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Simulating QFT in Hamiltonian formalism
Lagrangian formalism 

• Monte Carlo simulation 
(Lattice QCD) 

👍 gauge invariance 
👍 well-established algorithms 

• tensor network (TRG, HOTRG, …)

Hamiltonian formalism 

• tensor network (MPS, PEPS, …) 

• quantum computer 

👍 free from the sign problem 
👍 obtain excited states directly 

can be a complementary approach
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How to compute physical observables of gauge theory (QCD) 
efficiently in Hamiltonian formalism?



Mass spectrum of composite particles
• mass of composite particle in QCD (hadron) 

u/d quark:  2~5 MeV 
proton (uud):  938 MeV >> 2mu + md 

• non-perturbative calculation by 
lattice Monte Carlo method 
(Lagrangian formalism) 

• hadron mass is obtained from 
imaginary-time correlation fn. 
̶> agree with experiments
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FIG. 23 (color online). Same as Fig. 21 for the decuplet baryons.
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FIG. 24 (color online). Light hadron spectrum extrapolated to
the physical point using m!, mK and m! as input. Horizontal
bars denote the experimental values.
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FIG. 25. Effective potential Veffðr; tÞ with r ¼ 4, 8, 12 at
"ud ¼ 0:13770 as a representative case.
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Fig. 1. Correlation functions for the pseudoscalar (PS) and vector (V) mesons at (β, κ) = (0.80, 0.1590).
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Fig. 2. mPS/mV for various combinations of the hopping parameter κ and β.

4.1. Line of constant physics
To determine the line of constant physics, we take a reference value mPS/mV = 0.8232 which
corresponds to the result at β = 0.80, κ = 0.1590. The meson masses are extracted from the meson
correlation functions. We calculate the meson correlation function for various values of κ for each
β, using the Coulomb gauge-fixing and the wall sources.

Figure 1 shows the correlation functions in the PS and vector meson channels at (β, κ) =
(0.80, 0.1590). When extracting effective masses, instead of a simple ratio C(τ/a + 1)/C(τ/a)

in Eq. (10), we utilized an alternative one that not only has the forward slope but also the back-
ward slope of the correlator taken into account to achieve better accuracy: [C(τ/a + 1) + C(τ̃/a −
1)]/[C(τ/a)+C(τ̃/a)], where the forward imaginary time in lattice units τ/a and the backward one
τ̃/a are symmetric about Nτ/2. The fitting is performed by using only larger time slices to omit the
contributions of excited modes.

For details of the resulting masses, we refer the reader to Tables A.1 and A.2 in the Appendix. In
Fig. 2, we show the mPS-to-mV ratio as a function of the inverse hopping parameter 1/κ for each β.
We determine the value of κ consistent with mPS/mV = 0.8232 for each β by linearly interpolating
three data points near mPS/mV = 0.8232. The results for (β, κ) are shown in Table 1. Here, the
statistical errors of the κ values on the line of mPS/mV = 0.8232 are to be less than 2% accuracy.
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Composite particles in the 2-flavor Schwinger model

Schwinger model = quantum electrodynamics in 1+1d 

• the simplest nontrivial gauge theory sharing some features with QCD 

 

quantum numbers 

• isospin  : SU(2) acting on the flavor doublet 

• parity  

• G-parity  :  generalization of 

ℒ = −
1

4g2
FμνFμν +

θ
4π

ϵμνFμν +
Nf

∑
f=1

[iψ̄f γμ (∂μ + iAμ) ψf − mψ̄f ψf]

J

P

G = CeiπJy C

4

“mesons” 
 :   

 :   

            :  

π = − i (ψ̄1γ5ψ1 − ψ̄2γ5ψ2) JPG = 1−+

η = − i (ψ̄1γ5ψ1 + ψ̄2γ5ψ2) JPG = 0−−

σ = ψ̄1ψ1 + ψ̄2ψ2 JPG = 0++



Short summary
• three distinct methods for computing the mass spectrum 

(1) correlation-function scheme ̶ conventional method in lattice QCD 

(2) one-point-function scheme ̶ make good use of the boundary effect 

(3) dispersion-relation scheme ̶ obtain the excited states directly 

• demonstration in the 2-flavor Schwinger model using tensor network (DMRG) 

• results of the three methods are consistent with each other

5



Calculation strategy
• Hamiltonian on the lattice (staggered fermion + open boundary) 

   

• solving Gauss law condition to remove  

• gauge fixing to  

• Jordan-Wigner transformation for Nf=2 

  ,     

̶> spin Hamiltonian with a finite-dimensional Hilbert space

H =
g2a
2

N−2

∑
n=0

(Ln +
θ

2π )
2

+
Nf

∑
f=1 [ −i

2a

N−2

∑
n=0

(χ†
f,nUn χf,n+1 − χ†

f,n+1U
†
n χf,n) + mlat

N−1

∑
n=0

(−1)n χ†
f,n χf,n]

Ln

Un = 1

χ1,n = σ−
1,n

n−1

∏
j=0

(−σz
2,jσ

z
1,j) χ2,n = σ−

2,n(−iσz
1,n)

n−1

∏
j=0

(−σz
2,jσ

z
1,j)
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[Dempsey et al. (2022)]

[Kogut & Susskind (1975)]



Density-matrix renormalization group (DMRG)

variational method to find eigenstates of  using MPS ansatz 

• cost function: energy  

• update  to decrease  

• introduce a cutoff  to control the accuracy 
  singular values smaller than  are neglected in SVD 
  (small  = large  = high accuracy) 

• -th excited state  ̶> cost function: 

H

E = ⟨Ψ |H |Ψ⟩

Ai(si) E

ε
ε

ε Di

ℓ |Ψℓ⟩ ⟨Ψℓ |H |Ψℓ⟩ + W
ℓ−1

∑
ℓ′ =0

⟨Ψℓ′ 
|Ψℓ⟩

2

[White (1992)]

 

 :  matrix 
 : bond dimension

|Ψ⟩ = ∑
{si}

Tr [A0(s0) A1(s1) ⋯] |s0 s1 ⋯⟩

Ai(si) Di−1 × Di

Di
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[Fishman et al. (2022)]

[Schollwock (2005)]

The C++ library of ITensor is used in this work.



Simulation result (θ= 0)
(1) Correlation-function scheme 

(2) One-point-function scheme 

(3) Dispersion-relation scheme
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Simulation result (θ= 0)
(1) Correlation-function scheme 

(2) One-point-function scheme 

(3) Dispersion-relation scheme

9



(1) correlation-function scheme
• spatial correlation:  

• effective mass: ,    

plateau value = pion mass? 
  ⚠ plateau behavior gets modified in accurate calc. 

 ( ) :   is almost flat 

 ( ) :   depends on  

• What’s happened?

Cπ(r) = ⟨π(x)π(y)⟩

Mπ,eff(r) = −
d
dr

log Cπ(r) r = |x − y |

ε = 10−10 Di ∼ 400 Mπ,eff(r)

ε = 10−16 Di ∼ 2800 Mπ,eff(r) r

π = − i (ψ̄1γ5ψ1 − ψ̄2γ5ψ2)

10

correlation 
function

effective 
mass



Yukawa-type correlation → 1/r term
• (1+1)d free particle with mass :   ̶>   

• massless Nf=1 Schwinger model (exactly solvable) 

M ⟨ϕ(x, t)ϕ(y, t)⟩ ∼
1

Mr
e−Mr Meff(r) ∼

α
r

+ M

plot against 1
r

pseudo-scalar 
−iψ̄γ5ψ

11

exact value of M

• difficult to reproduce  term by MPS 

•  extrapolation is required
1/r

r → ∞



Result of the Nf=2 model
extrapolate the effective mass to  using the result for r → ∞ ε = 10−16

pion sigma eta
M 0.431(1)  0.722(6) 0.899(2)
α 0.477(9)  0.83(5) 0.51(2)

π = − i (ψ̄1γ5ψ1 − ψ̄2γ5ψ2) σ = ψ̄1ψ1 + ψ̄2ψ2 η = − i (ψ̄1γ5ψ1 + ψ̄2γ5ψ2)

12

pion sigma meson

eta meson



Simulation result (θ= 0)
(1) Correlation-function scheme 

(2) One-point-function scheme 

(3) Dispersion-relation scheme

13



(2) one-point-fn. scheme (eta & sigma)
• At , the open boundary can be 

a source of iso-singlet states. (~wall source) 

• one-point function:  

• -dependence is NOT observed 
̶> systematic error from 
      truncating  is sufficiently small

θ = 0

⟨𝒪(x)⟩ ∼ ⟨bdry |𝒪(x) |0⟩ ∼ e−Mx

ε

Deff

• eta: ,  

• sigma: , 
M = 0.9014(1) C = − 1.096(1)

M = 0.761(2) C = − 2.71(2)

14

eta meson

sigma meson

𝒪(x)boundary state



(2) pion: tricky case
⚠  at  (trivially gapped phase) 

setting  ̶> introducing a background electric field 

• Dirac fermions with charge  are induced as edge modes 

• isospin 1/2 at the boundary ̶> a source of iso-triplet mesons 

⟨π(x)⟩ = 0 θ = 0

θ = 2π

±1

 
trivially gapped

θ = 0  
Haldane phase

θ = 2π

θ
θ = π

15

-1 +1 J =
1
2

J =
1
2 x

ψ* ψ

cf.) similar SPT phase 
      to anti-ferro. Heisenberg chain

[Chen et al. (2011)]
[Kapustin (2014)]



(2) one-point-fn. scheme (pion)
• generate the ground state at  

• one-point function:  

• ,   

• -dependence is NOT observed

θ = 2π

⟨π(x)⟩ ∼ e−Mx

M = 0.4175(9) C = 0.203(9)

ε

pion sigma eta

M 0.4175(9)  0.761(2) 0.9014(1)

16

π(x) edge modeJ = 1/2



Simulation result (θ= 0)
(1) Correlation-function scheme 

(2) One-point-function scheme 

(3) Dispersion-relation scheme

17



(3) Dispersion-relation scheme
• energy gap:         momentum square:  

• triplets ̶> pion?      singlets ̶> sigma or eta meson? 

identify the states by measuring quantum numbers:  ,  ,  

ΔEℓ = Eℓ − E0 ΔK2
ℓ = ⟨K2⟩ℓ − ⟨K2⟩0

J2 Jz G = CeiπJy

energy momentum2

18



Quantum numbers

• triplets: ,  ,   

̶> pion ( ) 

• singlets: ,  , 

 ( ) ̶> sigma meson ( ) 
 ( ) ̶> eta meson ( )

J2 = 2 Jz = (0, ± 1) G > 0

JPG = 1−+

J2 = 0 Jz = 0

G > 0 ℓ = 13,14,22 JPG = 0++

G < 0 ℓ = 18,23 JPG = 0−−

triplets

singlets

` J2 Jz G P

1 2.00000004 0.99999997 0.27872443 -6.819⇥10�8

2 2.00000012 -0.00000000 0.27872416 -6.819⇥10�8

3 2.00000004 -0.99999996 0.27872443 -6.819⇥10�8

4 2.00000007 0.99999999 0.27736066 7.850⇥10�8

5 2.00000006 0.00000000 0.27736104 7.850⇥10�8

6 2.00000009 -0.99999998 0.27736066 7.850⇥10�8

7 2.00000010 1.00000000 0.27536687 -8.838⇥10�8

8 2.00000002 0.00000000 0.27536702 -8.837⇥10�8

9 2.00000007 -0.99999998 0.27536687 -8.838⇥10�8

10 2.00000007 0.99999998 0.27356274 9.856⇥10�8

11 2.00000005 0.00000001 0.27356277 9.856⇥10�8

12 2.00000007 -0.99999999 0.27356274 9.856⇥10�8

15 1.99999942 0.99999966 0.27173470 -1.077⇥10�7

16 2.00000052 0.00000000 0.27173482 -1.077⇥10�7

17 2.00000015 -1.00000003 0.27173470 -1.077⇥10�7

19 2.00009067 1.00004377 0.27717104 -3.022⇥10�8

20 2.00002578 -0.00000004 0.27717020 -3.023⇥10�8

21 2.00003465 -1.00001622 0.27717104 -3.023⇥10�8

Table 1. The quantum numbers of the isospin triplet states. The index ` comes from the level of
each state in the original basis. The rows of the table are separated into each triplet.

` J2 Jz G P

0 0.00000003 -0.00000000 0.27984227 3.896⇥10�7

13 0.00000003 0.00000000 0.27865844 1.273⇥10�7

14 0.00000003 0.00000000 0.27508176 -2.765⇥10�8

18 0.00000028 0.00000006 -0.27390909 -6.372⇥10�7

22 0.00001537 0.00000115 0.26678987 7.990⇥10�8

23 0.00003607 -0.00000482 -0.27664779 5.715⇥10�7

Table 2. The quantum numbers of the isospin singlet states.

quantum number [25], and, if it is true, we can still identify the G-parity. This point will

be discussed more in details in Appendix B. We identify the lowest triplet ` = 1, 2, 3 as the

lowest modes of the pions (⇡+, ⇡0, ⇡�) since they have the quantum numbers consistent

with the pion, namely JPG = 1�+ and Jz = 0,±1. For the iso-singlets shown in Table 2,

we find that the ` = 13 state has the quantum number consistent with the sigma meson,

namely JPG = 0++ and Jz = 0. The ` = 18 state is consistent with the eta meson with

JPG = 0�� and Jz = 0. We identify these singlets with the lowest modes of the sigma and

eta mesons.

After identifying the quantum numbers, we plot the energy gap �E` = E`�E0 against

the momentum square �K2
`
=

⌦
K2

↵
`
�
⌦
K2

↵
0
to obtain the dispersion relation as shown in

– 26 –
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quantum number [25], and, if it is true, we can still identify the G-parity. This point will

be discussed more in details in Appendix B. We identify the lowest triplet ` = 1, 2, 3 as the

lowest modes of the pions (⇡+, ⇡0, ⇡�) since they have the quantum numbers consistent

with the pion, namely JPG = 1�+ and Jz = 0,±1. For the iso-singlets shown in Table 2,

we find that the ` = 13 state has the quantum number consistent with the sigma meson,

namely JPG = 0++ and Jz = 0. The ` = 18 state is consistent with the eta meson with

JPG = 0�� and Jz = 0. We identify these singlets with the lowest modes of the sigma and
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Result of dispersion relation
• plot  against  

for each meson 

• fit the data points by 

ΔEℓ ΔK2
ℓ

ΔE = b2ΔK2 + M2

20

π

σ

η

pion sigma eta
M 0.426(2) 0.7456(5) 0.9037
b 1.017(4) 1.087(2) 0.9622



Summary
• The three results are consistent 

with each other and look promising. 

• consistent with predictions by bosonization 

✔  ̶> U(1) problem 

✔      

✔  within 5% deviation

Mπ < Mσ < Mη

Mη ∼ μ (μ = g 2/π ∼ 0.8)

Mσ /Mπ = 3

correlation func. one-point func. dispersion

Mσ/Mπ 1.68(2) 1.821(6) 1.75(1)
21

[Coleman (1976)] [Dashen et al. (1975)]

π

σ

η



Discussion
(1)correlation-function scheme 
   👍 generic method applicable to any case 
   😥 sensitive to the bond dimension of MPS ̶> 😊 quantum computation 

(2)one-point-function scheme 
   👍 needs to increase NEITHER the bond dimension NOR the system size 
   😥 only the lowest state of the same quantum number as the boundary 

(3)dispersion-relation scheme 
   👍 obtain various states heuristically / directly see wave functions 
   😥 computational cost to generate many excited states

22



Application to θ≠ 0
(3) dispersion-relation scheme

23

preliminary

Monte Carlo result 
[Fukaya & Onogi (2003)]

calculation, we approximate the integral of Ssubtr
N (!!,m) by

the trapezoidal rule for the discrete set of !! points, but this
does not seem to be the reason for the large fluctuation in the
"/(2#)!0.5 region. The main nonperturbative contribution
comes from DetN and Ssubtr

N (!!,m) gives only perturbative
effects of order !!"2.
We suspect that this large fluctuation is an example of the

well-known phase problem. Simply increasing the statistics
might not improve the situation.
Of course in application to QCD, it will be important to

evaluate Ssubtr
N (!!,m) and other observables more precisely.

B. ! meson correlator and U„1… problem
As the final subject, we would like to present the result of

our exploratory measurement of the $ meson mass in order
to study the topological structure. The $ propagator consists
of two parts:

%$$&#"2 ! tr" '3
1
D '3

1
D # $ $4 ! tr" '3

1
D # tr" '3

1
D # $ ,

(36)

where the first term is the same as the flavor nonsinglet #
propagator and the second term gives the ‘‘hair-pin’’ or dis-
connected contribution to the flavor singlet operator. Because
the number of physical space-time points is only 16%16, we
compute the ‘‘hair-pin’’ contribution by brute force, namely
by solving the fermion propagator for all points without re-
lying on the noise method *40+ or Kuramashi method *41+.
Figure 15 shows the contribution of the second term in

each sector, whereas Fig. 16 shows the full (symmetrized) $
propagator at m#0.2 and "#0. We also present effective
mass plot in Fig. 17. We find that the fall of $ propagator is
steeper than that of # which gives qualitatively consistent
results with the U(1) problem, although it suffers from both
the theoretical errors as well as the large statistical errors
making quantitative studies difficult. One of the major
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