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Hayden-Preskill (HP) protocol
★ Information in black hole: Unitarity of quantum gravity means that information thrown into a black 
hole is not destroyed under an black hole evaporation process, and the information is emitted as 
Hawking radiation, and we can recover the information from the Hawking radiation 

• Question 

 When can we recover information thrown into a black hole from Hawking Radiation (HR)? 

• Hayden-Preskill setup (protocol) [Hayden-Preskill ’07] 

An initial BH is (maximally) entangled with an Early Hawking Radiation (ER) → After the Page time 

How much Late Hawking radiation (LR) do we need to recover the information by using ER and LR?  

BH ER

Entangled
BH ER

Entangled

LR
?
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Q. How much Late Hawking radiation do we need to recover the 
information by using HR?

• If a reference system (R) (entangled with a diary (T) ) is not correlated with the remaining  BH (C), 

 , then we can recover the diary information from Hawking radiation (D+B). 

→Decoupling condition  [Hayden-Preskill ’07] 

For Haar random unitaries (simplified BH time evolution) 

 

→ If we have sufficient large Late Hawking radiation compared with the diary, that is,  , 
then we can recover the diary from Hawking radiation (D+B) [Hayden-Preskill ’07]. 

But, how we can recover the diary from the HR?

ρR,C
?≈ ρR ⊗ ρC

( | |A | |1 = Tr A†A, dT = dim of the diary system, dD = dim of Late HR)

dT ≪ dD

∫ dU ρR,C − ρR ⊗ ρC
1

≤
dT

dD
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How we can recover?
• We would like to find a method or protocol to recover the diary from the HR 

Basic strategy → Construct a recovery map for a quantum channel defined through the HP protocol 

Quantum channel (map from a density matrix to a density matrix) for the HP protocol 

𝒩T→D,B[ρT] = TrC [U (ρT ⊗ |EPR⟩A,B⟨EPR |) U†]
UT,A→C,D

D B

T
|ERP⟩A,BρT

U†
T,A→C,D
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D B
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Quantum channel for the HP protocol:   

Recovery channel (map) for the quantum channel  satisfying   

 The quantum channel is not a simple unitary map  

→ it is non-trivial whether such a recovery map exists. 

However, we can have such a recovery map as long as the decoupling condition 
(approximately) holds 

Of course, a recovered result is also approximate one;   .

𝒩T→D,B[ρT] = TrC [U (ρT ⊗ |EPR⟩A,B⟨EPR |) U†]

ℛD,B→T ℛD,B→T [𝒩T→D,B[ρT]] = ρT

ℛD,B→T [𝒩T→D,B[ρT]] ≈ ρT

∫ dU ρR,C − ρR ⊗ ρC
1

≤
dT

dD
≪ 1
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Quantum channel for the HP protocol 

 

Recovery channel for the quantum channel  

Generally, we can consider the Petz recovery map [Petz’ 88, Petz ’02] as such a recovery map 

     

  : Some reference state with full rank. We can choose this by hand. 

 : Adjoint channel of  defined by  → Next slide 

However, it is difficult to understand the Petz map intuitively.  

→ Is there a simpler recovery map for the HP quantum channel?

𝒩T→D,B[ρT] = TrC [U (ρT ⊗ |EPR⟩A,B⟨EPR |) U†]

ℛD,B→T [𝒩T→D,B[ρT]] = ρT

σT

𝒩† 𝒩 TrD,B [𝒩T→D,B[ρT] OD,B] = TrT[ρT 𝒩†
D,B→T[OD,B]]

ℛD,B→T[𝒪D,B] = σ1/2
T 𝒩†

D,B→T [𝒩T→D,B[σT]−1/2𝒪D,B 𝒩T→D,B[σT]−1/2] σ1/2
T
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Our main proposal: 

 In a highly chaotic system, we can use a simplified Petz map, that is, the “Petz-lite”[Penington-Shenker-et  al., ‘19]; 

   (Original Petz map) 

→“Petz-lite” for the Haar random HP channel  (Normalized s.t. ) 

   

 

This kind of simplification, more precisely, simplification to the Yoshida-Kitaev recovery protocol [Yoshida-Kitaev ‘17] in the HP protocol, 
was pointed out by Yoshida. [Yoshida’21,… ]

ℛD,B→T[𝒪D,B] = σ1/2
T 𝒩†

D,B→T [𝒩T→D,B[σT]−1/2𝒪D,B 𝒩T→D,B[σT]−1/2] σ1/2
T

Tr [ℛLite
D,B→T[𝒩T→D,B[ρT]]] ≈ Tr [ρT] = 1

𝒩†
D,B→T [𝒪D,B] = A,B⟨TFD |U†

C,D→T,A (𝒪D,B) UC,D→T,A |TFD⟩A,B

𝒩T→D,B[ρT] = TrC [UT,A→C,D (ρT ⊗ |EPR⟩A,B⟨EPR |) U†
T,A→C,D]

ℛLite
D,B→T[𝒪D,B] =

dC

1 + ( dD

dT )
2 𝒩†

D,B→T [𝒪D,B]
UT,A→C,D

D B

T
|ERP⟩A,BρT

U†
T,A→C,D

C

D B

A

AT
⟨ERP |A,B

C

𝒩T→D,B[ρT]

𝒪D,B

D B

U†
C,D→T,A

A
⟨ERP |A,B

T

A

D B

C

C

UC,D→T,A

T
𝒩†

D,B→T [𝒪D,B]

We have checked the validity of the Petz-lite for the Haar random HP protocol, and  we have also checked 
part of the validity of the recovery map for the SYK HP protocol, but the remaining part is still in progress. 

ℛLite
D,B→T [𝒩T→D,B[ρT]] ?≈ ρT



Check the Petz lite in (Haar random) HP protocol
• Let us quickly check the validity of the Petz-lite under the Haar average. 

To do so, we focus on the Haar averaged result 

. 

‣ 2nd term→ Disconnected contribution, which is related to a Hawking saddle  

‣ 1st term → Connected contribution between  and  , which is related to 

a Replica wormhole saddle 

★When we have sufficiently large late Hawking radiation compared with the diary, 

  for  . 

We have also checked the relative entropy  is also 

consistent with the above result.

∫ dU ℛLite
D,B→T[𝒩T→D,B[ρT]] ≈

1

1 + ( dT

dD )
2 (ρT + ( dT

dD )
2

⋅
1
dT

IT)

𝒩T→D,B 𝒩†
D,B→T

ℛLite
D,B→T[𝒩T→D,B[ρT]] ≈ ρT dT ≪ dD

∫ dU S(ℛLite
D,B→T[𝒩T→D,B[ρT]] | | ρT)

U

D B

T
|ERP⟩A,BρT

U†

C

D B

A

AT
⟨ERP |A,B

C

𝒩†
D,B→T [𝒩T→D,B[ρT]]

U†

A
⟨ERP |A,B

T

U

|ERP⟩A,B

A

T

C

C

𝒩T→D,B[ρT]
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Quantum Channel of the HP protocol in SYK

Focus on  the setup of an HP protocol in the SYK model 
[Chandrasekaran-Levine ’22] 

• To use the setup, we assume that a diary consists of only 1-qubit: 
 

→ Check the validity of the Petz lite, which recover the 1-qubit diary 
information from the Hawking radiation.

dT = 2
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• In the SYK HP protocol, consider the setup; 

UT,A

D B

A

C

T
Original HP protocol

|EPR⟩A,B

UL,SYK

K R

LT

VT,L→L

L̃

L

R SYKL SYK

SYK HP protocol

|TFD⟩L,R

: sub-system with (N-K) Majorana fermion=Remaining BH (C)L̃

K: sub-system with K Majorana fermion=Late Radiation (D)

R: R system with N Majorana fermion=Early Radiation (B)

 : Unitary time evolution 

 by the left SYK Hamiltonian 

UL,SYK = e−i t HL,SYK

HL,SYK = (i)q/2 ∑
1≤i1≤i2≤⋯≤iq≤N

ji1i2⋯iqψi1ψi2⋯ψiq

: Embedding map from   with  

 

VT,L→L T, L → L dT = 2

V( |T′ ⟩T ⊗ |TFD⟩) = {
|TFD⟩ T′ = 0
ψi,L(0) |TFD⟩ T′ = 1 (i ∈ L̃)

( N ≫ 1, K ≫ 1, (N − K) ≫ 1 )

|TFD⟩L,R =
1
Z(β) ∑

i

e−βEi/2 |Ei⟩L ⊗ |Ei⟩*R

11



• Quantum channel (QC)  

• Ex. 

 

• Adjoint quantum channel 

𝒩SYK
T→K,R[ |1⟩⟨0 | ] = TrL̃ [ULψi,L(0) |TFD⟩T,A⟨TFD |U†

L]

𝒩SYK
T→K,R[ρT] = TrL̃ [ULVT,L→L (ρT ⊗ |TFD⟩L,R⟨TFD |) V†

T,L→LU†
L]

𝒩SYK†
K,R→T[𝒪KR] = L,R⟨TFD |(V†

L→T,LU†
L 𝒪KR ULVL→T,L) |TFD⟩L,R
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Recovery channel for the HP protocol in SYK
The Petz lite for the SYK setup is given by (with the normalization ) 

c.f.     (Haar random HP case,  : dim. of Remaining BH) 

• In this SYK HP protocol, let us check the matrix elements 

Or, equivalently  

Tr [ℛLite
K,R→T[𝒩T→K,R[ρT]]] ≈ Tr [ρT] = 1

ℛLite
D,R→T =

dC

1 + ( dD

dT )
2 𝒩†

T→D,R dC

⟨T1 |ℛLite
K,R→T[𝒩T→K,R[ρT]] |T2⟩

?≈ ⟨T1 |ρT |T2⟩  for ∀ρT

ℛLite
K,R→T =

⟨ ̂dL̃⟩β

1 + ⟨ ̂dL̃⟩β
⋅ ⟨1 |𝒩†

D,R→T[𝒩T→D,R[ |0⟩T⟨0 | ]] |1⟩
𝒩†

K,R→T

⟨T1 |ℛLite
K,R→T[𝒩T→K,R[ |T3⟩⟨T4 | ] |T2⟩

?≈ ⟨T1 |T3⟩⟨T4 |T2⟩ = δT1T3
δT2T4 for Ti = 0,1 (i = 1,⋯,4)

(ρL̃ = TrK,R [ |TFD⟩L,R⟨TFD |])

⟨ ̂dL̃⟩β
= (Tr [(ρL̃)2])−1 :  "effective dim." of L̃

 effective dim. of Remaining BH∼
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• For example, focus on the following matrix element, 

 

To understand the behavior of the element, we need to evaluate 

  

It is difficult to evaluate the quantity analytically, but basically, we are interested in typical results. 

→ Consider the “averaged correlator” over the possible embedding into  (consisting of  
fermions) 

0 ?≈ ⟨1 |ℛLite
D,R→T[𝒩T→D,R[ |0⟩⟨0 | ] |1⟩ =

⟨ ̂dL̃⟩β
⋅ ⟨1 |𝒩†

D,R→T[𝒩T→D,R[ |0⟩T⟨0 | ]] |1⟩

1 + ⟨ ̂dL̃⟩β
⋅ ⟨1 |𝒩†

D,R→T[𝒩T→D,R[ |0⟩T⟨0 | ]] |1⟩

⟨ ̂dL̃⟩β
⋅ ⟨1 |𝒩†

D,R→T[𝒩T→D,R[ |0⟩T⟨0 | ]] |1⟩ =
⟨TFD |ψi,L(t)(IL̃ ⊗ γKR) ψi,L(t) |TFD⟩

Tr [γ2
KR]

(γKR = TrL̃ [ |TFD⟩L,R⟨TFD |])

L̃ (N − K)

⟨TFD |ψi,L(t)(IL̃ ⊗ γKR) ψi,L(t) |TFD⟩

Tr [γ2
KR]

⟶
1

N − K

N−K

∑
i=1

⟨TFD |ψi,L(t)(IL̃ ⊗ γKR) ψi,L(t) |TFD⟩

Tr [γ2
KR]

(i ∈ L̃)
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By using techniques in [Chandrasekaran-Levine ’22], we evaluated the “Renyi-two” 
correlator  in the large-   limit with   or  the large-  ( ) limit with ) 

 SYK thermal two point function with periodicity . 

We have assumed the condition . 

 : constant given by the SYK model parameters ( ) and  

βJ βJ ≪ N/K q SYKq q ≪ N/K

G2β : 2β

K/N ≪ 1

#(q, β, J, C) q, J, C β

1
N − K

N−K

∑
i=1

⟨TFD |ψi,L(t)(IL̃ ⊗ γKR) ψi,L(t) |TFD⟩

Tr [γ2
KR]

t≫1≈ G2β(2β)[1 −
K
N

e
π
β t ⋅ #(q, β, J, C)] + 𝒪((K/N)2)
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Therefore,   

Around initial times , the quantity is approximately , 

This quantity includes the critical time , where the expansion w.r.t.  becomes 
breakdown 

Around the critical time , the coefficient of  becomes small, so the quantity 

also becomes small. This gives the our expected result around  

• The deviation from the expected result means an error for the recovery map (approximate recovery).

⟨ ̂dL̃⟩β
⋅ ⟨1 |𝒩†

D,R→T[𝒩T→D,R[ |0⟩T⟨0 | ]] |1⟩ ∼ G2β(2β)[1 −
K
N

e
π
β t ⋅ #(q, β, J, C)] + 𝒪((K/N)2)

t ∼ 1 G2β(2β)

tRecover (K/N)

tRecovery = 2tScrambling G2β(2β)

tRecovery = 2tScrambling

K
N

e
π
β t = exp ( λ

2
(t − tRecover)) (λ =

2π
β

, tRecover = 2tscrambling =
β
π

log (N/K), tscrambling =
β
2π

log (N/K))

0 ?≈ ⟨1 |ℛLite
D,R→T[𝒩T→D,R[ |0⟩⟨0 | ] |1⟩ =

⟨ ̂dL̃⟩β
⋅ ⟨1 |𝒩†

D,R→T[𝒩T→D,R[ |0⟩T⟨0 | ]] |1⟩

1 + ⟨ ̂dL̃⟩β
⋅ ⟨1 |𝒩†

D,R→T[𝒩T→D,R[ |0⟩T⟨0 | ]] |1⟩

t∼tRecovery≈ G2β(β) ⋅ (small)

∼0
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Interpretation of the SYK Result
The time scale  is natural since the correlator is evaluated as the 

Renyi-two quantity. It can be interpreted as follows; 

1. The quantum channel   scrambles an input state and diffuse the information 

over the system (in 1-st system=Original system); This takes the scrambling time 
. 

2. The recovery map    is the “opposite” process of the above quantum channel 

(in 2nd system = Recovery system);  This also takes the scrambling time . 

→In total, it take twice the scrambling time,  !

tRecovery = 2tScrambling

𝒩T→K,R

tScrambling

𝒩†
K,R→T

tScrambling

tRecovery = 2tScrambling
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Summary
• We propose that in a highly chaotic system, one can use the “Petz-lite” as the recovery map; 

 (Original Petz map). 

   (  : suitable normalization factor) 

In the Petz lite, the recovery time is twice the scrambling time, not the scrambling time. 

• We have checked the validity of the Petz lite for the Haar random unitary.  

• Also, we have checked some parts (one matrix component in this talk) of the validity of the 
Petz lite for the SYK model. The remaining parts are still under calculation.

ℛK,R→T[𝒪K,R] = σ1/2
T 𝒩†

K,R→T [𝒩T→K,R[σT]−1/2𝒪K,R 𝒩T→K,R[σT]−1/2] σ1/2
T

→ ℛLite
K,R→T[𝒪K,R] =

1
N

𝒩†
K,R→T [𝒪K,R] N



Future work
• Bulk Interpretation? 

• Numerical analysis 

• Relation to recovery error (upper) bound [Nakata-Tezuka ’23] ? 

• Fully analytic results (without using the K/N expansion or with resuming their contributions) 

• Variants of the HP setup  

• More higher dimensional ( ) code subspace case? 

• HP setup in complex SYK or 2dCFT with conserved charge? 

• Chaotic-Integrable Transition? (In progress) 

• Relation to the Gao-Jafferis-Wall traversable wormhole (protocol) [Gao-Jafferis-Wall ’16, Gao-Jafferis ’19,…], Size-winding 
protocol[Brown-Gharibyan-Leichenauer-et al.. ’19,…]? 

• 2d CFT case, other models (e.g., Chaotic Spin chain)? 

• ……

dT ≥ 3



Thank you 
 for your attention!


