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Quantum entanglement
Quantum entanglement lies at the heart of quantum physics.
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Entanglement characterizes quantum phases of matter:
・Quantum critical phenomena
・Topological phases

Entanglement also provides a foundation of thermalization or lack thereof.

Kaufman et al., Science 353, 794 (2016) Lukin et al., Science 364, 256 (2019)



Typical entanglement: Page curve
☆ Entanglement entropy of typical states in chaotic (nonintegrable) systems:
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Bianchi et al., PRX 
Quantum 3, 030201 (2022)

☆ Entanglement of typical Gaussian states in free fermions

single-particle quantum chaos and thermalization in free fermions

“free-fermion (Gaussian) Page curve”

☆ Relevant to black-hole physics (“Page curve”)
Page, PRL 71, 1291 (1993)

maximal and proportional to the volume of 
the subsystem (volume law)

thermalization

Liu et al., PRB 97, 245126 (2018); Bianchi et al., PRB 103, L241118 (2021)



Quantum chaos 3/24

Bohigas et al., PRL 52, 1 (1984)

☆ Quantum chaos manifests itself in spectral statistics.

・Nonintegrable quantum systems: random-matrix statistics

・Integrable quantum systems: Poisson statistics Berry & Tabor, Proc. R. Soc. A 
356, 375 (1977)

quantum chaos & thermalization



Altland-Zirnbauer symmetry
☆ Quantum chaos (random matrices) is classified by the tenfold AZ symmetry.

4/24

You et al., PRB 95, 115150 (2017)
Cotler et al., JHEP 2017, 118

Altland & Zirnbauer, PRB 55, 1142 (1997)

time reversal

☆ AZ symmetry is also relevant to the physics of free fermions.

・Anderson localization and transition
・Topological insulators and superconductors

particle hole

chiral 

e.g., Tenfold symmetry classification of the SYK model
symmetry-enriched behavior of quantum chaos



Quantum chaos (spectral statistics) is classified according to 
the tenfold Altland-Zirnbauer symmetry.

Motivation

Typical entanglement characterizes quantum chaos.

In general, little has been understood about the role of
symmetry in entanglement theory.

How does symmetry affect typical entanglement?



☆ We develop the tenfold classification of typical entanglement 
(free-fermion Page curves) based on AZ symmetry!

Relevant to symmetry-enriched quantum chaos and thermalization 
in free fermions.

Liu, Kudler-Flam & Kawabata, PRB 108, 085109 (2023)

Results
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2. Symmetry classification of typical 

quantum entanglement



Altland-Zirnbauer (AZ) symmetry
・Random free fermion (two-body complex Sachdev-Ye-Kitaev model)

Altland-Zirnbauer (AZ) symmetry classification Altland & Zirnbauer, PRB 55, 1142 (1997)

time reversal:

particle hole:

chiral:

(antiunitary)

(antiunitary)

(unitary)

Tenfold internal symmetry classes for Hermitian matrices

unitary matrices

Relevant to band insulators and superconductors
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Random matrix theory
☆ AZ symmetry classifies the universality classes of Hermitian random matrices.

・Time-reversal symmetry changes the bulk spectral correlations.

・Particle-hole or chiral symmetry changes the spectral correlations 
around zero eigenvalue.

cf. chiral symmetry breaking in QCD

cf. stability of zero modes in superconductors

Atas et al., PRL 110, 084101 (2013)

Threefold spectral correlations
(Wigner & Dyson)

Verbaarschot, PRL 72, 2531 (1994)

Beenakker, RMP 87, 1037 (2015)
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Random matrix theory

β: bulk (time-reversal symmetry)

α: zero (chiral or particle-hole symmetry)
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Topological insulators
☆ Periodic table of topological insulators and superconductors

Schnyder, Ryu, Furusaki & Ludwig, PRB 78, 195125 (2008); NJP 12, 065010 (2010)

Kitaev, AIP Conf. Proc. 1134, 22 (2009)
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Free-fermion Page curve (1) 10/24

We study typical entanglement entropy of random free fermions

Single-particle eigenstates are randomly chosen by the Haar measure

・Free-fermion (Gaussian) Page curve

Liu, Chen & Balents, PRB 97, 245126 (2018)
Bianchi, Hackl & Kieburg, PRB 103, L241118 (2021)

Free-fermion Page curve was studied without symmetry (i.e., class A or D)

We develop the tenfold classification of free-fermion 
Page curve based on AZ symmetry!

Effect of symmetry?

Bianchi et al., PRX Quantum 3, 030201 (2022)

Liu, Kudler-Flam & Kawabata, PRB 108, 085109 (2023)



Free-fermion Page curve (2) 11/24

☆ We numerically calculate the average and variance of entanglement entropy.
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☆ We derive the tenfold Page curves analytically, by the Weingarten calculus
for different symmetry classes.

(we focus on the half filling and half bipartition)

Tenfold different universal behavior!



Standard (Wigner-Dyson) class (1) 12/24

☆ Time-reversal symmetry

Class A: no symmetry → unitary U(N)

Class AI: TRS with +1 → orthogonal O(N)

Class AII: TRS with -1 → symplectic Sp(N)
(classifying spaces of single-particle eigenstates)

We take eigenstates Haar-randomly from U(N), O(N), and Sp(N)

The leading term ∝ N does not change even in the presence of TRS.
The constant term does depend on TRS.



Standard (Wigner-Dyson) class (2) 13/24

・Constant term of the average entanglement entropy

TRS with +1 decreases average entanglement
TRS with -1 increases average entanglement

・Variance of entanglement entropy

TRS with +1 (-1) increases (decreases) the variance of entanglement entropy
Consistent with the level repulsion in random matrices



Chiral class 14/24
☆ Chiral symmetry

(depending on time-reversal symmetry)

・Average entanglement entropy
The volume-law term does not change.
The constant term does depend on chiral symmetry:

・Variance of entanglement entropy

(twice larger than the standard class)



Bogoliubov-de Gennes (BdG) class 15/24
☆ Particle-hole symmetry

Classifying spaces:

・Classes D & C

・Classes CI & DIII
(random-matrix index for zero eigenvalue)



☆ We develop the tenfold classification of free-fermion Page curves 
based on AZ symmetry!

Relevant to symmetry-enriched quantum chaos and thermalization 
in free fermions.

Liu, Kudler-Flam & Kawabata, PRB 108, 085109 (2023)
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3. Weingarten calculus



Weingarten calculus (1) 17/24

The analytical approaches in the literature are not straightforward to
generalize in the presence of symmetry.

We use the symmetry-enriched versions of Weingarten calculus.
Collins, Int. Math. Res. Not. 2003, 953 (2003)

Collins & Śniady, Commun. Math. Phys. 264, 773 (2006)

As a special feature of free fermions, the entanglement entropy is
obtained from the single-particle correlation matrix: Peschel, J. Phys. A 36, L205 (2003)

(many-body eigenstate)
eigenspectrum of

(i.e., single-particle entanglement spectrum)

average entanglement
density of the ES



Weingarten calculus (2) 18/24

The average density is obtained from the resolvent:

resolvent

Thus, the calculations of average entanglement reduce to

systematically calculable by the Weingarten calculus

☆ Depending on different classifying spaces in different symmetry classes,
different types of the Weingarten functions are relevant.

Tenfold different values of typical entanglement entropy



Entanglement spectra 19/24

Standard class (A, AI & AII):

Chiral class (AIII, BDI & CII):

BdG class (D, DIII, C & CI):

Time-reversal symmetry:
global scaling of the entanglement spectrum

Chiral and particle-hole symmetries:
singular peaks at the center of the entanglement spectrum

(entanglement zero modes λ = 1/2)



Sachdev-Ye-Kitaev model 20/24
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Numerical results of the density of the single-particle entanglement spectrum
in the quadratic SYK model (N=100)

The singular peaks and dips are controlled by particle-hole symmetry
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4. Connection with mesoscopic 

condensed-matter physics



Anderson localization 21/24

☆ Typical entanglement has a similarity to mesoscopic transport phenomena!

・Anderson localization and transition

Abrahams et al., PRL 42, 673 (1979)

Anderson, PR 109, 1492 (1958)disorder induces localization of coherent waves

Anderson localization also leads to a continuous phase transition

[scaling theory]

: conductance

: length scale



Weak localization (quantum correction) 22/24

Perturbative expansion of the beta function around

Gor’kov et al., JETP Lett. 30, 228 (1979)
Altshuler et al., PRB 22, 5142 (1980)

Hikami et al., PTP 63, 707 (1980)

Average entanglement entropy (our present result):

Same dependence! Originating from the same theoretical mechanism?

Quantum correction
(relevant to Anderson transition)Drude term

(semiclassical)



Universal conductance fluctuations 23/24
・Universal conductance fluctuations

Washburn & Webb, Adv. 
Phys. 35, 375 (1986)

Variance in entanglement entropy:

Conductance fluctuations in
the diffusive regime:

Lee & Stone, PRL 55, 1622 (1985)
Altshuler, JETP Lett. 41, 648 (1985)

Same 1/β dependence!



We find that typical quantum entanglement has a similarity to 
mesoscopic transport phenomena in old condensed matter physics.

There, the transmission probability seems to hold a parallel role to 
the single-particle entanglement spectrum.

Mesoscopic transport phenomena: field theory of nonlinear sigma model

We may have a nonlinear sigma model description of typical entanglement.

Efetov, Supersymmetry in Disorder and Chaos (1996)

target space: classified by AZ symmetry



Summary

・We develop the tenfold classification of typical quantum entanglement 
(free-fermion Page curve) based on Altland-Zirnbauer symmetry.

・It is relevant to characterization of symmetry-enriched quantum chaos.

・Typical entanglement exhibits a similarity to mesoscopic transport.

Phys. Rev. B 108, 085109 (2023)


