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Symmetries in Quantum Many-Body Physics
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o Transverse Field Ising Model: H = Zhjﬁl, hij1 = (X X1 + &Z)).

@ Symmetries/conserved quantities {Q,}: Operators that commute with
the Hamiltonian, [Qn, H] = QuH — HQ, = 0.

L
e 7, symmetry of Ising Model: Parity of total spin Q, = [ Z;.
j=1
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Conventional Symmetries
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4/21



Conventional Symmetries

e Conventionally, {Q,} are not allowed to be arbitrary operators on H —
additional structure is imposed.

o Internal symmetries: Product of on-site unitary operators {u;} chosen
from group G, e.g., 2>, U(1), SU(2), ...

Q0 OOOO Q Q
® @ cc O © @ o0 0 O

Oy=U U  eee U U U, U ees U U

j+2 L-1 "L

4/21



Conventional Symmetries

e Conventionally, {Q,} are not allowed to be arbitrary operators on H —
additional structure is imposed.

o Internal symmetries: Product of on-site unitary operators {u;} chosen
from group G, e.g., 2>, U(1), SU(2), ...

Q0 OOOO Q Q
® @ cc O © @ o0 0 O

Oy=U U  eee U U U, U ees U U

j+2 L-1 "L

o Lattice symmetries: Unitary operators that implement reflection,
rotation, translation, etc.

4/21



Conventional Symmetries

e Conventionally, {Q,} are not allowed to be arbitrary operators on H —
additional structure is imposed.

o Internal symmetries: Product of on-site unitary operators {u;} chosen
from group G, e.g., 2>, U(1), SU(2), ...

Q0 OOOO Q Q
® @ cc O © @ o0 0 O

Oy=U U  eee U U U, U ees U U

j+2 L—1 L

o Lattice symmetries: Unitary operators that implement reflection,
rotation, translation, etc.

—

@ These symmetries explain most “textbook” physical phenomena.

4/21



Conventional Symmetries

e Conventionally, {Q,} are not allowed to be arbitrary operators on H —
additional structure is imposed.

o Internal symmetries: Product of on-site unitary operators {u;} chosen
from group G, e.g., 2>, U(1), SU(2), ...
aQ Q Q Q O @ Q Q
[ ] [ ] L) [ ) [ ] [ ] X [ ) [ )

Oy=U U  eee U U U, U ees U U

j+2 L-1 "L
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@ These symmetries explain most “textbook” physical phenomena.

Are these the most general physical symmetries?
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Beyond Conventional Symmetries

@ Several recent works: Conventional symmetries are not sufficient!

1NASeiberg, S.H.Shao (2021); C.Cordova, T.T.Dumitrescu, K.Intrilligator, S.-H.Shao (2022); J.McGreevy (2022); . ..
2Bernien et al. Nature (2017); Scherg et al. Nat. Comm. (2021); Mi et al. Science (2022); Morvan et al. Nature (2022), . . .
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Background: Quantum Dynamics and Weak Ergodicity Breaking

Review Articles:
e M.Serbyn, D.A.Abanin, Z.Papi¢, arXiv: 2011.09486
o Z.Papi¢, arXiv: 2108.03460
e SM, B. Andrei Bernevig, Nicolas Regnault, arXiv: 2109.00548
e A.Chandran, T.ladecola, V.Khemani, R.Moessner, arXiv: 2206.11528



Ergodicity in Isolated Quantum Systems

3J.M.Deutsch (1991), M.Srednicki (1994)
4SM, B.A.Bernevig, N.Regnault (2021)

5M.Serbyn, D.A.Abanin, Z.Papic (2020)
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o E <= B, Tr(|EXE|) ~ e FHIa
e Volume law entanglement: S = —Tra(palogpa) ~ Va.

=—=GS-like
GS

@ Symmetric Hamiltonians: Block-diagonalized
into symmetry sectors labelled by eigenvalues

under {Qqy}.

e Ergodicity/ETH expected within each sector

Assumption ~ All “blocks” are explained by symmetries

@ Recent analytical* and experimental® discovery of “weak” ergodicity

___ breaking put this into question
3J.M.Deutsch (1991), M.Srednicki (1994)
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Weak Ergodicity Breaking

6SM, S.Rachel, B.A.Bernevig, N.Regnault (2017)
7P.Sala, T.Rakovszky, R.Verresen, M.Knap, F.Pollmann (2019); V.Khemani, M.Hermele, R.Nandkishore (2019)
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Weak Ergodicity Breaking

Quantum Many-Body Scars
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@ Solvable eigenstates deep in the spectrum®

@ Mid-spectrum: S ~ loglL = ETH violation! Solvabi

.

@ Equally spaced quasiparticle tower
— Revivals from simple initial states

}GS-like
GS

Hilbert Space Fragmentation

@ Local Hamiltonians with exp. many disconnected QD

Non-Integrable

blocks:"H = @NEXP(L span {e "Mt |R,) } 4o,/ ETH
@ Blocks not distinguished by conventional Infieglale ..‘
symmetry quantum numbers, vastly different ’
properties!® N
Finite-dimensional >
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@ Puzzle: Conventional symmetries do not explain these hidden blocks!

e Allowing arbitrary operators {Q,} to be valid conserved quantities not
very meaningful: projectors onto eigenstates of H always conserved

[H,|EXE|]] =0 = exponentially many conserved quantities?!

What is an appropriate definition of a symmetry/conserved quantity?
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Our Recent Works:

Symmetries and Commutant Algebras
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o Commutant Algebra C: Set of such operators {Q, }.
Ca®Qa +cgQ3 €C
. €C, eC —
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e Bond Algebra A = <<{hu+1}>> Entire family of Hamiltonians
constructed from {hJ,J+1} eg. > Ji hNH > hJ 1,thd+1,

Symmetries in C <= Families of Hamiltonians in A
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Commutant Algebras: Block Structures

All Operators on

@ A and C are von Neumann algebras
(closed under 1), centralizers of each
other (Double Commutant Theorem).

Hamiltonians
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@ A and C are von Neumann algebras
(closed under 1), centralizers of each
other (Double Commutant Theorem).

Hamiltonians

o = ()

@ Representation theory: 3 basis such that

h4 € A and he € C have representations m
a

WT/H_AW = @)\ (MDA ® ]ldA) ..\<
WtheW = @A (1p, ® Ng,)

o {Dy}: Irreps of A = Block sizes
{d\}: lrreps of C = Degeneracies

@ Symmetry Sectors: Basis in which all local terms {Ejﬁl}
simultaneously block diagonal!®

9SM, 0.1.Motrunich (2021-23)
10/21



Symmetries are Ground States!

10sM, 0.1.Motrunich (2023)
11/21



Symmetries are Ground States!
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0= owlviwl < [0)=> owlv.) @ |v)

w,v
@ Rewrite commutant condition after converting operators to states

Ljjr1i=

[hj,j+1, Qa] =0 — (hJJ+1 @L-1®h ,J+1) |Qa) =

10sM, 0.1.Motrunich (2023)
11/21



Symmetries are Ground States!

@ Operators on H are states in a doubled Hilbert space H ® H
0= owlviwl < [0)=> owlv.) @ |v)

w,v
@ Rewrite commutant condition after converting operators to states

Ljjr1=

(hji1, Q] =0 = (hjm@l—1ah[)|Q)=
10

o Frustration-free ground states of a local “super-Hamiltonian"

ZJ i+l Lijr1, PlQa) =0 < Ljj41|Qa) =0 V],

1 2 J j+1 L-1 L
t —— - — et
b I:t ......... _I:I:_ ......... II
7;.,+1'y/»/+l

10sM, 0.1.Motrunich (2023)
11/21



Symmetries are Ground States!

@ Operators on H are states in a doubled Hilbert space H ® H
0= owlviwl < [0)=> owlv.) @ |v)

w,v
@ Rewrite commutant condition after converting operators to states

Ljjr1=

(hji1, Q] =0 = (hjm@l—1ah[)|Q)=
10

o Frustration-free ground states of a local “super-Hamiltonian"

ZJ i+l Lijr1, PlQa) =0 < Ljj41|Qa) =0 V],

1 2 J j+1 L-1 L
t —— - — et
b I:t ......... _I:I:_ ......... II
7;.,+1'y/»/+l
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|t N TN |4\ 5
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e Two degenerate ferromagnetic ground states'’ = Z, Symmetry

353 ~1, &=~ z
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o Commutant Algebra: Cz, = span{L,[]; Z;} = ([, Z))
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U(1) Symmetry = Heisenberg Ferromagnet

e Bond Algebra: Ay1y = ({XjXj+1 + Y;YVjsa}. {Z})
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U(1) Symmetry = Heisenberg Ferromagnet

o Bond Algebra: Ayy = ({XiXj+1+ Y; Y1} {Z})

@ Super-Hamiltonian 73U(1) maps to ferromagnetic Heisenberg model in
composite spin sector!

Puwlow energy = Y (I55) = [E=N((5F] = (5 )0
=C- ZJ. S-S+
@ (L+ 1) ferromagnetic ground states = U(1) Symmetry
St ST~ Y 2= 2
3,5V =)~ FiZgem <)), &3~ ][ 2
° CU(l) = Span{]la Ziot, Zt2ot7 e 7ZtLot} = <<Zt0t>> = «{HJ eiaZj}»

o Generalization: SU(q) symmetry = SO(q?) ferromagnet.
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Ground States
Low-Energy Excitations

Exact Symmetries

Approximate Symmetries?
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Approximate Symmetries

Ground States
Low-Energy Excitations

Exact Symmetries

Approximate Symmetries?
@ Made precise using a “Brownian Circui

t” 12

5(t + At) = eizi Jj(t);;jijrlAt 5(t) e_iZj J}t)/’;j,prlAt
(t)
P(J}f)) e U 2 _aing
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Approximate Symmetries

Ground States = Exact Symmetries
Low-Energy Excitations = Approximate Symmetries?

@ Made precise using a “Brownian Circuit" 12

O(t+At)=e'2 JRTRYN: O(t) e % VRNV
(1)
P(J}f)) e U 2 _aing

@ Ensemble-averaged behavior of operators as At — 0

% - _’{Z Jir1k JJ+1|5( t)) = |%) = e_nﬁt|5(0))

12X.Chen, T.Zhou (2019); C.Siinderhauf et al. (2019); D.Bernard, T.Jin (2019)
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Approximate Symmetries

Ground States = Exact Symmetries
Low-Energy Excitations = Approximate Symmetries?

@ Made precise using a “Brownian Circuit" 2
Ot + At) = & T % Bt §(p) o154 iyt
t)
P(J}f)) o e P17 52 — oAt

@ Ensemble-averaged behavior of operators as At — 0

% - _’{Z jj+1 Jd+1 5( t)) = |%) = e_nﬁt|5(0))

@ Can be used to compute correlation functions

Ca 4(t) = Tr(B(0)TA(1)) = (B(0)|A(t)) = (B(0)|e""*|A(0))

12X.Chen, T.Zhou (2019); C.Siinderhauf et al. (2019); D.Bernard, T.Jin (2019)
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@ Autocorrelation functions
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HPu=0 H,Pu>0

13Value also known as Mazur bound, usually specified as time-average under a fixed Hamiltonian evolution
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Autocorrelation Functions

e Super-Hamiltonian spectrum: P IAu) = PulAu)

@ Autocorrelation functions

Ca(6) = (A0 TH|AW) = 3 [uAP+ Y e P (A AP+

HPu=0 H,Pu>0

@ “Steady state” value C; ( ) determined only by operators in C
(Symmetries) — quctuatlons average out!3

@ Approach to steady state controlled by low-energy excitations of P.

o Z> Symmetry: 7322 composed of commuting terms — Gapped =
Exponentially fast decay = No slow-modes

o All discrete symmetries are gapped?

13Value also known as Mazur bound, usually specified as time-average under a fixed Hamiltonian evolution
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Gapless Symmetries and Slow-Modes

e U(1) Symmetry: 73U(1) ~C— Z(SZ : §j+1)

Ay === ~1 > SR~ 2

o Low-energy modes = Spin-waves

.. 27r
ikj c— ikj
) ~ > €957 |F) ~ § ¥z, ke Tl

U(1)’)\k> = 32nsin <2> |>\k> ~ 8I€k2|)\k>
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Gapless Symmetries and Slow-Modes

e U(1) Symmetry: 73U(1) ~C— Z(SZ : §j+1)

Ay === ~1 > SR~ 2

o Low-energy modes = Spin-waves
. o 27
ikj c— ik,
|Ak) ~ E je JSJ- |F) ~ E J_e V7, kETZ

) k
PU(l)’)\k> = 32k sin? <2> |Ak) ~ 8Iik2|)\k>

@ Can recover diffusion!!*

t>1 dk e‘uiﬁ
—ZH o—8Rk%t Gik(j—j') _ Kt ’
ZO1Z0) / e o

14O.Ogunnaike, J.Feldmeier, J.Y.Lee (2023)
15SM, A.Prem, D.A.Huse, A.Chan (2020)
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e U(1) Symmetry: 73U(1) ~C— Z(SZ : §j+1)

Ay === ~1 > SR~ 2

o Low-energy modes = Spin-waves

.. 27r
ikj c— ikj
) ~ > €957 |F) ~ § ¥z, ke Tl

PU(l)’)\k> = 32nsin <2> |>\k> ~ 8/4;/( |>\k>

@ Can recover diffusion!!*

o 1\2
Wﬁgﬂ /dk e—8nk2teik(j_j/) o e_%
2n V3omnt

e SU(q) symmetry: SO(q?) ferromagnet has spin-waves = Diffusion
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15SM, A.Prem, D.A.Huse, A.Chan (2020)
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Gapless Symmetries and Slow-Modes

e U(1) Symmetry: 73U(1) ~C— Z(SZ : §j+1)

Ay === ~1 > SR~ 2

o Low-energy modes = Spin-waves

[Ak) ~ Zj eikaJ._ |F) ~ Z ez, 2T7TZ
Puq)l k) = 32k sin <2> k) ~ 8rK2|A)
e Can recover diffusion!*
anﬂ /dk o 8k2t gik(i—j') — e‘%
27 = /32nnrt

e SU(q) symmetry: SO(q?) ferromagnet has spin-waves = Diffusion
o Generalization: Dipole symmetry,'® low-energy modes ~ k%,

autocorrelation decay ~ t~1/4 — Subdiffusion

14O.Ogunnaike, J.Feldmeier, J.Y.Lee (2023)
155M, A.Prem, D.A.Huse, A.Chan (2020)
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New View on Symmetries

o Symmetries <= Building blocks {h; 1} for families of Hamiltonians

o A: Generated by a set of local operators
C: Set of operators that commute with A.

@ C = Ground states of super-Hamiltonian
P, which contains info on slow-modes

All Operators on 7

Hamiltonians

oA = ()

@ Conventional approach: Guess structure of symmetries — equivalent
to imposing restrictions on symmetries in C directly.

@ Our approach: Derive symmetries in C systematically with locality

requirement on family of Hamiltonians in A.

No explicit restriction on the structure of symmetries in C:
Novel unconventional symmetries!
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Unconventional Symmetries: Weak Ergodicity Breaking

Thermal

\QvBs



Hilbert Space Fragmentation

e t — J, Hamiltonian:'® hopping with two species of particles,

Bijer: {I10) < [01),[L0) & [0 W} j4a

16T.Rakovszky, P.Sala, R.Verresen, M.Knap, F.Pollmann (2019)
17SM, 0.1.Motrunich (2021)
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Hilbert Space Fragmentation

e t — J, Hamiltonian:'® hopping with two species of particles,
Bijar : {110) < [01),1L.0) & [0 1)} 11
@ Full pattern of spins (1 or |) preserved = Exp. many blocks
0440 44 0) <4 0110 14 0)
e Construct super-Hamiltonian corresponding to A;_;, = <<{EJ,J+1}>>

Peyr~ >, (150)—-108) (50— ©05l),,,,
Jioe{1T,l}

16T.Rakovszky, P.Sala, R.Verresen, M.Knap, F.Pollmann (2019)
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Hilbert Space Fragmentation

e t — J, Hamiltonian:'® hopping with two species of particles,

hijia {11 0) < 101),11.0) & 0 D)}y
@ Full pattern of spins (1 or |) preserved = Exp. many blocks

0140 41 0) ¢+ (011 0 4} 0)

e Construct super-Hamiltonian corresponding to A;_;, = <<{EJ,J+1}>>

Pes~ Y, (150)~105) (30— (06]),,,

Joeit 4}
o Exponentially many ground states, dim(C;_,) = 2L+t — 1117
S g o e 1)
J1<jp < <Ji

o {N°19k} functionally independent of two obvious U(1) symmetries
Nt =37, NI and N =37 N

16T.Rakovszky, P.Sala, R.Verresen, M.Knap, F.Pollmann (2019)
17SM, 0.1.Motrunich (2021)
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o QMBS eigenstates: H|v,) = E, |1,) <= [H, |¥n)¥n|] = 0.

@ Cscar = (|¥n)(¥0n]) is a valid symmetry algebra if there exists a
corresponding locally-generated Agcay.
° Spin—% ferromagnetic multiplet {|®,0) = (S;ot)” |F)}, |F) =1T---1)
1

Ascar = ({Rjj+10742, 071 Rjjat)s  Rijsi =7 — S Sj+1.

18SM, O.1.Motrunich (2022)
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Quantum Many-Body Scars

o QMBS eigenstates: H|v,) = E, |1,) <= [H, |¥n)¥n|] = 0.

@ Cscar = (|¥n)(¥0n]) is a valid symmetry algebra if there exists a
corresponding locally-generated Agcay.

° Spin—% ferromagnetic multiplet {|®,0) = (S;ot)” |F)}, |F) =1T---1)

1 - -
Ascar 1= <<{l‘_\)j;j+10-_;)+2’0—_;x—ll?jaj+1}>>7 Rjj+1 = 2 S+ Sj+1-

@ Super-Hamiltonian 735c;,,r at low-energy is simply two decoupled
ferromagnetic Heisenberg chains

Pscar|low—energy ~ C— Zj <5j;t : Sj—i—l;t + 5j;b : Sj-i-l;b)-

e Ground states: {|®0), ® [Pmo0),} = Cscar = {({|Pno)XPm,ol})-

@ Projectors onto some special states can be viewed as symmetries!1®

18SM, O.1.Motrunich (2022)
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Unconventional Slow-Modes

195M, 0.1.Motrunich (2023)
20 J Feldmeier, W. Witczak-Krempa, M.Knap (2022)
21| Gotta, SM, L.Mazza (2023)
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Unconventional Slow-Modes

@ P;_,, also maps onto ferromagnetic Heisenberg model!

o Tedious semi-analytical analysis'®: Cz (t) ~ t™, v €[0.25,0.3].

@ Tracer diffusion due to pattern conservation?®

o Low-energy spectrum: Spin-waves {|®,x) = (Sior)™ >, e”‘JS* |F)}
Ground States: |®,0), ® [®n0), Excited States: [®p, 4), @ [®10),

e Autocorrelation of A = |® k)X Pno| used to lower-bound fidelity

ct

’ < n k(O)‘d)n k(t)) ’2 > m 2 _ e—2f~csin2(g)t ~ e D

e Asymptotic QMBS:?!Fidelity decay timescale diverges with L even
though state orthogonal to QMBS — generically not possible!??

195M, 0.1.Motrunich (2023)
20J.Fe|dmeier, W. Witczak-Krempa, M.Knap (2022)
21| Gotta, SM, L.Mazza (2023)

22M.C.Bafiuls, D.A.Huse, J.I.Cirac (2021)
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Summary and Open Questions

All Operators on 7’

@ Local Building Blocks <= Symmetry
A: Local algebra C: Commutant algebra

@ Symmetries are ground states, slow-modes
are low-energy excitations

@ Locality restrictions on generators of A
instead of C = Novel symmetries

@ Non-invertible/categorical symmetries in
this language? Dualities??3

@ Symmetry = Shadow of topological order??*

@ “Classification” of kinds of symmetries and slow-modes with locality?

@ Approximate symmetries without exact symmetries? Stability to
perturbations?

23EACobanera, G.Ortiz, Z.Nussinov (2011); H.Moradi, (").MAAksoy, J.H.Bardarson, A.Tiwari (2023)
24J.McGree\/y (2022); A.Chatterjee, X.-G. Wen (2023); H.Moradi, S.F.Moosavian, A.Tiwari (2022)
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Solvable ETH
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o
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Commutant Algebras: Block Structures (Informal)

@ Symmetry Sectors: Basis in which all local terms {FMH}
simultaneously block diagonal!

o Entire families of Hamiltonians built from {h; 1} block-diagonal in
same basis, including H = >, hj j11.

® Nplocks = Y dx (hard, requires rep. theory) scales as dim(C) = Number
of lin. ind. ops. in C (easy, count solutions to [h; 1, 0] = 0)!2°

Npjocks ~ dim(C) Example
o(1) Discrete Global Symmetry
poly(L) Continuous Global Symmetry
exp(L) Fragmentation

@ Symmetries and associated quantum number sectors uniquely
determined from {hj ji1}!

255M, 0.1.Motrunich(2022)
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Conventional Symmetries

Regular Quantum
Number Sectors

a2




Simple Examples: Abelian C

@ Abelian C = d\y =1, Npoeks = dim(C)
@ No symmetry: Generic {lA7jJ+1}
Solve for [Bj’j_;,_l, O] =0

C= {]]-}7 Nolocks = dIm(C) =1 DA’n

e Z; Symmetry: {Bju‘:\i—l} = {XJXJ_H,AZJ}
Solve for [X;Xj;1,0] =0and [Z;,0] =0
Cz, = span{1, Hj Zj} = <<HJ. Zi), Nolocks = dim(Cz,) = 2.
o U(1) Symmetry: {1} = {XiXjr1 + YY1, Zj}
Solve for [X;jXj+1+ Y;Yj+1,0] =0and [Z;,0] =0
Cuqy = span{l, Zuot, Z&e, -+, Zioe} = (Zeot)) = ({11 €%},
Ziot = 3. Zjs Nolocks = dim(Cy(1)) = L+ 1.

23/21



Simple Examples: Non-Abelian C

@ Non-Abelian C = some dy > 1 .l\<
=—> degeneracies | |
~ - — \_d;,
e SU(2) Symmetry: {hjji1} ={S;- Sjt1} ..\
2]

i, S*
Csuz) = (Stors Stots Stot) = <<{Hj 5 })
= span,, ¢ {(Stor)” (Stor) ? (Stor) "}

e Block-diagonal form (Schur-Weyl duality):
0 < A< L/2: S? eigenvalues, dy\ = 2\ + 1: irreps of su(2)
D)\Z irreps of SL, Nblocks ~ dim(CSU(z)) ~ pO/y(L)

@ Another example: Stabilizer codes, e.g., toric code

o A is the group algebra of the stabilizer group.
e C consists of A and the non-trivial logical operators.

24 /21



ematic Searches

e Determining C given A: Hard in practice, need numerical methods.?®

e Simultaneous block diagonalization of generators of A — can extract
operators in C, their irreps, etc.

e C frustration-free ground state space of a local superoperator
“Hamiltonian” — efficient to solve (at least in one dimension).

e Systematic (numerical) scan through

physically relevant families of .

Hamiltonians?’ i
e Discovers unconventional SU(2), quantum

group symmetries, Strong Zero Modes®in
non-integrable models!

265M, 0.1.Motrunich (2023)
24SM, 0.1.Motrunich (in preparation)
28p Fendley (2016); D.V.Else, P.Fendley, J.Kemp, C.Nayak (2017)
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