Three ways of calculating mass spectra for composite particles in the Hamiltonian formalism

Akira Matsumoto (YITP, Kyoto U, RIKEN iTHEMS) collaboration with

Etsuko Itou (YITP, Kyoto U, RIKEN iTHEMS) and Yuya Tanizaki (YITP, Kyoto U)

> arXiv:2307.16655

Quantum Information and Theoretical Physics, 6 Oct. 2023 @YITP
HYTP $\boldsymbol{F}_{\text {RRIİN }}$
iTHEM.So

Simulating QFT in Hamiltonian formalism

Lagrangian formalism

- Monte Carlo simulation (Lattice QCD)
$\xrightarrow{4}$ gauge invariance
, well-established algorithms
- tensor network (TRG, HOTRG, \cdots)

Hamiltonian formalism

- tensor network (MPS, PEPS, $\cdot \cdots$)
- quantum computer
free from the sign problem
obtain excited states directly
can be a complementary approach

$$
\begin{gathered}
\text { How to compute physical observables of gauge theory (QCD) } \\
\text { efficiently in Hamiltonian formalism? } \\
\hline
\end{gathered}
$$

Mass spectrum of composite particles

- mass of composite particle in QCD (hadron)
u/d quark: 2~5 MeV
proton (uud): $938 \mathrm{MeV} \gg 2 \mathrm{~m}_{\mathrm{u}}+\mathrm{m}_{\mathrm{d}}$

- non-perturbative calculation by lattice Monte Carlo method (Lagrangian formalism)
- hadron mass is obtained from imaginary-time correlation fn. \rightarrow agree with experiments

[lida et al. (2021)]

Composite particles in the 2-flavor Schwinger model

Schwinger model = quantum electrodynamics in 1+1d

- the simplest nontrivial gauge theory sharing some features with QCD

$$
\mathscr{L}=-\frac{1}{4 g^{2}} F_{\mu \nu} F^{\mu \nu}+\frac{\theta}{4 \pi} \epsilon_{\mu \nu} F^{\mu \nu}+\sum_{f=1}^{N_{f}}\left[i \bar{\psi}_{f} \gamma^{\mu}\left(\partial_{\mu}+i A_{\mu}\right) \psi_{f}-m \bar{\psi}_{f} \psi_{f}\right]
$$

quantum numbers

- isospin $J: S U(2)$ acting on the flavor doublet
- parity P
- G-parity $G=C e^{i \pi J_{y}}$: generalization of C
"mesons"
$\pi=-i\left(\bar{\psi}_{1} \gamma^{5} \psi_{1}-\bar{\psi}_{2} \gamma^{5} \psi_{2}\right): J^{P G}=1^{-+}$
$\eta=-i\left(\bar{\psi}_{1} \gamma^{5} \psi_{1}+\bar{\psi}_{2} \gamma^{5} \psi_{2}\right): J^{P G}=0^{--}$
$\sigma=\bar{\psi}_{1} \psi_{1}+\bar{\psi}_{2} \psi_{2} \quad: J^{P G}=0^{++}$

Short summary

- three distinct methods for computing the mass spectrum
(1) correlation-function scheme - conventional method in lattice QCD
(2) one-point-function scheme - make good use of the boundary effect
(3) dispersion-relation scheme - obtain the excited states directly
- demonstration in the 2-flavor Schwinger model using tensor network (DMRG)
- results of the three methods are consistent with each other

Calculation strategy

- Hamiltonian on the lattice (staggered fermion + open boundary)

$$
H=\frac{g^{2} a}{2} \sum_{n=0}^{N-2}\left(L_{n}+\frac{\theta}{2 \pi}\right)^{2}+\sum_{f=1}^{N_{f}}\left[\frac{-i}{2 a} \sum_{n=0}^{N-2}\left(\chi_{f, n}^{\dagger} U_{n} \chi_{f, n+1}-\chi_{f, n+1}^{\dagger} U_{n}^{\dagger} \chi_{f, n}\right)+m_{\mathrm{lat}}^{N-1} \sum_{n=0}^{\left.N-1)^{n} \chi_{f, n}^{\dagger} \chi_{f, n}\right], ~}\right.
$$

- solving Gauss law condition to remove L_{n}
[Kogut \& Susskind (1975)]
[Dempsey et al. (2022)]
- gauge fixing to $U_{n}=1$
- Jordan-Wigner transformation for $\mathrm{Nf}=2$

$$
\chi_{1, n}=\sigma_{1, n}^{-} \prod_{j=0}^{n-1}\left(-\sigma_{2, j}^{z} \sigma_{1, j}^{z}\right), \quad \chi_{2, n}=\sigma_{2, n}^{-}\left(-i \sigma_{1, n}^{z}\right) \prod_{j=0}^{n-1}\left(-\sigma_{2, j}^{z} \sigma_{1, j}^{z}\right)
$$

\rightarrow spin Hamiltonian with a finite-dimensional Hilbert space

Density-matrix renormalization group (DMRG)

[White (1992)] [Schollwock (2005)]
variational method to find eigenstates of H using MPS ansatz
. cost function: energy $E=\langle\Psi| H|\Psi\rangle$

- update $A_{i}\left(s_{i}\right)$ to decrease E

$$
|\Psi\rangle=\sum_{\left\{s_{i}\right\}} \operatorname{Tr}\left[A_{0}\left(s_{0}\right) A_{1}\left(s_{1}\right) \cdots\right]\left|s_{0} s_{1} \cdots\right\rangle
$$

- introduce a cutoff ε to control the accuracy singular values smaller than ε are neglected in SVD
$A_{i}\left(s_{i}\right): D_{i-1} \times D_{i}$ matrix D_{i} : bond dimension (small $\varepsilon=$ large $D_{i}=$ high accuracy)
. ℓ-th excited state $\left|\Psi_{\ell}\right\rangle \rightarrow$ cost function: $\left\langle\Psi_{\ell}\right| H\left|\Psi_{\ell}\right\rangle+W \sum_{\ell^{\prime}=0}^{\ell-1}\left|\left\langle\Psi_{\ell^{\prime}} \mid \Psi_{\ell}\right\rangle\right|^{2}$
The C++ library of ITensor is used in this work. [Fishman et al. (2022)]

Simulation result $(\theta=0)$

(1) Correlation-function scheme
(2) One-point-function scheme
(3) Dispersion-relation scheme

Simulation result $(\theta=0)$

(1) Correlation-function scheme
(2) One-point-function scheme
(3) Dispersion-relation scheme

(1) correlation-function scheme

- spatial correlation: $C_{\pi}(r)=\langle\pi(x) \pi(y)\rangle$
. effective mass: $M_{\pi, \text { eff }}(r)=-\frac{d}{d r} \log C_{\pi}(r), \quad r=|x-y|$ plateau value $=$ pion mass?
! plateau behavior gets modified in accurate calc.
$\varepsilon=10^{-10}\left(D_{i} \sim 400\right): M_{\pi, \text { eff }}(r)$ is almost flat
$\varepsilon=10^{-16}\left(D_{i} \sim 2800\right): M_{\pi, \text { eff }}(r)$ depends on r
- What's happened?

Yukawa-type correlation $\rightarrow \mathbf{1} / \mathrm{r}$ term

. $(1+1)$ d free particle with mass $M:\langle\phi(x, t) \phi(y, t)\rangle \sim \frac{1}{\sqrt{M r}} e^{-M r} \longrightarrow M_{\mathrm{eff}}(r) \sim \frac{\alpha}{r}+M$

- massless Nf=1 Schwinger model (exactly solvable)

- difficult to reproduce $1 / r$ term by MPS
- $r \rightarrow \infty$ extrapolation is required

Result of the $\mathrm{Nf}=2$ model

extrapolate the effective mass to $r \rightarrow \infty$ using the result for $\varepsilon=10^{-16}$
$\pi=-i\left(\bar{\psi}_{1} \gamma^{5} \psi_{1}-\bar{\psi}_{2} \gamma^{5} \psi_{2}\right)$
$\sigma=\bar{\psi}_{1} \psi_{1}+\bar{\psi}_{2} \psi_{2}$

$$
\eta=-i\left(\bar{\psi}_{1} \gamma^{5} \psi_{1}+\bar{\psi}_{2} \gamma^{5} \psi_{2}\right)
$$

	pion	sigma	eta
\mathbf{M}	$0.431(1)$	$0.722(6)$	$0.899(2)$
$\boldsymbol{\alpha}$	$0.477(9)$	$0.83(5)$	$0.51(2)$

Simulation result $(\theta=0)$

(1) Correlation-function scheme
(2) One-point-function scheme
(3) Dispersion-relation scheme

(2) one-point-fn. scheme (eta \& sigma)

- At $\theta=0$, the open boundary can be a source of iso-singlet states. (~wall source)
- one-point function: $\langle\mathcal{O}(x)\rangle \sim\langle\operatorname{bdry}| \mathcal{O}(x)|0\rangle \sim e^{-M x}$

```
boundary state
```


- ε-dependence is NOT observed
\rightarrow systematic error from truncating $D_{\text {eff }}$ is sufficiently small

$$
\begin{aligned}
& \text {. eta: } M=0.9014(1), C=-1.096(1) \\
& \text {. sigma: } M=0.761(2), C=-2.71(2)
\end{aligned}
$$

(2) pion: tricky case

! $\langle\pi(x)\rangle=0$ at $\theta=0$ (trivially gapped phase)

$\xrightarrow{$	$\theta=0$
trivially gapped	$}$
:---:	
Haldane phase	θ

cf.) similar SPT phase
to anti-ferro. Heisenberg chain
[Chen et al. (201 1)]
setting $\theta=2 \pi \longrightarrow$ introducing a background electric field

- Dirac fermions with charge ± 1 are induced as edge modes
- isospin 1/2 at the boundary \longrightarrow a source of iso-triplet mesons

$$
J=\frac{1}{2} \overbrace{}^{\psi^{*}}+1
$$

(2) one-point-fn. scheme (pion)

- generate the ground state at $\theta=2 \pi$
- one-point function: $\langle\pi(x)\rangle \sim e^{-M x}$

- $M=0.4175(9), C=0.203(9)$
- ε-dependence is NOT observed

	pion	sigma	eta
\mathbf{M}	$0.4175(9)$	$0.761(2)$	$0.9014(1)$

Simulation result $(\theta=0)$

(1) Correlation-function scheme
(2) One-point-function scheme
(3) Dispersion-relation scheme

(3) Dispersion-relation scheme

. energy gap: $\Delta E_{\ell}=E_{\ell}-E_{0} \quad$ momentum square: $\Delta K_{\ell}^{2}=\left\langle K^{2}\right\rangle_{\ell}-\left\langle K^{2}\right\rangle_{0}$

- triplets \longrightarrow pion? singlets \longrightarrow sigma or eta meson?
identify the states by measuring quantum numbers: $\mathbf{J}^{2}, J_{z}, G=C e^{i \pi J_{y}}$

Quantum numbers

- triplets: $\mathbf{J}^{2}=2, J_{z}=(0, \pm 1), G>0$
$\rightarrow \operatorname{pion}\left(J^{P G}=1^{-+}\right)$
. singlets: $\mathbf{J}^{2}=0, J_{z}=0$,

$$
\begin{aligned}
& G>0(\ell=13,14,22) \longrightarrow \text { sigma meson }\left(J^{P G}=0^{++}\right) \\
& G<0(\ell=18,23) \longrightarrow \text { eta meson }\left(J^{P G}=0^{--}\right)
\end{aligned}
$$

Singlets | ℓ | \boldsymbol{J}^{2} | J_{z} | G |
| :---: | :---: | :---: | :---: |
| 0 | 0.00000003 | -0.00000000 | 0.27984227 |
| 13 | 0.00000003 | 0.00000000 | 0.27865844 |
| 14 | 0.00000003 | 0.00000000 | 0.27508176 |
| 18 | 0.00000028 | 0.00000006 | -0.27390909 |
| 22 | 0.00001537 | 0.00000115 | 0.26678987 |
| 23 | 0.00003607 | -0.00000482 | -0.27664779 |

ℓ	\boldsymbol{J}^{2}	J_{z}	G
1	2.00000004	0.99999997	0.27872443
2	2.00000012	-0.00000000	0.27872416
3	2.00000004	-0.99999996	0.27872443
4	2.00000007	0.99999999	0.27736066
5	2.00000006	0.00000000	0.27736104
6	2.00000009	-0.99999998	0.27736066
7	2.00000010	1.00000000	0.27536687
8	2.00000002	0.00000000	0.27536702
9	2.00000007	-0.99999998	0.27536687
10	2.00000007	0.99999998	0.27356274
11	2.00000005	0.00000001	0.27356277
12	2.00000007	-0.99999999	0.27356274
15	1.99999942	0.99999966	0.27173470
16	2.00000052	0.00000000	0.27173482
17	2.00000015	-1.00000003	0.27173470
19	2.00009067	1.00004377	0.27717104
20	2.00002578	-0.00000004	0.27717020
21	2.00003465	-1.00001622	0.27717104

Result of dispersion relation

- plot ΔE_{ℓ} against ΔK_{ℓ}^{2}
for each meson
- fit the data points by

$$
\Delta E=\sqrt{b^{2} \Delta K^{2}+M^{2}}
$$

	pion	sigma	eta
\mathbf{M}	$0.426(2)$	$0.7456(5)$	0.9037
b	$1.017(4)$	$1.087(2)$	0.9622

Summary

- The three results are consistent with each other and look promising.
- consistent with predictions by bosonization
$\boldsymbol{\checkmark} M_{\pi}<M_{\sigma}<M_{\eta} \longrightarrow \mathrm{U}(1)$ problem
$\checkmark M_{\eta} \sim \mu \quad(\mu=g \sqrt{2 / \pi} \sim 0.8)$
$\boldsymbol{\nu} M_{\sigma} / M_{\pi}=\sqrt{3}$ within 5% deviation
[Coleman (1976)] [Dashen et al. (1975)]

	correlation func.	one-point func.	dispersion
$\mathrm{M}_{\sigma} / \mathrm{M}_{\boldsymbol{\pi}}$	$1.68(2)$	$1.821(6)$	$1.75(1)$

Discussion

(1)correlation-function scheme
generic method applicable to any case
: sensitive to the bond dimension of MPS \rightarrow (c) quantum computation
(2)one-point-function scheme
needs to increase NEITHER the bond dimension NOR the system size
; only the lowest state of the same quantum number as the boundary
(3)dispersion-relation scheme
obtain various states heuristically / directly see wave functions
: computational cost to generate many excited states

Application to $\theta \neq 0$

(3) dispersion-relation scheme

Monte Carlo result
[Fukaya \& Onogi (2003)]

