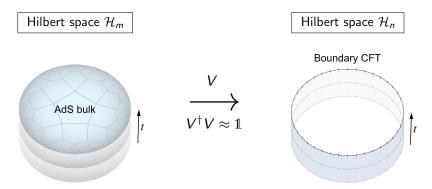
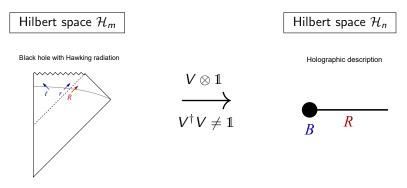

De Sitter tensor networks with overlapping qubits [arXiv:2304.02673]

ChunJun Cao^{1,2,3}, Wissam Chemissany⁴, <u>Alexander Jahn^{2,5}</u>, and Zoltán Zimborás⁶

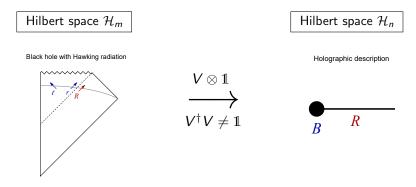
¹ University of Maryland, USA, ² Caltech, USA, ³ Virginia Tech, USA,
 ⁴ University of Pennsylvania, USA, ⁵ Freie Universität Berlin, Germany,
 ⁶ Wigner Research Centre, Hungary


Kyoto, Sep 4, 2023

Applying quantum information theory to (quantum) gravity leads to interesting Hilbert space maps.

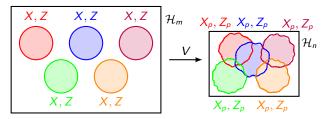

Evolution between de Sitter time-slices by *isometries*. [Cotler/Strominger '22]

Applying quantum information theory to (quantum) gravity leads to interesting Hilbert space maps.


Approximate bulk-to-boundary isometry in AdS/CFT. [Almheiri/Dong/Harlow '15]

Applying quantum information theory to (quantum) gravity leads to interesting Hilbert space maps.

Black hole evaporation as a *non-isometric code*. [Akers/Engelhardt/Harlow/Penington/Vardhan '22]

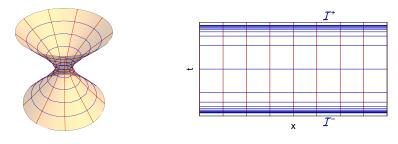

Applying quantum information theory to (quantum) gravity leads to interesting Hilbert space maps.

Our question: Can non-isometric maps also describe the **Hilbert space truncation** that occurs in dS quantum gravity?

Overlapping qubits

What happens to qubits under a non-isometric map V?

Pauli operators in \mathcal{H}_m are compressed to

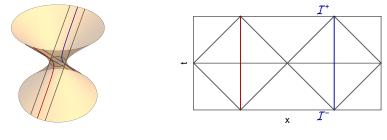

$$X o X_p = V X V^{\dagger} \;, \quad Z o Z_p = V Z V^{\dagger}$$

The *n* qubit algebra of the $X_p^{(j)}$ and $Z_p^{(k)}$ is *overlapping*, e.g. $||[X_p^{(j)}, X_p^{(k)}]|| = O(\epsilon) \text{ for } j \neq k .$

Surprisingly, small overlaps are possible for compression into **exponentially** fewer qubits: $\epsilon^2 \sim \frac{\log m}{n}$ [Chao/Reichardt/Sutherland/Vidick '17]

De Sitter spacetime

A physical setting with apparent Hilbert space growth: dS spacetime, GR solution to pure $\Lambda>0$ universe



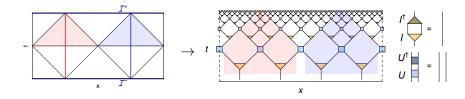
(Higher-dim. embedding)

(Conformal coordinates)

De Sitter spacetime

A physical setting with apparent Hilbert space growth: dS spacetime, GR solution to pure $\Lambda>0$ universe

(Higher-dim. embedding)

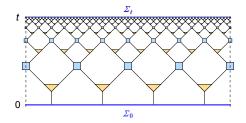

(Conformal coordinates)

dS can be divided into *static patches* of stationary observers and rapidly expanding *exterior regions*.

De Sitter MERA

The *multi-scale entanglement renormalization ansatz* (MERA) [Vidal '06] can be used as a **toy model of dS spacetime**.

[Bény '11] [Czech/Lamprou/McCandlish/Sully '15] [Bao/Cao/Carroll/Chatwin-Davis '17]

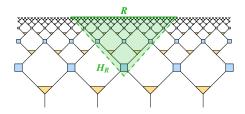


The **causal structure** of dS is reflected in the MERA tensors, built from isometries I and unitaries (disentanglers) U.

De Sitter MERA: non-isometric maps

From the MERA we can build two types of non-isometric maps for dS time-slices: A **global** and a **local map**.

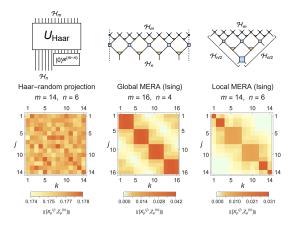
The map $V_{\text{global}} : \mathcal{H}_{\Sigma_t} \to \mathcal{H}_{\Sigma_0}$ relates the global Hilbert space on a time-slice Σ_t to the "initial" one at t = 0.



In a universe with such overlapping qubits in a fixed Hilbert space, non-local commutators become O(1) at $\frac{t}{t_{H}} = O(S_{dS}) \approx 10^{120}$.

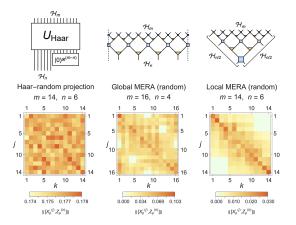
Curiously, this is consistent with models of slow-roll inflation. [Dubovsky/Senatore/Villadoro '08]

De Sitter MERA: non-isometric maps


The alternative map $V_{\text{local}} : \mathcal{H}_R \to \mathcal{H}_{H_R}$ relates the Hilbert space on a time-slice *subregion* R to the horizon H_R of its past domain of dependence.

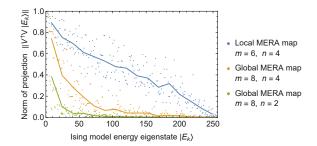
In this model, dim $\mathcal{H}_R \sim e^{\dim \mathcal{H}_{H_R}}$. H_R is the "RT surface" of R, bounding its entanglement.

De Sitter MERA: Commutators


To preserve **approximate locality**, commutators $||[X_{\rho}^{(j)}, Z_{\rho}^{(k)}]||$ should decay with distance |j - k|.

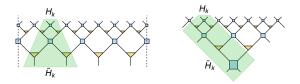
The causal structure of MERA/dS preserves approximate commutator locality!

De Sitter MERA: Commutators


To preserve **approximate locality**, commutators $||[X_{\rho}^{(j)}, Z_{\rho}^{(k)}]||$ should decay with distance |j - k|.

The causal structure of MERA/dS preserves approximate commutator locality!

De Sitter MERA: Low-energy physics


Global and local MERA models have the same effect: **Low-energy eigenstates are preserved**, high-energy states are represented with low fidelity.

The global model sharply truncates after the first 2^n energy eigenstates, whereas the local model has a smooth behavior.

Both the models describe an *effective theory* H of (subregions of) dS timeslices by a corresponding *fundamental theory* \tilde{H} .

- In the global MERA, H
 is a truncation of H up to fixed scale/energy, preserving locality.
- In the local MERA, H
 describes a very different theory: A local H leads to a non-local H
 .

Relationship to large-q SYK holographic proposal [Susskind '21]?

Discussion

Describing quantum gravity with overlapping qubits relates two old problems:

- 1. The problem of **degree of freedom counting** of Hilbert spaces when gravity is included
- 2. The problem of **Hilbert space dimension verification** for qubit systems
- But many questions remain:
 - Black hole evaporation with overlapping qubits?
 - Is quantum gravity generally quantum mechanics in a different (smaller) Hilbert space?
 - What about flat spacetime?
 - Relation to "static patch holography"?
 - Low-energy CFT simulations with local MERA model?

Thank you for your attention!

"Quantum gravity with overlapping qubits in Kyoto" (Midjourney v5)