Unconventional relaxaton dynamics in strongly correlated kagome systems Masataka Kawano Technical University of Munich arXiv:2307.13725

Frank Pollmann Michael Knap

Unconventional transports in kagome Anomalous Hall effect in low-T order on kagome Sn Sn G 4 5m) Mn 1010₃50 2 resistivity, T = 300 K-2 Hall -4 [Nakatsuji et al., Nature 2016] -6 -0.5 0.5 1.0 \mathbf{O} External magnetic field, B (T)

This work: Unconventional relaxation even in high-T disordered kagome with strong correlations

Strong-coupling limit [Pollmann et al., PRB 2014]

 $+ J \rangle S_r \cdot S_{r'}$ $(\boldsymbol{r},\boldsymbol{r'})$

$+ U \sum \hat{n}_{r,\uparrow} \hat{n}_{r,\downarrow} + V \sum \hat{n}_{r,\uparrow} \hat{n}_{r'}$

 $\langle {m r}, {m r}'
angle$

[Pollmann et al., PRB 2014]

Late-time relaxation dynamics Only determined by conservation laws [Doyon, Scipost 2020]

Cellular automaton circuit $\hat{U}(t) = \cdots \hat{U}_{ring} \hat{U}_{ring} \hat{U}_{spin} \hat{U}_{ring} \cdots$ ✓ Classically simulable Same conservation laws [Medenjak et al., PRL 2017], [Gopalakrishnan&Zakirov QST 2018], ...

Dynamic spin structure factor (J=0)

by the usual spin conservation law

$S(\boldsymbol{k},\omega) = \frac{1}{N} \sum_{n=1}^{\infty} \int dt \left\langle \hat{S}_{\boldsymbol{r}}^{z}(t) \hat{S}_{\boldsymbol{r}'}^{z}(0) \right\rangle e^{-i\boldsymbol{k}\cdot(\boldsymbol{r}-\boldsymbol{r}')+i\omega t}$

30.1

0.2

Dynamic spin structure factor (J=0)

r_r' 0.2 Strong response by the hidden spin 30.1 conservation law \tilde{v}'

Dynamic spin 0.2 p = 0structure factor 30.1 $\hat{U}(t) = \cdots \hat{U}_{\text{ring}} \hat{U}_{\text{spin}} \cdots$ 30.1 probability p 0.0 J/g 0.2 p = 0.06Э 0.1 Robust against small J/g 0.0

Spin autocorrelation function (J=0) $S(t) = \frac{1}{N} \sum \langle \hat{S}_r^z(t) \hat{S}_r^z(0) \rangle$ $= \frac{1}{N} \sum_{i=1}^{n} \operatorname{tr}[S(k,t)]$ $\simeq S_{\Gamma}(t) + S_{K\cup K'}(t)$

Unconventional scaling by the contribution from K and K' points

 10^{-4}

Hidden charge conservation laws

Conserved quantities ✓ Total charge along lines ✓ Total charge on triangles

[Pollmann et al., PRB 2014]

Charge relaxation dynamics ✓ Finite contribution to C(t) from K and K' points ✓ Strong responses in C(k,ω) near K and K' point

[Henley, JSP 1997] Effective field theory [Moessner&Sondhi, PRB 2003] Relaxation to uniform h(r) by an entropic effect $S[h(\boldsymbol{r})] = \frac{\pi}{18} \int d^2 \boldsymbol{r} \, (\boldsymbol{\nabla} h(\boldsymbol{r}))^2$

 $\frac{\partial}{\partial t}h(\boldsymbol{r},t) = -\gamma \frac{\delta S[h(\boldsymbol{r},t)]}{\delta h(\boldsymbol{r},t)} + \zeta(\boldsymbol{r},t)$

Randomly fluctuating force Damping force

 $n_{\ell}(\boldsymbol{r}) - \frac{2}{2} = \frac{1}{2}\partial_{\ell}h(\boldsymbol{r}) + \frac{1}{2}$

 $k_0 = K, -K'$ Rapidly modulated in space even when h(r) takes a uniform value

Comparison with numerical results

Almost perfectly reproduces the numerical results

Summary arXiv:2307.13725 Hidden conservation law and unconventional relaxation dynamics even in the high-temperature disordered kagome system by strong correlations

