Three ways of calculating mass spectra for composite particles in the Hamiltonian formalism

- collaboration with
- Akira Matsumoto (YITP, Kyoto U, RIKEN iTHEMS) Etsuko Itou (YITP, Kyoto U, RIKEN iTHEMS) and Yuya Tanizaki (YITP, Kyoto U)

arXiv:2307.16655

Quantum Information and Theoretical Physics, 6 Oct. 2023 @YITP

Simulating QFT in Hamiltonian formalism

How to compute physical observables of gauge theory (QCD) efficiently in Hamiltonian formalism?

mass of composite particle in QCD (hadron)

u/d quark: 2~5 MeV proton (uud): 938 MeV >> $2m_u + m_d$

- non-perturbative calculation by lattice Monte Carlo method (Lagrangian formalism)
- hadron mass is obtained from imaginary-time correlation fn.

[lida et al. (2021)]

FIG. 24 (color online). Light hadron spectrum extrapolated to the physical point using m_{π} , m_{K} and m_{Ω} as input. Horizontal bars denote the experimental values.

[PACS-CS collab. (2009)]

Composite particles in the 2-flavor Schwinger model

<u>Schwinger model = quantum electrodynamics in 1+1d</u>

the simplest nontrivial gauge theory sharing some features with QCD

$$\mathscr{L} = -\frac{1}{4g^2} F_{\mu\nu} F^{\mu\nu} + \frac{\theta}{4\pi} \epsilon_{\mu\nu} F^{\mu\nu} + \sum_{f=1}^{N_f} \left[i\bar{\psi}_f \gamma^\mu \left(\partial_\mu + iA_\mu \right) \psi_f - m\bar{\psi}_f \psi_f \right]$$

<u>quantum numbers</u>

- isospin J: SU(2) acting on the flavor doublet
- parity P
- G-parity $G = Ce^{i\pi J_y}$: generalization of C

$$\begin{aligned} \pi &= -i\left(\bar{\psi}_{1}\gamma^{5}\psi_{1} - \bar{\psi}_{2}\gamma^{5}\psi_{2}\right) : \ J^{PG} = 1^{-1} \\ \eta &= -i\left(\bar{\psi}_{1}\gamma^{5}\psi_{1} + \bar{\psi}_{2}\gamma^{5}\psi_{2}\right) : \ J^{PG} = 0^{-1} \\ \sigma &= \bar{\psi}_{1}\psi_{1} + \bar{\psi}_{2}\psi_{2} \qquad : \ J^{PG} = 0^{++} \end{aligned}$$

╋

Short summary

- three distinct methods for computing the mass spectrum
 - (1) correlation-function scheme conventional method in lattice QCD
 - (2) one-point-function scheme make good use of the boundary effect
 - (3) dispersion-relation scheme obtain the excited states directly
- demonstration in the 2-flavor Schwinger model using tensor network (DMRG)
- results of the three methods are consistent with each other

Calculation strategy

Hamiltonian on the lattice (staggered fermion + open boundary)

$$H = \frac{g^2 a}{2} \sum_{n=0}^{N-2} \left(L_n + \frac{\theta}{2\pi} \right)^2 + \sum_{f=1}^{N_f} \left[\frac{-i}{2a} \sum_{n=0}^{N-2} \left(\chi_{f,n}^{\dagger} U_n \chi_{f,n+1} - \chi_{f,n+1}^{\dagger} U_n^{\dagger} \chi_{f,n} \right) + m_{\text{lat}} \sum_{n=0}^{N-1} (-1)^n \chi_{f,n}^{\dagger} \chi_{f,n} \right]$$

- . solving Gauss law condition to remove L_n
- gauge fixing to $U_n = 1$
- •

ordan-Wigner transformation for Nf=2

$$\chi_{1,n} = \sigma_{1,n}^{-1} \prod_{j=0}^{n-1} (-\sigma_{2,j}^z \sigma_{1,j}^z), \quad \chi_{2,n} = \sigma_{2,n}^{-} (-i\sigma_{1,n}^z) \prod_{j=0}^{n-1} (-\sigma_{2,j}^z \sigma_{1,j}^z)$$

[Kogut & Susskind (1975)] [Dempsey et al. (2022)]

Density-matrix renormalization group (DMRG)

variational method to find eigenstates of H using MPS ansatz

- cost function: energy $E = \langle \Psi | H | \Psi \rangle$
- update $A_i(s_i)$ to decrease E
- introduce a cutoff ε to control the accuracy singular values smaller than ε are neglected in SVD (small ε = large D_i = high accuracy)

 ℓ -th excited state $|\Psi_{\ell}\rangle \longrightarrow \text{cost func}$

The C++ library of ITensor is used in this work. [Fishman et al. (2022)] $-\frac{1}{12}$

[White (1992)] [Schollwock (2005)]

$$|\Psi\rangle = \sum_{\{s_i\}} \operatorname{Tr} \left[A_0(s_0) A_1(s_1) \cdots \right] |s_0 s_1|$$

 $A_i(s_i)$: $D_{i-1} \times D_i$ matrix

 D_i : bond dimension

tion:
$$\langle \Psi_{\ell} | H | \Psi_{\ell} \rangle + W \sum_{\ell'=0}^{\ell-1} \left| \langle \Psi_{\ell'} | \Psi_{\ell} \rangle \right|^2$$

$\cdots \rangle$

Simulation result ($\theta = 0$)

- (1) Correlation-function scheme
- (2) One-point-function scheme
- (3) Dispersion-relation scheme

Simulation result ($\theta = 0$)

(1) Correlation-function scheme

(2) One-point-function scheme

(3) Dispersion-relation scheme

(1) correlation-function scheme

- spatial correlation: $C_{\pi}(r) = \langle \pi(x)\pi(y) \rangle$
- effective mass: $M_{\pi,\text{eff}}(r) = -\frac{d}{dr} \log C_{\pi}(r)$, r = |x y|
- plateau value = pion mass? plateau behavior gets modified in accurate calc. $\varepsilon = 10^{-10} (D_i \sim 400)$: $M_{\pi, eff}(r)$ is almost flat $\epsilon = 10^{-16} (D_i \sim 2800)$: $M_{\pi, eff}(r)$ depends on r
- What's happened?

Yukawa-type correlation $\rightarrow 1/r$ term

- massless Nf=1 Schwinger model (exactly solvable)

• $r \rightarrow \infty$ extrapolation is required

(1+1)d free particle with mass *M*: $\langle \phi(x,t)\phi(y,t)\rangle \sim \frac{1}{\sqrt{Mr}}e^{-Mr} \longrightarrow M_{\text{eff}}(r) \sim \frac{\alpha}{r} + M$

Result of the Nf=2 model

extrapolate the effective mass to $r \to \infty$ using the result for $\varepsilon = 10^{-16}$

$$\pi = -i\left(\bar{\psi}_1\gamma^5\psi_1 - \bar{\psi}_2\gamma^5\psi_2\right) \qquad \sigma =$$

	pion	sigma	eta
Μ	0.431(1)	0.722(6)	0.899(2)
α	0.477(9)	0.83(5)	0.51(2)

Simulation result ($\theta = 0$)

(1) Correlation-function scheme

(2) One-point-function scheme

(3) Dispersion-relation scheme

(2) one-point-fn. scheme (eta & sigma)

- At $\theta = 0$, the open boundary can be a source of iso-singlet states. (~wall source)
- one-point function: $\langle \mathcal{O}(x) \rangle \sim \langle bdry | \mathcal{O}(x) | 0 \rangle \sim e^{-Mx}$

boundary state

ε-dependence is NOT observed

truncating $D_{\rm eff}$ is sufficiently small

• eta: M = 0.9014(1), C = -1.096(1)

• sigma: M = 0.761(2), C = -2.71(2)

(2) pion: tricky case

 $\langle \pi(x) \rangle = 0$ at $\theta = 0$ (trivially gapped phase)

$$\theta = 0$$
 $\theta = 2\pi$
trivially gapped Haldane phase $\theta = \pi$

setting $\theta = 2\pi$ —> introducing a background electric field

- Dirac fermions with charge ± 1 are induced as edge modes
- isospin 1/2 at the boundary —> a source of iso-triplet mesons

$$\psi^*$$

$$J = \frac{1}{2} \begin{pmatrix} -1 \end{pmatrix}$$

cf.) similar SPT phase to anti-ferro. Heisenberg chain $\blacktriangleright \theta$ [Chen et al. (2011)]

[Kapustin (2014)]

$$\psi +1 \qquad J = \frac{1}{2}$$

 ${\mathcal X}$

(2) one-point-fn. scheme (pion)

- generate the ground state at $\theta = 2\pi$
- one-point function: $\langle \pi(x) \rangle \sim e^{-Mx}$

- M = 0.4175(9), C = 0.203(9)
- ε -dependence is NOT observed

	pion	sigma	eta
Μ	0.4175(9)	0.761(2)	0.9014(1)

Simulation result ($\theta = 0$)

(1) Correlation-function scheme

(2) One-point-function scheme

(3) Dispersion-relation scheme

(3) Dispersion-relation scheme

- energy gap: $\Delta E_{\ell} = E_{\ell} E_0$ momentum square: $\Delta K_{\ell}^2 = \langle K^2 \rangle_{\ell} \langle K^2 \rangle_0$
- triplets —> pion? singlets —> sigma or eta meson?

identify the states by measuring quantum numbers: \mathbf{J}^2 , J_z , $G = Ce^{i\pi J_y}$

Quantum numbers

• triplets: $\mathbf{J}^2 = 2$, $J_7 = (0, \pm 1)$, G > 0

 \longrightarrow pion ($J^{PG} = 1^{-+}$)

• singlets: $J^2 = 0$, $J_7 = 0$,

Sİ

G > 0 ($\ell = 13, 14, 22$) —> sigma meson ($J^{PG} = 0^{++}$) G < 0 ($\ell = 18,23$) —> eta meson ($J^{PG} = 0^{--}$)

	l	$oldsymbol{J}^2$	J_z
nglets	0	0.0000003	-0.00000000
	13	0.00000003	0.00000000
	14	0.00000003	0.00000000
	18	0.00000028	0.00000006
	22	0.00001537	0.00000115
	23	0.00003607	-0.00000482

	ℓ	$oldsymbol{J}^2$	J_z	G
	1	2.00000004	0.99999997	0.27872
	2	2.00000012	-0.00000000	0.27872
S	3	2.00000004	-0.99999996	0.27872
	4	2.00000007	0.99999999	0.27736
	5	2.00000006	0.00000000	0.27736
	6	2.00000009	-0.99999998	0.27736
	7	2.00000010	1.00000000	0.27536
	8	2.00000002	0.00000000	0.27536
	9	2.00000007	-0.99999998	0.27536
	10	2.00000007	0.99999998	0.27356
	11	2.00000005	0.00000001	0.27356
	12	2.00000007	-0.99999999	0.27356
	15	1.99999942	0.99999966	0.27173
	16	2.00000052	0.00000000	0.27173
	17	2.00000015	-1.00000003	0.27173
	19	2.00009067	1.00004377	0.27717
	20	2.00002578	-0.00000004	0.27717
	21	2.00003465	-1.00001622	0.27717

triplets

Result of dispersion relation

• plot ΔE_{ℓ} against ΔK_{ℓ}^2

for each meson

 fit the data points by $\Delta E = \sqrt{b^2 \Delta K^2 + M^2}$

	pion	sigma
Μ	0.426(2)	0.7456(5)
b	1.017(4)	1.087(2)

0.9622

Summary

- The three results are consistent with each other and look promising.
- consistent with predictions by bosonization

✓ $M_{\pi} < M_{\sigma} < M_{\eta} \longrightarrow$ U(1) problem ✓ $M_{\eta} \sim \mu$ ($\mu = g\sqrt{2/\pi} \sim 0.8$) ✓ $M_{\sigma}/M_{\pi} = \sqrt{3}$ within 5% deviation [Coleman (1976)] [Dashen et al. (1975)]

	correlation func.	one-point func.	dispersion
Μσ/Μπ	1.68(2)	1.821(6)	1.75(1)

Discussion

(1) correlation-function scheme description descripti description description description description descript

(2) one-point-function scheme lacktriangleright here are as a needs to increase NEITHER the bond dimension NOR the system size only the lowest state of the same quantum number as the boundary

(3) dispersion-relation scheme

btain various states heuristically / directly see wave functions computational cost to generate many excited states

\bigotimes sensitive to the bond dimension of MPS —> \bigotimes quantum computation

Application to $\theta \neq 0$

(3) dispersion-relation scheme

Monte Carlo result [Fukaya & Onogi (2003)] data :---⊡ 0.647cos^{2/3}(θ/2) ----8.0 \Box 0.6 π mass 0.4 0.2 0 1.00 0.2 0.4 0.6 8.0 1 θ/π

