AdS/BCFT from Bootstrap Construction of Gravity with particle & brane

Caltech Yuya Kusuki

Based on [2206.03035] & [2210.03107], a collaboration with Wei

Contents

Introduction

- Issues in AdS/BCFT
- Summary of Results
- Review
- Bootstrapping AdS/BCFT
- Construction of gravity with brane & particle
- Discussion

$$I_{grav} = -\frac{1}{16\pi G_N} \int_M d^3x \,\sqrt{g}(R - 2\Lambda) + \sum_i m_i \int dl_i - \frac{1}{8\pi G_N} \int_Q d^2x \,\sqrt{h}(K - T)$$

Semiclassical gravity ($c = \frac{3}{2G_N} \gg 1$) with massive particles and ETW branes

AdS with ETW brane $\partial(ETW) = bdy. of CFT$

What is less understood?

gravity with brane & particle itselfbrane self-intersection (more explained later)

What is less understood?

gravity with brane & particle itself

- brane self-intersection
- negative tension brane

How to understand worldline behind ETW brane

What is less understood?

gravity with brane & particle itself

- brane self-intersection
- negative tension brane
- how to deal with spinning particle

AdS/BCFT [Takayanagi] [Fujita, Takayanagi, Tonni]

$$I_{grav} = -\frac{1}{16\pi G_N} \int_M d^3x \,\sqrt{g} (R - 2\Lambda) + \sum_i m_i \int dl_i - \frac{1}{8\pi G_N} \int_Q d^2x \,\sqrt{h} (K - T)$$

Semiclassical gravity ($c = \frac{3}{2G_N} \gg 1$) with massive particles and ETW branes

Contents

- Introduction
- Review
 - Review of BCFT
- Bootstrapping AdS/BCFT
- Construction of gravity with brane & particle
- Discussion

Review of BCFT [Lewellen]

Contents

- Introduction
- Review
- Bootstrapping AdS/BCFT
 - How to bootstrap AdS/BCFT?
 - Results from bootstrap
- Construction of gravity with brane & particle
- Discussion

Issue in AdS/BCFT

Issue in AdS/BCFT Selfintersection? \bigcirc $\frac{c}{32} < h_i$ $0 < h_i < \frac{c}{32}$ $h_i = 0$

Massive particle produces deficit angle

$$\delta\theta = 8\pi G_N m$$
$$= 2\pi \left(1 - \sqrt{1 - \frac{c}{24}h_i}\right)$$

Pointed out by [Geng, Lust, Mishra, Wakeham] [Kawamoto, Mori, Suzuki, Takayanagi] [Bianchi, De Angelis, Meineri] The first one proposed that $h_i \in \left[\frac{c}{32}, \frac{c}{24}\right)$ should be excluded in holographic CFT

Setup

ETW brane

graviton interaction

MA

Q. What is input to solve bootstrap?

A. No interaction between particle and brane, except for gravitons. (No matter-brane interaction term in action)

boundary

Bootstrap

Property of this solution to Einstein's equation:

No interaction between particle and brane, except for gravitons. [Takayanagi], [Fujita, Takayanagi, Tonni], [Suzuki, Takayanagi]

CFT counterpart:

For states $\{p\}$ in OPE between ϕ_i s, (in large c)

$$C^a_{p\mathbb{I}} = \delta_{p\mathbb{I}}$$

Note: This is possible at least in the case $p \neq \overline{p}$.

Implication [YK]

$$c = 1 + 6Q^2,$$

$$h_i = \alpha_i (Q - \alpha_i)$$

Black Ho

Relation between ADM mass & mass of particle $h_{ADM} = \alpha_P (Q - \alpha_P), \qquad \alpha_P = 2\alpha_i$

It implies that black hole forms when

$$h_i \ge \frac{c}{32} \quad \Leftrightarrow \quad h_P \ge \frac{c}{24} \text{ (BTZ threshold)}$$

This completely matches selfintersection bound

 \rightarrow self-intersection can be avoided by blackhole formation

More results [YK, Wei]

The bootstrap also tells us the following theorems,

Relation between ADM mass & mass of spinning particle

$$\alpha_P = \alpha_i + \overline{\alpha_i}$$

Non-sensitivity to brane tension

The relation between ADM mass & particle mass is true even if brane tension is negative.

Negative tension brane

Transition?

[Bianchi, De Angelis, Meineri] has proposed that the boundary primary spectrum should be changed if the tension is negative,

and also proposed that this transition can be found by bootstrap.

 \Rightarrow Bootstrap answers "no transition"

Contents

- Introduction
- Review
- Bootstrapping AdS/BCFT
- Construction of gravity with brane & particle
 - Cut & Paste construction
 - Gravity with brane & particle
 - Gravity with spinning particle
 - Gravity with negative tension brane

• Discussion

How can we construct a conical defect geometry? \rightarrow very simple way by cut & paste

How can we construct a conical defect geometry? \rightarrow very simple way by cut & paste

$$I_{grav} = -\frac{1}{16\pi G_N} \int_M d^3x \sqrt{g} (R - 2\Lambda) + \sum_i m_i \int dl_i - \frac{1}{8\pi G_N} \int_Q d^2x \sqrt{h} (K - T)$$

How can we construct a conical defect geometry? \rightarrow very simple way by cut & paste

How can we construct a conical defect geometry? \rightarrow very simple way by cut & paste

How can we construct a conical defect geometry? \rightarrow very simple way by cut & paste

Circumference of asymptotic boundary 2π

Note: ADM mass is not scalar, so we should consider an appropriate coordinate to identify ADM mass as conformal dimension Rescale to compare with conformal dimension $\theta \to \theta' = \frac{1}{\chi}\theta$ $t \to t' = \frac{1}{\chi}t$

How can we construct a conical defect geometry? \rightarrow very simple way by cut & paste

$$E_{ADM} = \int_0^{2\pi} d\theta \ T_{tt} = -\frac{\chi^2}{8G_N}$$

This leads to the well-known relation,

$$E_{ADM} + E_{Casimir} = 2h_i$$

How can we construct a conical defect geometry with a brane?

 \rightarrow cut & paste in AdS/BCFT

How can we construct a conical defect geometry with a brane?

 \rightarrow cut & paste in AdS/BCFT

Circumference of asymptotic boundary $\pi(2\chi - 1)$

cut

How can we construct a conical defect geometry with a brane?

 \rightarrow cut & paste in AdS/BCFT

Circumference of asymptotic boundary π

Rescale to compare with conformal dimension $\theta \to \theta' = \frac{1}{2\chi - 1}\theta$ $t \to t' = \frac{1}{2\chi - 1}t$

How can we construct a conical defect geometry with a brane?

 \rightarrow cut & paste in AdS/BCFT

$$E_{ADM} = \int_0^{2\pi} d\theta \ T_{tt} = -\frac{(2\chi - 1)^2}{16G_N}$$

This leads to

 $E_{ADM} + E_{Casimir} = 2\alpha_i (Q - 2\alpha_i) \neq 2h_i$

Particle is attracted close to brane by gravity force. This interaction changes the ADM mass.

Implication [YK]

$$c = 1 + 6Q^2,$$

$$h_i = \alpha_i (Q - \alpha_i)$$

Relation between ADM mass & mass of particle $h_{ADM} = \alpha_P (Q - \alpha_P), \qquad \alpha_P = 2\alpha_i$

It implies that black hole forms when

$$h_i \ge \frac{c}{32} \quad \Leftrightarrow \quad h_P \ge \frac{c}{24} \text{ (BTZ threshold)}$$

This completely matches selfintersection bound

 \rightarrow self-intersection can be avoided by blackhole formation

Black Hole

How can we construct a spinning defect geometry? \rightarrow cut & twisted paste

How can we construct a spinning defect geometry?

How can we construct a spinning defect geometry? \rightarrow cut & twisted paste

By this construction, we obtain the selfintersection bound in the spinning defect geometry,

 $(\chi_+ + \chi_i)\pi < \pi$

This matches the black hole threshold predicted from bootstrap.

More results [YK, Wei]

The bootstrap also tells us the following theorems,

Relation between ADM mass & mass of spinning particle

$$\alpha_P = \alpha_i + \overline{\alpha_i}$$

Then, the black hole threshold is $\alpha_i + \overline{\alpha_i} = \frac{Q}{2}$

One-point function

Twisted identification leads to mismatch of brane. Such a singular configuration is not a solution. This explains

 $\langle O \rangle_{disk} = 0 \text{ if } h \neq \overline{h}$

from the gravity side.

Negative tension brane

Transition?

[Bianchi, De Angelis, Meineri] has proposed that the boundary primary spectrum should be changed if the tension is negative,

and also proposed that this transition can be found by bootstrap.

 \Rightarrow Bootstrap answers "no transition"

How can we construct a conical defect geometry with a negative tension brane? → cut & paste in AdS/BCFT

How can we construct a conical defect geometry with a negative tension brane? → cut & paste in AdS/BCFT

How can we construct a conical defect geometry with a negative tension brane? → cut & paste in AdS/BCFT

How can we construct a conical defect geometry with a negative tension brane?

 \rightarrow cut & paste in AdS/BCFT

$$E_{ADM} = \int_0^{2\pi} d\theta \ T_{tt} = -\frac{(2\chi - 1)^2}{16G_N}$$

This leads to

$$E_{ADM} + E_{Casimir} = 2\alpha_i (Q - 2\alpha_i)$$

While the brane configuration looks sensitive to sign of tension, ADM mass is not sensitive to whether tension is positive or negative.

Negative tension brane

The singularity behind the ETW brane appears as a corner defect on the ETW brane.

This construction gives results consistent with conformal bootstrap.

Contents

- Introduction
- Review
- Bootstrapping AdS/BCFT
- Construction of gravity with brane & particle
- Discussion

Discussion

• More bootstrapping AdS/BCFT ?

We have six fundamental bootstrap equations in BCFT, but we only use one of them. We may be able to give more consistency conditions on branes from others.

• Spinning particle

We present a way to induce spinning defects on gravity with branes. This can be applied to study more various setups including spinning particles

- Wormholes in AdS/BCFT
- Insights into braneworld holography
- Higher dimensional generalization

Appendix

AdS/BCFT

What is less understood?

gravity with brane & particle itself

- brane self-intersection
- negative tension brane
- how to deal with spinning particle

Why less understood?

We need details deep into the bulk,
unlike a common case where FG expansion works.
→ we need to solve Einstein eq. explicitly.
→ this is difficult & complicated.

Review of BCFT

×

×j

🖌 i

×k

K

 $\equiv C_{ijk}$ Bulk-bulk-bulk OPE coefficient

 $\equiv C_{iP}$ Bulk-boundary OPE coefficient

 $\equiv C_{IJK}$ Bdy-bdy-bdy OPE coefficient ho(h,h)Bulk primary spectrum

 $\rho^{bdy}(h)$ Bdy primary spectrum

g Boundary entropy

New ingredient (boundary primary)

Primary operator living on boundary, which can change boundary condition. Same transformation law under conformal mapping.

Review of BCFT

= Energy corresponding to the state on the strip

Analytic Bootstrap

bootstrap

q

vacuum block approximation by $z, \overline{z} \rightarrow 0$ (Cardy formula) $\overline{z} \rightarrow 0$ (large-spin)

 $\mathbf{r} \mathcal{F}_{ii}^{ii}(0|1-z)$

×

Analytic Bootstrap in BCFT

Universal formula in BCFT

×i

×j

× i

×k

K

[Collier, Maloney, Maxfield, Tsiares]

 $\equiv C_{ijk}$ Bulk-bulk-bulk OPE coefficient

[YK], [Numasawa, Tsiares]

 $\equiv C_{iP}$ Bulk-boundary OPE coefficient

[YK], [Numasawa, Tsiares]

 $\equiv C_{IJK}$ Bdy-bdy-bdy OPE coefficient

[Cardy] $\rho(h,h)$ **Bulk primary spectrum** [YK], [Numasawa, Tsiares] $\rho^{bdy}(\overline{h})$ **Bdy primary spectrum** [Collier, Mazac, Wang] \mathcal{G} Boundary entropy

Note:

 $\mathcal{F}_{\overline{n}}^{ji}(p|z) = \text{Virasoro block.}$

Because Ward id (with bdy) is equivalent to Ward id (without bdy) by mirror method

Note:

 $\mathcal{F}_{\overline{n}}^{ji}(p|z) = \text{Virasoro block.}$

Because Ward id (with bdy) is equivalent to Ward id (without bdy) by mirror method

$$\sum_{p,\bar{p},N,\bar{N}} \langle \phi_i | \phi_j | L_{-N} \phi_p \rangle \langle \phi_{\bar{\imath}} | \phi_{\bar{\jmath}} | L_{-\bar{N}} \phi_{\bar{p}} \rangle \langle L_{-N} L_{-\bar{N}} \phi_{p,\bar{p}} \rangle_{disk}$$

$$= \sum_{p,\bar{p},N,\bar{N}} \langle \phi_i | \phi_j | L_{-N} \phi_p \rangle \langle \phi_{\bar{\imath}} | \phi_{\bar{\jmath}} | L_{-\bar{N}} \phi_{\bar{p}} \rangle \langle L_{-N} \phi_p | L_{-\bar{N}} \phi_{\bar{p}} \rangle$$

$$= \sum_{p,N} \langle \phi_i | \phi_j | L_{-N} \phi_p \rangle \langle \phi_{\bar{\imath}} | \phi_{\bar{\jmath}} | L_{-N} \phi_p \rangle$$