AdS/BCET from Bootstrap Construction of Gravity with particle \& brane

Caltech

Yuya Kusuki

Based on [2206.03035] \& [2210.03107], a collaboration with Wei

Confents

o Introduction

- Issues in AdS/BCFT
- Summary of Results
o Review
- Bootstrapping AdS/BCFT
o Construction of gravity with brane \& particle
o Discussion

Graviły with brane

$$
I_{\text {grav }}=-\frac{1}{16 \pi G_{N}} \int_{M} d^{3} x \sqrt{g}(R-2 \Lambda)+\sum_{i} m_{i} \int d l_{i}-\frac{1}{8 \pi G_{N}} \int_{Q} d^{2} x \sqrt{h}(K-T)
$$

Semiclassical gravity ($c=\frac{3}{2 G_{N}} \gg 1$) with massive particles and ETW branes

Graviły with brane

Tension:

Assuming for boundary matter Lagrangian to be constant

$$
I_{g r a v}=-\frac{1}{16 \pi G_{N}} \int_{M} d^{3} x \sqrt{g}(R-2 \Lambda)+\sum_{i} m_{i} \int d l_{i}-\frac{1}{8 \pi G_{N}} \int_{Q} d^{2} x \sqrt{h}(K-T)
$$

Induced metric: $h_{\mu \nu}=g_{\mu \nu}-n_{\mu} n_{\nu}$, Extrinsic curvature: $K_{\mu \nu}=h_{\mu}{ }^{\rho} h_{\nu}{ }^{\lambda} \nabla_{\rho} n_{\lambda}$

Neumann b.c. is imposed on the brane (Einstein eq. of brane).

$$
K_{a b}-K h_{a b}=-T h_{a b}
$$

AdS with ETW brane o (ETW) = bdy. of CFT

Graviły with brane

What is less understood?

gravity with brane \& particle itself

- brane self-intersection (more explained later)
brane is bent by particle

self-intersection

Graviły with brane

What is less understood?

gravity with brane \& particle itself

- brane self-intersection
- negative tension brane

How to understand worldline behind ETW brane

Graviły with brane

What is less understood?

gravity with brane \& particle itself

- brane self-intersection
- negative tension brane
- how to deal with spinning particle

AdS/BCFT

$$
I_{g r a v}=-\frac{1}{16 \pi G_{N}} \int_{M} d^{3} x \sqrt{g}(R-2 \Lambda)+\sum_{i} m_{i} \int d l_{i}-\frac{1}{8 \pi G_{N}} \int_{Q} d^{2} x \sqrt{h}(K-T)
$$

Semiclassical gravity $\left(c=\frac{3}{2 G_{N}} \gg 1\right)$ with massive particles and ETW branes

BCFT_{2} BCFT

Confents

o Introduction
o Review

- Review of BCFT
o Bootstrapping AdS/BCFT
o Construction of gravity with brane \& particle
- Discussion

Review of BCFT

Review of BCFT

$\sum_{p} C_{p 0} C_{i j p}^{\mathcal{F}_{\bar{\jmath}}^{j i}}(p \mid z)$
$\mathcal{F}_{\bar{l}}^{j i}$ is fixed by conformal sym. \& mirror method

Review

or equivalently, using bulk-boundary OPE

$$
\phi_{i}(z) \sim \sum_{P} c_{i P}(2 \Im z)^{h_{P}-h_{i}-\bar{h}_{i}} \phi_{P}(\Re z)+\cdots
$$

Cutting:
Inserting (boundary operator) complete set

Review of BCFT

$$
\sum_{P} C_{i P} C_{j P} \mathcal{F}_{\vec{l}}^{j i}(P \mid z)
$$

bulk-boundary OPE coef.

Cutting:
Inserting (boundary operator) complete set

Review of BCFT

[Lewellen]

Confents

○ Introduction
o Review
o Bootstrapping AdS/BCFT

- How to bootstrap AdS/BCFT?
- Results from bootstrap
o Construction of gravity with brane \& particle
- Discussion

Issue in AdS/BCFT

Issue in AdS/BCFT

Selfintersection?

$$
h_{i}=0
$$

Massive particle produces deficit angle

$$
\delta \theta=8 \pi G_{N} m
$$

$=2 \pi\left(1-\sqrt{1-\frac{c}{24} h_{i}}\right)$

$$
0<h_{i}<\frac{c}{32}
$$

$$
\frac{c}{32}<h_{i}
$$

Pointed out by
[Geng, Lust, Mishra, Wakeham] [Kawamoto, Mori, Suzuki, Takayanagi]
[Bianchi, De Angelis, Meineri]
The first one proposed that $h_{i} \in\left[\frac{c}{32}, \frac{c}{24}\right)$ should be excluded in holographic CFT

Sełup

ρ (=bulk direction)
boundary

Sełup

Boołstrap

Property of this solution to Einstein's equation:
No interaction between particle and brane, except for gravitons.
[Takayanagi], [Fujita, Takayanagi, Tonni], [Suzuki, Takayanagi]

CFT counterpart:
For states $\{p\}$ in OPE between $\phi_{i} \mathrm{~s}$, (in large c)

$$
C_{p \mathbb{I}}^{a}=\delta_{p \mathbb{I}}
$$

Note: This is possible at least in the case $p \neq \bar{p}$.

Bootstrap
 mass
 bootstrap

$=\sum_{p} C_{p 0} C_{i i p} \mathcal{F}_{i i}^{i i}(p \mid 1-z)$

Boołstrap mass
 bootstrap

 "
 $=\mathcal{F}_{i i}^{i i}(0 \mid 1-z)$
 By assumption

Bootstrap mass
 bootstrap

Bootstrap

bootstrap

"

Now it is expressed in terms of the same basis

$$
\sum_{P} C_{i P} C_{j p} \mathcal{F}_{\pi}^{j i}(P \mid z)
$$

It is possible to extract OPE coef. by the coefficient comparison.

 By assumption

Bootstrap

bootstrap

"

Now it is expressed in terms of the same basis

$$
\sum_{P} c_{i P} C_{j p} \mathcal{F}_{\pi}^{j i}(P \mid z)
$$

It is possible to extract the spectrum from the support of the fusion kernel.
$=\mathcal{F}_{i i}^{i i}(0 \mid 1-z)=\int \mathrm{d} \alpha_{\rho} F_{o p}\left[{ }_{i}^{i}{ }_{i}^{i} \mathcal{F}_{i t}^{\tilde{H}(P \mid z)}\right.$

By assumption

Bootstrap

 ADM mass = lowest primary dimension
 $$
\alpha_{P}=2 \alpha_{i}
$$
 4
 $=\mathcal{F}_{i i}^{i i}(0 \mid 1-z)=\int \mathrm{d} \alpha_{P} F_{0 P}\left[\begin{array}{cc}i & i \\ i & i\end{array}\right] \mathcal{F}_{i i}^{i i}(P \mid z)$
 By assumption
 Fusion transformation

$$
\begin{aligned}
& c=1+6 Q^{2}, \\
& h_{i}=\alpha_{i}\left(Q-\alpha_{i}\right)
\end{aligned}
$$

Relation between ADM mass \& mass of particle

$$
h_{A D M}=\alpha_{P}\left(Q-\alpha_{P}\right), \quad \alpha_{P}=2 \alpha_{i}
$$

It implies that black hole forms when

$$
h_{i} \geq \frac{c}{32} \Leftrightarrow h_{P} \geq \frac{c}{24} \text { (BTZ threshold) }
$$

This completely matches selfintersection bound
\rightarrow self-intersection can be avoided by blackhole formation

More results $\mathrm{ckx}_{\mathrm{ck}}$

The bootstrap also tells us the following theorems,
Relałion bełween ADM mass \& mass of spinning particle

$$
\alpha_{P}=\alpha_{i}+\bar{\alpha}_{i}
$$

Non-sensiłiviły to brane łension
The relation between ADM mass \& particle mass is true even if brane tension is negative.

Negałive łension brane

How to understand worldline behind ETW

Decreasing tension

Transition?

[Bianchi, De Angelis, Meineri] has proposed that the boundary primary spectrum should be changed if the tension is negative, and also proposed that this transition can be found by bootstrap.
\Rightarrow Bootstrap answers "no transition"

Confents

- Introduction
o Review
o Bootstrapping AdS/BCFT
o Construction of gravity with brane \& particle
- Cut \& Paste construction
- Gravity with brane \& particle
- Gravity with spinning particle
- Gravity with negative tension brane
o Discussion

Cuł \& Pasłe consłruction

How can we construct a conical defect geometry?
\rightarrow very simple way by cut \& paste

Cuł \& Pasłe construction

How can we construct a conical defect geometry?
\rightarrow very simple way by cut \& paste

Deficit angle $\delta \theta=8 \pi G_{N} m$

Cuł \& Pasłe construction

$$
I_{\text {grav }}=-\frac{1}{16 \pi G_{N}} \int_{M} d^{3} x \sqrt{g}(R-2 \Lambda)+\sum_{i} m_{i} \int d l_{i}-\frac{1}{8 \pi G_{N}} \int_{Q} d^{2} x \sqrt{h}(K-T)
$$

Cuł \& Pasłe construction

How can we construct a conical defect geometry?
\rightarrow very simple way by cut \& paste

Deficit angle $\delta \theta=8 \pi G_{N} m$

Cuł \& Pasłe construction

How can we construct a conical defect geometry?
\rightarrow very simple way by cut \& paste

Cuł \& Pasłe construction

How can we construct a conical defect geometry?
\rightarrow very simple way by cut \& paste

Cuł \& Pasłe construction

How can we construct a conical defect geometry?
\rightarrow very simple way by cut \& paste

$$
E_{A D M}=\int_{0}^{2 \pi} d \theta T_{t t}=-\frac{\chi^{2}}{8 G_{N}}
$$

This leads to the well-known relation,

$$
E_{A D M}+E_{\text {Casimir }}=2 h_{i}
$$

Cuł \& Pasłe construction

How can we construct a conical defect geometry with a brane?
\rightarrow cut \& paste in AdS/BCFT

Cuł \& Pasłe construction

How can we construct a conical defect geometry with a brane?
\rightarrow cut \& paste in AdS/BCFT
 asymptotic boundary

$$
\pi(2 \chi-1)
$$

Cuł \& Pasłe construction

How can we construct a conical defect geometry with a brane?
\rightarrow cut \& paste in AdS/BCFT

Circumference of asymptotic boundary π

Rescale to compare with conformal dimension

$$
\begin{aligned}
\theta \rightarrow \theta^{\prime} & =\frac{1}{2 \chi-1} \theta \\
t \rightarrow t^{\prime} & =\frac{1}{2 \chi-1} t
\end{aligned}
$$

Cuł \& Pasłe construction

How can we construct a conical defect geometry with a brane?
\rightarrow cut \& paste in AdS/BCFT

$$
E_{A D M}=\int_{0}^{2 \pi} d \theta T_{t t}=-\frac{(2 \chi-1)^{2}}{16 G_{N}}
$$

This leads to

$$
E_{A D M}+E_{\text {Casimir }}=2 \alpha_{i}\left(Q-2 \alpha_{i}\right) \neq 2 h_{i}
$$

Particle is attracted close to brane by gravity force. This interaction changes the ADM mass.

$$
\begin{aligned}
& c=1+6 Q^{2}, \\
& h_{i}=\alpha_{i}\left(Q-\alpha_{i}\right)
\end{aligned}
$$

Relation between ADM mass \& mass of particle

$$
h_{A D M}=\alpha_{P}\left(Q-\alpha_{P}\right), \quad \alpha_{P}=2 \alpha_{i}
$$

It implies that black hole forms when

$$
h_{i} \geq \frac{c}{32} \Leftrightarrow h_{P} \geq \frac{c}{24} \text { (BTZ threshold) }
$$

This completely matches selfintersection bound
\rightarrow self-intersection can be avoided by blackhole formation

Cuł \& Pasłe construction

How can we construct a spinning defect geometry?
\rightarrow cut \& twisted paste

Cut \& Paste construction

How can we construct a spinning defect geometry?
\rightarrow cut \& twisted paste

$$
\chi_{ \pm}=\sqrt{1-\frac{24}{c} h_{ \pm}}
$$

$$
t=t_{0}-\left(\chi_{+}-\chi_{-}\right) \pi
$$

$$
t=t_{0}
$$

$$
t=t_{0}+\left(\chi_{+}-\chi_{-}\right) \pi
$$

Cuł \& Pasłe construction

How can we construct a spinning defect geometry?
\rightarrow cut \& twisted paste
By this construction, we obtain the selfintersection bound in the spinning defect geometry,

$$
\left(\chi_{+}+\chi_{i}\right) \pi<\pi
$$

This matches the black hole threshold predicted from bootstrap.

More results $\mathrm{ckx}_{\mathrm{ck}}$

The bootstrap also tells us the following theorems, Relałion bełween ADM mass \& mass of spinning particle

$$
\alpha_{P}=\alpha_{i}+\bar{\alpha}_{i}
$$

Then, the black hole threshold is

$$
\alpha_{i}+\bar{\alpha}_{i}=\frac{Q}{2}
$$

One-point function

Twisted identification leads to mismatch of brane.
Such a singular configuration is not a solution.
This explains

$$
\langle O\rangle_{\text {disk }}=0 \text { if } h \neq \bar{h}
$$

from the gravity side.

Negałive łension brane

How to understand worldline behind ETW

Decreasing tension

Transition?

[Bianchi, De Angelis, Meineri] has proposed that the boundary primary spectrum should be changed if the tension is negative, and also proposed that this transition can be found by bootstrap.
\Rightarrow Bootstrap answers "no transition"

Cuł \& Pasłe construction

How can we construct a conical defect geometry with a negative tension brane?
\rightarrow cut \& paste in AdS/BCFT

Cuł \& Pasłe construction

How can we construct a conical defect geometry with a negative tension brane?
\rightarrow cut \& paste in AdS/BCFT

Cuł \& Pasłe construction

How can we construct a conical defect geometry with a negative tension brane?
\rightarrow cut \& paste in AdS/BCFT

Cuł \& Pasłe construction

$$
\begin{aligned}
I_{g r a v}= & -\frac{1}{16 \pi G_{N}} \int_{M} d^{3} x \sqrt{g}(R-2 \Lambda)+\sum_{i} m_{i} \int d l_{i}-\frac{1}{8 \pi G_{N}} \int_{Q} d^{2} x \sqrt{h}(K-T) \\
& -\frac{1}{8 \pi G_{N}} \int_{C} \sqrt{\eta}\left(\Theta-T_{C}\right) \quad \begin{array}{l}
\eta_{\mu v}: \text { induced metric on } C \\
\begin{array}{l}
\Theta \text { internal angle between } \\
\text { branes } \\
T_{C}: \text { tension of corner defect }
\end{array}
\end{array} .
\end{aligned}
$$

Note:

Generalized Hayward term has additional parameter T_{C}.

However, for the action to give solutions, T_{C} is dynamically determined by T and m_{i}

Cuł \& Pasłe construction

How can we construct a conical defect geometry with a negative tension brane?
\rightarrow cut \& paste in AdS/BCFT

$$
E_{A D M}=\int_{0}^{2 \pi} d \theta T_{t t}=-\frac{(2 \chi-1)^{2}}{16 G_{N}}
$$

This leads to

$$
E_{A D M}+E_{\text {Casimir }}=2 \alpha_{i}\left(Q-2 \alpha_{i}\right)
$$

While the brane configuration looks sensitive to sign of tension, ADM mass is not sensitive to whether tension is positive or negative.

Negative łension brane

The singularity behind the ETW brane appears as a corner defect on the ETW brane.

This construction gives results consistent with conformal bootstrap.

Contents

o Introduction
o Review
o Bootstrapping AdS/BCFT
o Construction of gravity with brane \& particle
o Discussion

Discussion

- More bootstrapping AdS/BCFT ?

We have six fundamental bootstrap equations in BCFT, but we only use one of them. We may be able to give more consistency conditions on branes from others.

- Spinning particle

We present a way to induce spinning defects on gravity with branes. This can be applied to study more various setups including spinning particles

- Wormholes in AdS/BCFT
- Insights into braneworld holography
- Higher dimensional generalization

Appendix

AdS/BCFT

What is less understood?

gravity with brane \& particle itself

- brane self-intersection
- negative tension brane
- how to deal with spinning particle

Why less understood?

We need details deep into the bulk, unlike a common case where FG expansion works.
\rightarrow we need to solve Einstein eq. explicitly.
\rightarrow this is difficult \& complicated.

Review of BCFT

BCFT data (information to evaluate correlators)

$\rho(h, h)$
Bulk primary spectrum
$\rho^{b d y}(h)$
Bdy primary spectrum
g
Boundary entropy

Review of BCFT

i: bulk
I: boundary

New ingredient (boundary primary)
Primary operator living on boundary, which can change boundary condition.
Same transformation law under conformal mapping.

Review of BCFT

1

Conformal weight of $\boldsymbol{\phi}_{I}^{a b}$
= Energy corresponding to the state on the strip

Boołstrap

Analytic Bootstrap

Analytic Bootstrap

Analytic Bootstra

Now it is expressed in terms of the same basis

$$
\int \mathrm{d} \alpha_{q} C_{i i q}^{2}\left|\mathcal{F}_{i i}^{i i}(q \mid z)\right|^{2}
$$

It is possible to extract OPE coef. by the coefficient comparison.

bootstrap

$$
\simeq \mathcal{F}_{i i}^{i i}(0 \mid 1-z) \rightleftharpoons \int \mathrm{d} \alpha_{q} F_{0 q}\left[\begin{array}{cc}
i & i \\
i & i
\end{array} \mathcal{F}_{i i}^{i i}(q \mid z)\right.
$$

Analytic Bootstrap

Analyłic Boołstrap in BCFT

Universal formula in BCFT	$\rho(h, h)$ Bulk primary spectrum [YK], [Numasawa, Tsiares] $\rho^{b d y}(h)$ Bdy primary specłrum [Collier, Mazac, Wang] g Boundary entropy

Review of BCFT

$$
\sum_{p} C_{p 0} C_{i j p} \mathcal{F}_{\overline{J l}}^{j i}(p \mid z)
$$

Note:

$\mathcal{F}_{\vec{J}}^{j i}(p \mid z)=$ Virasoro block.
Because Ward id (with bdy) is equivalent to Ward id (without bdy) by mirror method

kinematic part = conformal block

Review of BCFT

$$
\sum_{p} c_{r_{00} c_{i v} p_{N}^{J}(p|z| z)}
$$

Note:

$$
\mathcal{F}_{\mathcal{J l}}^{j i}(p \mid z)=\text { Virasoro block. }
$$

Because Ward id (with bdy) is equivalent to Ward id (without bdy) by mirror method

$$
\begin{aligned}
& \left.\sum_{p, \bar{p}, N}\left\langle\phi_{i}\right| \phi_{j}\left|L_{-N} \phi_{p}\right\rangle\left\langle\phi_{i}\right| \phi_{j}\left|L_{-N} \phi_{\bar{p}}\right\rangle L_{-N} L_{-N} \phi_{p i p}\right\rangle_{d i s k} \\
& =\sum_{p, p, N}\left\langle\phi_{i}\right| \phi_{j}\left|L_{-N} \phi_{p}\right\rangle\left\langle\phi_{i}\right| \phi_{\bar{j}}\left|L_{-N} \phi_{\bar{p}}\right\rangle\left\langle L_{-N} \phi_{p} \mid L_{-N} \phi_{\bar{p}}\right\rangle \\
& \left.=\sum_{p N}\left\langle\phi_{i}\right| \phi_{j}\left|L_{-N} \phi_{p}\right\rangle \phi_{i}\left|\phi_{j}\right| L_{-N} \phi_{p}\right\rangle
\end{aligned}
$$

