

Hosho Katsura（UTokyo）

With
Soshun Ozaki（UTokyo） Eiki Iyoda（Tokai Univ．）
Takahiro Sagawa（UTokyo）
Kareljan Schoutens（Univ．Amsterdam）
Yuan Miao（IPMU，UTokyo）

Institute for Physics of Intelligence

When it all started...

- Sagawa-san's talk @ Gakushuin in 2017
- Hamiltonian of the clean SYK

$$
H_{\mathrm{cSYK}}=\sum_{1 \leq j<i \leq N} \sum_{1 \leq k<l \leq N} c_{i}^{\dagger} c_{j}^{\dagger} c_{k} c_{l} \quad \begin{aligned}
& \text { NOTE) } c^{\prime} \text { compre are } \\
& \text { complex fermions }
\end{aligned}
$$

- Classified as a non-integrable model
- My question: Really true?
- Exact diagonalization for small systems

The number of $E=0$ states (N : the number of sites)

N	3	4	5	6	7	8	9	10	11	12	13
Z_{N}	6	10	20	35	70	126	252	462	924	1716	3432

At half-filling (the num. of particles $N_{P}=N / 2$)

N	3	4	5	6	7	8	9	10	11	12	13
Z_{N}	-	5	-	14	-	42	-	132	-	429	-

Online encyclopedia at work!

The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

013627 THE ON-LINE ENCYCLOPEDIA

founded in 1964 by N. J. A. Sloane

$$
\begin{aligned}
& \text { 6, 10, 20, 35, 70, 126, } 252 \\
& \text { (Greetings from The On-Line Encyclopedia of Integer Sequences!) }
\end{aligned}
$$

Search: seq:6,10,20,35,70,126,252
Displaying 1-6 of 6 results found.
page 1
Sort: relevance | references | number | modified | created Format: long | short | data

0001405	$a(n)=\operatorname{binomial}(n$, floor $(n / 2))$.	384

(Formerly M0769 N0294)
$1,1,2,3,6,10,20,35,70,126,252,462,924,1716,3432,6435,12870,24310,48620,92378$ 184756, 352716, 705432, 1352078, 2704156, 5200300, 10400600, 20058300, 40116600, 77558760, 155117520,
300540195, 601080390, 1166803110 (list; graph; refs; listen; history; text; internal format)
$\begin{aligned} & \text { - The number of ground states for fixed } N_{\mathrm{p}} \\ & \text { - There must be something deep behind them... } \\ & Z_{N, N_{P}}\end{aligned}=\binom{N}{N_{P}}-\binom{N}{N_{P}-2}$
Catalan
numbers at half filling!

1. Majorana fermion models

- Introduction \& Motivation
- Clean Majorana SYK
- Clean supersymmetric Majorana SYK

2. Complex fermion models

- Clean complex SYK
- Clean supersymmetric complex SYK

3. Dynamics

$$
\begin{aligned}
& H_{4}=-\sum_{i<j<k<l} \gamma_{i} \gamma_{j} \gamma_{k} \gamma_{l} \\
& Q_{3}=\mathrm{i} \sum_{i<j<k} \gamma_{i} \gamma_{j} \gamma_{k} \\
& H_{\mathrm{c} 4}=\sum_{j<i} \sum_{k<l} c_{i}^{\dagger} c_{j}^{\dagger} c_{k} c_{l} \\
& Q_{\mathrm{c} 3}=\sum_{i<j<k} c_{i} c_{j} c_{k}
\end{aligned}
$$

- Out-of-time order correlator (OTOC)
- Spectral form factor

4. Summary

Original Majorana SYK model

■ Majorana (real) fermions $\quad \gamma_{i} \quad(i, j=1,2, \ldots, N)$

- Obey $\quad \gamma_{i}^{\dagger}=\gamma_{i}, \quad\left\{\gamma_{i}, \gamma_{j}\right\}=2 \delta_{i, j}$

■ Sachdev-Ye-Kitaev model

- Hamiltonian $\quad H_{\mathrm{SYK}}=\sum_{1 \leq i<j<k<l \leq N} J_{i j k l} \gamma_{i} \gamma_{j} \gamma_{k} \gamma_{l}$
- $J_{i j k l} \in \mathbb{R}$: Gaussian with zero mean and variance $J / N^{3 / 2}$
- Consists of all-to-all coupling terms
- Tractable in the large- N limit
- Toy model for holographic duality

Sachdev \& Ye, PRL 70 (1993),

- Maximally chaotic (OTOC saturates the chaos bound) arXiv:cond-mat/9212030;
Kitaev, Talks at KITP (2015);
Maldacena, Stanford,
PRD 94 (2016)
■ What if all the couplings are equal?
- Turns out to be integrable!
- Can we still find a signature/remnant of chaos?

Proposals for experiments:
Danshita et al., PTEP 2017 (2017);
Pikulin \& Franz, PRX 7 (2017)

Clean Majorana SYK model

- Hamiltonian

$$
H_{4}=-\sum_{1 \leq i<j<k<l \leq N} \gamma_{i} \gamma_{j} \gamma_{k} \gamma_{l} \quad \begin{aligned}
& \text { Lau, Ma, Murugan \& Tezuka, } \\
& \text { JPA 54, 095401 (2021) }
\end{aligned}
$$

- Jordan-Wigner transformation

$$
\gamma_{1}=\sigma_{1}^{x}, \quad \gamma_{2}=\sigma_{1}^{y}, \quad \gamma_{3}=\sigma_{1}^{z} \sigma_{2}^{x}, \quad \gamma_{4}=\sigma_{1}^{z} \sigma_{2}^{y}, \ldots
$$

- $N=4 \quad H_{4}=-\gamma_{1} \gamma_{2} \gamma_{3} \gamma_{4}=\sigma_{1}^{z} \sigma_{2}^{z}$
- Just a 2-site Ising model! Trivially integrable.
- H_{4} with $N>4$ does not seem integrable...
- Level-spacing distribution
- Use the energy levels in the middle of the spectrum $E_{j}-E_{\mathrm{GS}} \in\left[0.4 N^{2}, 0.5 N^{2}\right]$
- Level gaps $\delta_{j}=E_{j}-E_{j-1}$
- Poisson distribution!

Is H_{4} integrable??

Integrability of quadratic case: warm-up

■Quadratic all-to-all Hamiltonian (N : even)

$$
H_{2}=\mathrm{i} \sum_{1 \leq i<j \leq N} \gamma_{i} \gamma_{j} \quad \text { Lau et al, JPA } 54 \text { (2021) }
$$

- Subject to twisted boundary conditions:

$$
T \gamma_{j} T^{-1}=\gamma_{j+1} \text { if } 1 \leq j<N ; \quad T \gamma_{N} T^{-1}=-\gamma_{1}
$$

- Fourier transform ($k=1,2, \ldots, N / 2$)

$$
f_{k}=\frac{1}{\sqrt{2 N}} \sum_{j=1}^{N} e^{\mathrm{i}(j-1) \theta_{k}} \gamma_{j}, \quad f_{k}^{\dagger}=\frac{1}{\sqrt{2 N}} \sum_{j=1}^{N} e^{-\mathrm{i}(j-1) \theta_{k}} \gamma_{j} \quad\left(\theta_{k}=\frac{2 k-1}{N} \pi\right)
$$

- They are complex fermions obeying

$$
\left\{f_{k}, f_{\ell}^{\dagger}\right\}=\delta_{k, \ell}, \quad\left\{f_{k}, f_{\ell}\right\}=\left\{f_{k}^{\dagger}, f_{\ell}^{\dagger}\right\}=0 \quad \text { and } \quad T f_{k}^{(\dagger)} T^{-1}=e^{ \pm \mathrm{i} \theta_{k}} f_{k}^{(\dagger)}
$$

Diagonal form of H_{2}

$$
H_{2}=\sum_{k=1}^{N / 2} \epsilon_{k}\left(f_{k}^{\dagger} f_{k}-\frac{1}{2}\right), \quad \epsilon_{k}=2 \cot \frac{\theta_{k}}{2}
$$

Integrability of H_{4}

■ Nontrivial identity

$$
H_{4}=\frac{1}{2}\left\{\left(H_{2}\right)^{2}-\frac{N(N-1)}{2}\right\}
$$

- Proof by division into cases

$$
\left(H_{2}\right)^{2}=-\sum_{i<j} \sum_{k<l} \gamma_{i} \gamma_{j} \gamma_{k} \gamma_{l}=\cdots
$$

- Obviously, $\left[H_{4}, H_{2}\right]=0$

■ Eigenstates of H_{4}

- Any eigenstate of H_{2} is an eigenstate of H_{4}
- Solvable structure is similar to that of the Hubbard + all-to-all interaction Hatsugai \& Kohmoto, JPSJ 61, 2056 (1992)

1	$i<j<k<l$	$\gamma_{i} \gamma_{j} \gamma_{k} \gamma_{l}$
2	$i<j=k<l$	$\gamma_{i} \gamma_{l}$
3	$i<k<j<l$	$-\gamma_{i} \gamma_{k} \gamma_{j} \gamma_{l}$
4	$i<k<j=l$	$-\gamma_{i} \gamma_{k}$
5	$i<k<l<j$	$\gamma_{i} \gamma_{k} \gamma_{l} \gamma_{j}$
6	$i=k<j<l$	$-\gamma_{j} \gamma_{l}$
7	$i=k<j=l$	-1
8	$i=k<l<j$	$\gamma_{l} \gamma_{j}$
9	$k<i<j<l$	$\gamma_{k} \gamma_{i} \gamma_{j} \gamma_{l}$
10	$k<i<j=l$	$\gamma_{k} \gamma_{i}$
11	$k<i<l<j$	$-\gamma_{k} \gamma_{i} \gamma_{l} \gamma_{j}$
12	$k<i=l<j$	$-\gamma_{k} \gamma_{j}$
13	$k<l<i<j$	$\gamma_{k} \gamma_{l} \gamma_{i} \gamma_{j}$

Integrability of H_{4}

■ Nontrivial identity

$$
H_{4}=\frac{1}{2}\left\{\left(H_{2}\right)^{2}-\frac{N(N-1)}{2}\right\}
$$

- Proof by division into cases

$$
\left(H_{2}\right)^{2}=-\sum_{i<j} \sum_{k<l} \gamma_{i} \gamma_{j} \gamma_{k} \gamma_{l}=\cdots
$$

- Obviously, $\left[H_{4}, H_{2}\right]=0$

■ Eigenstates of H_{4}

- Any eigenstate of H_{2} is an eigenstate of H_{4}
- Solvable structure is similar to that of the Hubbard + all-to-all interaction Hatsugai \& Kohmoto, JPSJ 61, 2056 (1992)

1	$i<j<k<l$	$\gamma_{i} \gamma_{j} \gamma_{k} \gamma_{l}$
2	$i<j=k<l$	well
3	$i<k<j<l$	$-\gamma_{i} \gamma_{k} \gamma_{j} \gamma_{l}$
4	$i<k<j=l$	- $21 / \sqrt{k}$
5	$i<k<l<j$	$\gamma_{i} \gamma_{k} \gamma_{l} \gamma_{j}$
6	$i=k<j<l$	- 2 , 1
7	$i=k<j=l$	-1
8	$i=k<l<j$	$-\pi \pi_{j}$
9	$k<i<j<l$	$\gamma_{k} \gamma_{i} \gamma_{j} \gamma_{l}$
10	$k<i<j=l$	*k
11	$k<i<l<j$	$-\gamma_{k} \gamma_{i} \gamma_{l} \gamma_{j}$
12	$k<i=l<j$	$\rightarrow k \gamma_{j}$
13	$k<l<i<j$	$\gamma_{k} \gamma_{l} \gamma_{i} \gamma_{j}$

Equivalent Ising model

- Spin Hamiltonian
- Occupation number $\quad n_{k}=f_{k}^{\dagger} f_{k} \quad(k=1, \ldots, N / 2)$
- Ising variables

$$
\sigma_{k}=2 n_{k}-1
$$

$$
H_{4}=\sum_{k, \ell=1}^{N / 2} J_{k \ell} \sigma_{k} \sigma_{\ell}+\text { const. } \quad J_{k \ell}=\cot \left(\frac{2 k-1}{2 N} \pi\right) \cot \left(\frac{2 \ell-1}{2 N} \pi\right)
$$

- Classical Ising model! Any Ising spin σ_{k} is a conserved quantity.
- Ground states
- Exhibit complicated spin config. for $N>24$
- Anything to do with number theory? Marinari, Parisi \& Ritort, JPA 27, 7615 (1994)

- Energy spectrum

- Many low-energy states near the g.s.
- Residual entropy at $T=0: \quad S / N \sim \frac{1}{2} \ln 2$

Infinite family of models

■ Quadratic family ($m=1,3,5, \ldots$)

$$
H_{2}\left(\mathcal{A}^{m}\right):=\mathrm{i} \sum_{1 \leq i<j \leq N}\left(\mathcal{A}^{m}\right)_{i j} \gamma_{i} \gamma_{j},
$$

Antisymmetric matrix

$$
\mathcal{A}_{i j}=\left\{\begin{array}{cc}
1 & i<j \\
0 & i=j \\
-1 & i>j
\end{array}\right.
$$

- They commute with $H_{2}=H_{2}(\mathcal{A})$
- Most general form

$$
\begin{equation*}
H\left(\left\{C_{m n}\right\}\right)=\sum_{m \geq 1} \sum_{n \geq 1} C_{m n} H_{2}\left(\mathcal{A}^{m}\right)^{n}+\text { const. }, \quad C_{m n} \in \mathbb{R} \tag{*}
\end{equation*}
$$

- Conjecture

The Hamiltonian of the generalized clean Majorana SYK

$$
H_{2 p}=\mathrm{i}^{p} \sum_{1 \leq i_{1}<i_{2}<\cdots<i_{2 p-1}<i_{2 p} \leq N} \gamma_{i_{1}} \gamma_{i_{2}} \cdots \gamma_{i_{2 p-1}} \gamma_{i_{2 p}}
$$

can be written in the form of $(*) .\left[H_{2 p}, H_{2 q}\right]=0$ holds for all $p, q \in \mathbb{N}$.

- Yet to be proved but substantial evidence for small p and N

Supersymmetric (SUSY) SYK models

■ $\mathcal{N}=1$ SUSY quantum mechanics

- Fermionic parity $(-1)^{F}$
- Supercharge $Q\left(Q^{\dagger}=Q\right)$ anti-commutes with $(-1)^{F}$
- Hamiltonian $H=Q^{2}$
- Symmetry $\left[H,(-1)^{F}\right]=[H, Q]=0$.
- Spectrum of H
- $E \geq 0$ for all states
- $E>0$ states come in pairs $\quad\{|\psi\rangle, Q|\psi\rangle\}$
- $E=0$ state, if exists, must be annihilated by Q

■ SUSY SYK

- Supercharge
- Hamiltonian

$$
Q_{\mathrm{SYK}}=\mathrm{i} \sum_{1 \leq i<j<k \leq N} C_{i j k} \gamma_{i} \gamma_{j} \gamma_{k}
$$

$$
H_{\mathrm{SYK}}^{\mathrm{SUSY}}=\left(Q_{\mathrm{SYK}}\right)^{2}
$$

$$
\left\langle C_{i j k}\right\rangle=0, \quad\left\langle C_{i j k}^{2}\right\rangle=\frac{2 J}{N^{2}}
$$

Fu, Gaiotto, Maldacena \& Sachdev, PRD 95 (2017)

Clean SUSY Majorana SYK

■ Supercharge \& Hamiltonian

$$
Q_{3}=\mathrm{i} \sum_{1 \leq i<j<k \leq N} \gamma_{i} \gamma_{j} \gamma_{k} \quad \Rightarrow \quad H_{4}^{\mathrm{SUSY}}=\left(Q_{3}\right)^{2}
$$

$\begin{aligned} & \text { - Commute with } \\ & \text { - Nontrivial identity }\end{aligned} \chi_{0}:=\frac{1}{\sqrt{N}} \sum_{j=1}^{N} \gamma_{j}$
Antisymmetric circulant matrix

■ Integrability of $H_{4}^{\text {SUSY }}$

- $H_{4}^{\text {SUSY }}=\left(H_{\text {free }}\right)^{2}$ follows from $\left[H_{\text {free }}, \chi_{0}\right]=0,\left(\chi_{0}\right)^{2}=1$
- Any eigenstate of $H_{\text {free }}$ is an eigenstate of $H_{4}^{\text {SUSY }}$
- Diagonal form

$$
H_{\text {free }}=\sum_{k=1}^{\frac{N}{2}-1} \epsilon_{k}\left(g_{k}^{\dagger} g_{k}-\frac{1}{2}\right), \quad \epsilon_{k}=2 \cot \left(\frac{k \pi}{N}\right), \quad g_{k}=\sqrt{\frac{2}{N}} \sum_{j=1}^{N} \exp \left(\mathrm{i} \frac{2(j-1) k}{N} \pi\right) \gamma_{j}
$$

Infinite families of models

■ Non-SUSY yet solvable models

- Quadratic Hamiltonians of the form $H_{\mathrm{hop}, r}=\mathrm{i} \sum_{j=1}^{N} \gamma_{j} \gamma_{j+r} \quad(r=1,2, \ldots)$
commute with Q_{3}
- E.g., $\quad(1-s)\left(Q_{3}\right)^{2}+s H_{\text {hop, } 1}$, an interpolation between clean SUSY SYK and critical Kitaev chain is solvable
■ SUSY solvable models
- Supercharges $Q_{2 p+1}=\mathrm{i}^{p} \quad \sum \quad \gamma_{i_{1}} \gamma_{i_{2}} \cdots \gamma_{i_{2 p+1}}, \quad(p=0,1,2, \ldots)$
- Properties $\quad 1 \leq i_{1}<i_{2}<\cdots<i_{2 p+1} \leq N$

1. They all commute: $\left[Q_{2 p+1}, Q_{2 q+1}\right]=0 \quad$ (still a conjecture)
2. $Q_{2 p+1}=\frac{1}{2}\left\{Q_{1}, H_{2 p}\right\} \quad\left(Q_{1}=\sqrt{N} \chi_{0}\right)$

- Multi-parameter family: $\quad H^{\text {SUSY }}\left(\left\{C_{2 p+1}\right\}\right)=\left(C_{1} Q_{1}+C_{3} Q_{3}+\cdots\right)^{2}, \quad C_{2 p+1} \in \mathbb{R}$
- All-to-all version of Sannomiya \& Katsura, PRD 99 (2019) Is SUSY broken or unbroken?

Outline

1. Majorana fermion models

- Introduction \& Motivation
- Clean Majorana SYK
- Clean supersymmetric Majorana SYK

2. Complex fermion models

- Clean complex SYK
- Clean supersymmetric complex SYK

3. Dynamics

$$
\begin{aligned}
H_{\mathrm{c} 4} & =\sum_{j<i} \sum_{k<l} c_{i}^{\dagger} c_{j}^{\dagger} c_{k} c_{l} \\
Q_{\mathrm{c} 3} & =\sum_{i<j<k} c_{i} c_{j} c_{k}
\end{aligned}
$$

- Out-of-time order correlator (OTOC)
- Spectral form factor

4. Summary

Clean complex SYK model

- Complex (spinless) fermions
- Creation and annihilation operators: $c_{i}^{\dagger}, c_{j} \quad(i, j=1,2, \ldots, N)$
- Canonical anti-commutation relations

$$
\left\{c_{i}, c_{j}^{\dagger}\right\}=c_{i} c_{j}^{\dagger}+c_{j}^{\dagger} c_{i}=\delta_{i, j}, \quad\left\{c_{i}, c_{j}\right\}=\left\{c_{i}^{\dagger}, c_{j}^{\dagger}\right\}=0
$$

■ Original model (disordered)

- Hamiltonian Sachdev, PRX 5, (2015); Fu \& Sachdev, PRB 94 (2016)

$$
H_{\mathrm{cSYK}}=\sum_{1 \leq j<i \leq N} \sum_{1 \leq k<l \leq N} J_{i j ; k l} c_{i}^{\dagger} c_{j}^{\dagger} c_{k} c_{l}
$$

Complex Gaussian variables

$$
\begin{aligned}
& J_{i j ; k l}=-J_{j i ; k l}=-J_{i j ; l k}=J_{l k ; j i}^{*} \\
& \left.\left\langle J_{i j ; k l}\right\rangle=0,\left.\quad\langle | J_{i j ; k l}\right|^{2}\right\rangle=J^{2} / N^{3}
\end{aligned}
$$

■ Clean complex SYK model

- Hamiltonian lyoda \& Sagawa, PRA 97 (2018)

$$
H_{\mathrm{c} 4}=\sum_{1 \leq j<i \leq N} \sum_{1 \leq k<l \leq N} c_{i}^{\dagger} c_{j}^{\dagger} c_{k} c_{l} \quad \begin{aligned}
& \text { Is it Integrable? } \\
& \text { YES! But not free-fermionic... }
\end{aligned}
$$

Integrability of $\boldsymbol{H}_{\mathrm{c} 4}$

- Factorization

$$
H_{\mathrm{c} 4}=A^{\dagger} A \geq 0, \quad A=\sum_{1 \leq k<l \leq N} c_{k} c_{l}=\frac{1}{2} \boldsymbol{c}^{\mathrm{T}} \mathcal{A} \boldsymbol{c}
$$

$$
\mathcal{A}_{i j}=\left\{\begin{array}{cc}
1 & i<j \\
0 & i=j \\
-1 & i>j
\end{array}\right.
$$

- Canonical form
- A is non-diagonalizable, but \mathcal{A} can be taken to $\quad \mathcal{K}=\mathcal{O} \mathcal{A} \mathcal{O}^{\mathrm{T}}=$
- A in the new basis:

$$
\lambda_{k}=\cot \left(\frac{2 k-1}{2 N} \pi\right)
$$

$$
A=\frac{1}{2} \boldsymbol{f}^{\mathrm{T}} \mathcal{K} \boldsymbol{f}=\sum_{k=1}^{N / 2} \lambda_{k} f_{k \uparrow} f_{k \downarrow}, \quad \boldsymbol{f}=\mathcal{O} \boldsymbol{c}=\left(f_{1 \uparrow}, f_{1 \downarrow}, f_{2 \uparrow}, f_{2 \downarrow}, \ldots\right)
$$

■ Equivalent to a known model!
Richardson, JMP 6, 1034 (1965);

- Particular case of Richardson-Gaudin model
- Bethe-ansatz solvable
- $E=0$ states are in 1-to-1 correspondence with the lowest-weight states of $\eta \mathrm{SU}(2)$ Yang, PRL 63 (1989)

$$
\eta^{-}=\sum_{k=1}^{N / 2} f_{k \uparrow} f_{k \downarrow}
$$

Supersymmetric version

■ $\mathcal{N}=2$ SUSY quantum mechanics

- Supercharges
$Q, Q^{\dagger}, \quad Q^{2}=0,\left(Q^{\dagger}\right)^{2}=0$
- Fermionic parity

$$
\left\{Q,(-1)^{F}\right\}=\left\{Q^{\dagger},(-1)^{F}\right\}=0
$$

- Hamiltonian $H=\left\{Q, Q^{\dagger}\right\}=Q Q^{\dagger}+Q^{\dagger} Q$
- Symmetry $[H, Q]=\left[H, Q^{\dagger}\right]=\left[H,(-1)^{F}\right]=0$
- Spectrum of H
- $E \geq 0$ for all states
- $E>0$ states come in pairs $\quad\left\{|\psi\rangle, Q^{\dagger}|\psi\rangle\right\}$
- $E=0$ iff a state is a SUSY singlet

■ SUSY cSYK

- Supercharge
- Hamiltonian

$$
H_{\mathrm{CSYK}}^{\mathrm{SUSY}}=\left\{Q_{\mathrm{CSYK}}, Q_{\mathrm{CSYK}}^{\dagger}\right\}
$$

Fu, Gaiotto, Maldacena \& Sachdev, PRD 95 (2017);
Sannomiya, Katsura \& Nakayama, PRD 95 (2017)

Clean SUSY complex SYK

\square Supercharge \& Hamiltonian $Q_{\mathrm{c} 3}=\frac{1}{\sqrt{N}} \sum_{1<i<j<k<N} c_{i} c_{j} c_{k} \quad H_{\mathrm{c} 4}^{\mathrm{SUSY}}=\left\{Q_{\mathrm{c} 3}, Q_{\mathrm{c} 3}^{\dagger}\right\}$
■ G.S. degeneracies
OEIS: A063886

$H_{\mathrm{c} 4}^{\mathrm{SUSY}}$	N	3	4	5	6	7	8	9	10	11	12	13	$Z_{N}=2\binom{N}{\left\lfloor\frac{N}{2}\right\rfloor}$
	Z_{N}	6	π^{12}	20	40	$\begin{aligned} & 70 \\ & \lambda \end{aligned}$	140	252	504	924	1848	3432	
	N	3	4	5	6	7	8	9	10	11	12	13	
	Z_{N}	6	10	20	35	70	126	252	462	924	1716	3432	antisymmet

- $Q_{\mathrm{c} 3}=f_{0} \tilde{A}$ with $f_{0}:=\frac{1}{\sqrt{N}} \sum_{j=1}^{N} c_{j}$ and $\tilde{A}=\sum_{j, k}(\tilde{\mathcal{A}})_{j k} c_{j} c_{k}$
- Hamiltonian

$$
H_{\mathrm{c} 4}^{\mathrm{SUSY}}=\tilde{A}^{\dagger} \tilde{A} f_{0}^{\dagger} f_{0}+\tilde{A} \tilde{A}^{\dagger}\left(1-f_{0}^{\dagger} f_{0}\right)
$$

Sum of two commuting Richardson-Gaudin Hamiltonians!

- Explains the degeneracies observed numerically

Outline

1. Majorana fermion models

- Introduction \& Motivation
- Clean Majorana SYK
- Clean supersymmetric Majorana SYK

2. Complex fermion models

- Clean complex SYK
- Clean supersymmetric complex SYK

3. Dynamics

- Out-of-time order correlator (OTOC)
- Spectral form factor
S. Ozaki and H. Katsura, in preparation

4. Summary

Quantum dynamics of \boldsymbol{H}_{4}

- Reminder

$$
\begin{aligned}
& H_{4}=-\sum_{i<j<k<l} \gamma_{i} \gamma_{j} \gamma_{k} \gamma_{l}=\frac{1}{2}\left\{\left(H_{2}\right)^{2}-\frac{N(N-1)}{2}\right\} \\
& H_{2}=\mathrm{i} \sum_{i<j} \gamma_{i} \gamma_{j}=\sum_{k=1}^{N / 2} \epsilon_{k}\left(f_{k}^{+} f_{k}^{-}-\frac{1}{2}\right), \quad \epsilon_{k}=2 \cot \frac{\theta_{k}}{2}, \quad \theta_{k}=\frac{2 k-1}{N} \pi
\end{aligned}
$$

- Warm-up: quadratic case

$$
\left[H_{2}, f_{k}^{ \pm}\right]= \pm \epsilon_{k} f_{k}^{ \pm} \quad \Rightarrow e^{\mathrm{i} H_{2} t} f_{k}^{ \pm} e^{-\mathrm{i} H_{2} t}=\exp \left(\pm \mathrm{i} \epsilon_{k} t\right) f_{k}^{ \pm}
$$

- Quartic case

$$
\begin{aligned}
& {\left[H_{4}, f_{k}^{ \pm}\right]=\left(\mp \epsilon_{k} H_{2}-\frac{1}{2} \epsilon_{k}^{2}\right) f_{k}^{ \pm} \Longleftrightarrow e^{\mathrm{i} H_{4} t} f_{k}^{ \pm} e^{-\mathrm{i} H_{4} t}=\exp \left(\mp \mathrm{i} \epsilon_{k} \underline{H_{2}} t-\frac{1}{2} \epsilon_{k}^{2} t\right) f_{k}^{ \pm}} \\
& \Rightarrow \gamma_{j}(t)=e^{\mathrm{i} H_{4} t} \gamma_{j} e^{-\mathrm{i} H_{4} t}=\sqrt{\frac{2}{N}} \sum_{s= \pm} \sum_{k=1}^{N / 2} \exp \left(\mathrm{i} s(j-1) \theta_{k}+\mathrm{i} s \epsilon_{k} H_{2} t-\frac{\mathrm{i}}{2} \epsilon_{k}^{2} t\right) f_{k}^{s}
\end{aligned}
$$

Out-of-time order correlator (OTOC)

■ Infinite-T OTOC $(i \neq j)$

$$
\begin{aligned}
C_{i j}(t) & =\operatorname{Tr}\left[\gamma_{i}(t) \gamma_{j}(0) \gamma_{i}(t) \gamma_{j}(0)\right]=-\frac{4}{N^{2}} \sum_{k, \ell=1}^{N} \cos \left(\epsilon_{k} \epsilon_{\ell} t\right)+ \\
& =-\frac{2}{\pi}(\sin (4 t) \operatorname{Ci}(4 t)-\cos (4 t) \operatorname{si}(4 t)+\cdots)
\end{aligned}
$$

■ Early-time behavior

$$
C_{i j}(t) \sim-1+\frac{8}{\pi}(1-\log (4 t)-\gamma) t \quad(t \ll 1)
$$

Euler's constant

$$
\gamma=0.5772 \ldots
$$

- Different from the exponential growth in the original (disordered) SYK
- Late-time behavior $C_{i j}(t) \sim \frac{1}{2 \pi t}$
- Similar algebraic decay in other integrable models
Lin \& Motrunich, PRB 97 (2018); Bao \& Zhang (2020)

Numerical vs. analytical results

- $N=1000$ particles

Similar behavior in bipartite kicked rotor model Prakash \& Lakshminarayan, PRB 101 (2020)

Spectral form factor

- Definition

$$
g(t, \beta)=\left|\frac{\operatorname{Tr} e^{(\mathrm{it}-\beta) H_{4}}}{\operatorname{Tr} e^{-\beta H_{4}}}\right|^{2}
$$

■ Early-time behavior

- can be computed combinatorially

$$
g(t, 0)=1-\binom{N}{4} t^{2}+O\left(t^{4}\right)
$$

- Late-time behavior
- Yet to get a closed form
- But likely to be $g(t, 0) \simeq \frac{0.16}{N^{2} t}$
- Intermediate-time region
- Unlike the original SYK, no dip-ramp-plateau structure

Summary

- (Partial) List of integrable SYK models
- Clean Majorana SYK

$$
H_{4}=-\sum_{i<j<k<l} \gamma_{i} \gamma_{j} \gamma_{k} \gamma_{l}
$$

- Clean complex SYK

$$
H_{\mathrm{c} 4}=\sum_{j<i} \sum_{k<l} c_{i}^{\dagger} c_{j}^{\dagger} c_{k} c_{l}
$$

- Clean SUSY Majorana SYK

$$
Q_{3}=\mathrm{i} \sum_{i<j<k} \gamma_{i} \gamma_{j} \gamma_{k}, \quad H_{4}^{\mathrm{SUSY}}=\left(Q_{3}\right)^{2}
$$

- Clean SUSY Complex SYK

$$
Q_{\mathrm{c} 3}=\sum_{i<j<k} c_{i} c_{j} c_{k}, \quad H_{\mathrm{c} 4}^{\mathrm{SUSY}}=\left\{Q_{\mathrm{c} 3}, Q_{\mathrm{c} 3}^{\dagger}\right\}
$$

■ Discussed dynamics: OTOC \& spectral form factor

- Future directions
- Clean dissipative SYK? Integrable Lindblad master eq.? Kulkarni et al., PRB 106 (2022); Sa et al., PRR 4 (2022); Kawabata et al., PRB 108 (2023)
- Parafermionic extensions? $\quad \psi_{i} \psi_{j}=\omega \psi_{j} \psi_{i}(i<j), \quad \omega=\exp (2 \pi \mathrm{i} / N)$

Fractional SUSY? $\quad H=Q^{3}+\left(Q^{\dagger}\right)^{3}$
Bernard \& LeClair, PhysLett B 247 (1990); Fendley \& O'Brien, SciPost Phys. 9 (2020)

