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Introduction: Symmetries in Quantum Many-Body Physics



Symmetries in Many-Body Physics

Symmetries: Organizing principle for physical phenomena.

Conventional phases of matter and transitions understood using
“Spontaneous symmetry breaking” (Landau paradigm)

Extensive conserved quantities required for correct thermodynamics,
e.g., in the definition of Gibbs ensembles

Quantum thermalization through entanglement in an isolated many-body system

A. M. Kaufman, M. E. Tai, A. Lukin, M. Rispoli, R. Schittko, P. M. Preiss, and M. Greiner⇤

Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
(Dated: September 1, 2016)

The concept of entropy is fundamental to thermalization, yet appears at odds with basic principles
in quantum mechanics. Statistical mechanics relies on the maximization of entropy for a system at
thermal equilibrium. However, an isolated many-body system initialized in a pure state will remain
pure during Schrödinger evolution, and in this sense has static, zero entropy. The underlying
role of quantum mechanics in many-body physics is then seemingly antithetical to the success of
statistical mechanics in a large variety of systems. Here we experimentally study the emergence of
statistical mechanics in a quantum state, and observe the fundamental role of quantum entanglement
in facilitating this emergence. We perform microscopy on an evolving quantum system, and we see
thermalization occur on a local scale, while we measure that the full quantum state remains pure.
We directly measure entanglement entropy and observe how it assumes the role of the thermal
entropy in thermalization. Although the full state remains measurably pure, entanglement creates
local entropy that validates the use of statistical physics for local observables. In combination with
number-resolved, single-site imaging, we demonstrate how our measurements of a pure quantum
state agree with the Eigenstate Thermalization Hypothesis and thermal ensembles in the presence
of a near-volume law in the entanglement entropy.

When an isolated quantum system is significantly per-
turbed, for instance due to a sudden change in the Hamil-
tonian, we can predict the ensuing dynamics with the
resulting eigenstate distribution induced by the pertur-
bation or so-called “quench” [1]. At any given time, the
evolving quantum state will have amplitudes that de-
pend on the eigenstates populated by the quench, and
the energy eigenvalues of the Hamiltonian. In many
cases, however, such a system can be extremely di�-
cult to simulate, often because the resulting dynamics
entail a large amount of entanglement [2–5]. Yet, sur-
prisingly, this same isolated quantum system can ther-
malize under its own dynamics unaided by a reservoir
(Figure 1) [6–8], so that the tools of statistical mechan-
ics apply and challenging simulations are no longer re-
quired. In this case, a quantum state coherently evolving
according to the Schrödinger equation is such that most
observables can be predicted from a thermal ensemble
and thermodynamic quantities. Strikingly, even with in-
finitely many copies of this quantum state, these same
observables are fundamentally unable to reveal whether
this is a single quantum state or a thermal ensemble. In
other words, a globally-pure quantum state is apparently
indistinguishable from a mixed, globally-entropic ther-
mal ensemble [6, 7, 9, 10]. Ostensibly the coherent quan-
tum amplitudes that define the quantum state in Hilbert
space are no longer relevant, even though they evolve in
time and determine the expectation values of observables.
The dynamic convergence of the measurements of a pure
quantum state to the predictions of a thermal ensemble,
and the physical process by which this convergence oc-
curs, is the experimental focus of this work.

On-going theoretical studies over the past three
decades [6, 7, 9–13] have, in many regards, clarified the
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FIG. 1. Schematic of thermalization dynamics in
closed systems. An isolated quantum system at zero tem-
perature can be described by a single pure wavefunction | i.
Subsystems of the full quantum state appear pure, as long
as the entanglement (indicated by grey lines) between sub-
systems is negligible. If suddenly perturbed, the full system
evolves unitarily, developing significant entanglement between
all parts of the system. While the full system remains in a
pure, and in this sense zero-entropy state, the entropy of en-
tanglement causes the subsystems to equilibrate, and local,
thermal mixed states appear to emerge within a globally pure
quantum state.

role of quantum mechanics in statistical physics. The
conundrum surrounding the agreement of pure states
with extensively entropic thermal states is resolved by
the counter-intuitive e↵ects of quantum entanglement.
A canonical example of this point is the Bell state of two
spatially separated spins: while the full quantum state
is pure, local measurements of just one of the spins re-
veals a statistical mixture of reduced purity. This local
statistical mixture is distinct from a superposition, be-
cause no operation on the single spin can remove these
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Symmetries in Quantum Many-Body Physics

Physics of quantum many-body systems studied using toy models:

Spin chain governed by a local Hamiltonian H =
L∑

j=1
ĥj ,j+1.

⊗ ĥ ⊗ĥj,j+1 = ⊗ ⋯ ⊗⊗ ⋯⊗ ⊗ ⊗
⋯ ⋯1 2 j − 1 j j + 1 j + 2 LL − 1

ĥj,j+1

⋯ ⋯⋯ ⋯Qα = u1 u2 uj − 1 uj uj + 1u j + 2 uL − 1 uL

Example:
Hilbert space H: Spanned by spins |↑⟩j and |↓⟩j on each site.

Operators: Magnetization Zj =

(
1 0
0 −1

)
, Spin-Flip Xj =

(
0 1
1 0

)

Transverse Field Ising Model: H =
L∑

j=1

ĥj,j+1, ĥj,j+1 = (XjXj+1 + gZj).

Symmetries/conserved quantities {Qα}: Operators that commute with
the Hamiltonian, [Qα,H] = QαH − HQα = 0.

Z2 symmetry of Ising Model: Parity of total spin Qα =
L∏

j=1
Zj .

3 / 21



Symmetries in Quantum Many-Body Physics

Physics of quantum many-body systems studied using toy models:

Spin chain governed by a local Hamiltonian H =
L∑

j=1
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⊗ ĥ ⊗ĥj,j+1 = ⊗ ⋯ ⊗⊗ ⋯⊗ ⊗ ⊗
⋯ ⋯1 2 j − 1 j j + 1 j + 2 LL − 1
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Conventional Symmetries

Conventionally, {Qα} are not allowed to be arbitrary operators on H –
additional structure is imposed.

Internal symmetries: Product of on-site unitary operators {uj} chosen
from group G , e.g., Z2, U(1), SU(2), . . .

⊗ ĥ ⊗ĥj,j+1 = ⊗ ⋯ ⊗⊗ ⋯⊗ ⊗ ⊗
⋯ ⋯1 2 j − 1 j j + 1 j + 2 LL − 1

ĥj,j+1

⋯ ⋯⋯ ⋯Qα = u1 u2 uj − 1 uj uj + 1u j + 2 uL − 1 uL

Lattice symmetries: Unitary operators that implement reflection,
rotation, translation, etc.

⊗ ĥ ⊗ĥj,j+1 = ⊗ ⋯ ⊗⊗ ⋯⊗ ⊗ ⊗
⋯ ⋯1 2 j − 1 j j + 1 j + 2 LL − 1

⋯ ⋯

⋯ ⋯
Qα = u u ⋯ u u u u ⋯ u u

These symmetries explain most “textbook” physical phenomena.

Are these the most general physical symmetries?
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⊗ ĥ ⊗ĥj,j+1 = ⊗ ⋯ ⊗⊗ ⋯⊗ ⊗ ⊗
⋯ ⋯1 2 j − 1 j j + 1 j + 2 LL − 1
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ĥj,j+1

⋯ ⋯⋯ ⋯Qα = u1 u2 uj − 1 uj uj + 1u j + 2 uL − 1 uL

Lattice symmetries: Unitary operators that implement reflection,
rotation, translation, etc.
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ĥj,j+1

⋯ ⋯⋯ ⋯Qα = u1 u2 uj − 1 uj uj + 1u j + 2 uL − 1 uL

Lattice symmetries: Unitary operators that implement reflection,
rotation, translation, etc.
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Beyond Conventional Symmetries

Several recent works: Conventional symmetries are not sufficient!

Equilibrium Physics:1 Subsystem/Higher-form symmetries, Fractons,
Categorical/MPO symmetries, Generalized Landau paradigm, . . .

⋯
Qα = ⋯ ⋯⋯

Non-Equilibrium Physics:2 Slow thermalization due to quantum scars,
Hilbert space fragmentation, strong zero modes, . . .2

that even states belonging to the same symmetry sector
S, defined e.g. by the dipole moment, may become dy-
namically disconnected (Fig. 1b), when considering finite
order in perturbation theory. In this work we experi-
mentally study the properties of the underlying e↵ective
Hamiltonian that governs the transient dynamics. We
verify the e↵ective description by studying relaxation dy-
namics of a period-two charge density wave up to about
140 tunneling times for various doublon (doubly-occupied
site) fractions nD (Fig. 1c). The doublon-number depen-
dence is directly related to the underlying microscopic
processes in the emergent fragmented models.

Our experimental setup consists of a degenerate Fermi
gas of about 50(5) ⇥ 103 40K atoms at an average tem-
perature of 0.12(2)TF , where TF is the Fermi temper-
ature. The gas is prepared in an equal mixture of
two magnetic hyperfine states, |#i = |mF = �9/2i and
|"i = |mF = �7/2i, in the F = 9/2 ground-state hyper-
fine manifold. The fermions are loaded into a 3D opti-
cal lattice created by three pairs of retro-reflected laser
beams. The lattice along the primary axis has a wave-
length �p = 532 nm and the orthogonal lattices operate
at �? = 738 nm. We work at a primary lattice depth
of 12Er,p, where one tunneling time ⌧ = ~/J = 0.75 ms.
The orthogonal lattices are set to 55Er,?; here Er,i =
h2/(2m�2

i ) is the recoil energy, with i 2 {p,?}, m the
atomic mass, �i the respective lattice wavelength and
h the Planck constant. This creates a 2D array of 1D
chains, where the central chain has a length L ⇡ 290 and
coupling to neighboring chains is suppressed by a factor
of ⇠ 10�3, such that the system can be considered 1D on
our experimental time scales. A magnetic field generated
via a single coil induces a linear potential gradient (“tilt”)
along the primary lattice axis. Since the spins are en-
coded in di↵erent magnetic hyperfine states, the tilt ��,
� 2 {", #}, is slightly state-dependent, �" ' 0.9�# [31].
The dynamics of each 1D chain is described by the tilted
1D Fermi-Hubbard model (Fig. 1a)

Ĥ =� J
X

i,�

(ĉ†
i+1,� ĉi,� + h.c.) + U

X

i

n̂i,"n̂i,#

+
X

i,�

��in̂i,�,
(1)

where ĉi,� (ĉ†
i,�) denotes the fermionic annihilation (cre-

ation) operator for spin � on site i and n̂i = ĉ†
i ĉi.

In order to study dynamics, we use a bichromatic su-
perlattice to prepare a period-two charge-density wave
(CDW), where only even sites are occupied [31]. Af-
ter a short dephasing time in the deep 3D lattice there
are no residual coherences and the initial state can be
described by an incoherent mixture of localized prod-
uct states with random spin configurations at zero net
magnetization. The dynamics is initiated by quenching
the primary lattice to the desired value. After initiat-
ing the dynamics, we probe the relaxation by measuring
the relative atom number on even (Ne) and odd (No)
lattice sites, given by the ensemble-averaged imbalance
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FIG. 2. E↵ective Hamiltonian dynamics for � � |U |, J.
a Imbalance time trace for singlon (nD ' 0) and mixed [nD =
0.28(2)] CDW initial states for �/J = 8.0(2), U/J = 2.7(2)
and �� = 0.6(2)% [resonant Rabi frequency ⌦0 = 85(1) kHz].
b Singlon- and doublon-resolved imbalance for the mixed ini-
tial state [nD = 0.28(2)] for the same parameters. The lines
in (a) and (b) are time-averaged TEBD simulations with
L = 101 lattice sites with the exact (dashed, transparent
lines) and the e↵ective model (solid lines) including a hole
fraction of 20% (comparable to Ref. [34]). The dashed ver-

tical line shows the e↵ective timescale 1/(2⇡J(3)). Experi-
mental data points are averaged ten times and error bars are
the standard error of the mean (SEM). c Relative tilt dif-
ference �� as a function of the resonant Rabi frequency ⌦0

in the presence of the RF dressing field. The solid line is a
fit of the analytic model defined in Eq. (S4). d Steady-state
imbalance averaged over ten data points between 67⌧ and
80⌧ as a function of the tilt di↵erence between both spins for
�/J = 8.0(2), U/J = 2.7(2) and nD = 0.47(4). Solid lines
of the same color as the data points are TEBD simulations
with the exact Hamiltonian (1) on 101 lattice sites, nD = 0.46
and a hole fraction of 20%. The black line represents the im-
balance of a Wannier-Stark localized doublon-hole pair (main
text). See table S1 in [31] for numerical details.

I = (Ne � No)/(Ne + No), which we directly extract
using a bandmapping technique [32, 33]. Moreover, us-
ing near-resonant light pulses to remove doubly-occupied
sites before detection, we have access to singlon (singly-
occupied site) and doublon-resolved imbalances, IS and
ID [31]. In this work we restrict our observation times to
140⌧ , since for longer times light-assisted collisions sig-
nificantly reduce the doublon fraction [31].
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Even more striking is the coherent and persistent oscillation 
of the crystalline order after the quantum quench. With respect 
to the quenched Hamiltonian (∆ = 0), the energy density of our  
Z2-ordered state corresponds to that of an infinite-temperature 
ensemble within the manifold constrained by Rydberg blockade. 
Also, our Hamiltonian does not have any explicitly conserved quan-
tities other than total energy. Nevertheless, the oscillations persist 
well beyond the natural timescale of local relaxation (1/Ω) and the 
fastest timescale (1/Vi,i+1).

To understand these observations, we consider a simplified model 
in which the effect of long-range interactions is neglected, and nearest- 
neighbour interactions are replaced by hard constraints on neigh-
bouring excitations of Rydberg states30. In this limit, the qualitative 
behaviour of the quench dynamics can be understood in terms of 
dimerized spins (Fig. 6c); owing to the blockade constraint, each dimer 
forms an effective spin-1 system with three states (|rg〉, |gg〉 and |gr〉), 
in which the resonant drive ‘rotates’ the three states over the period 

Ωπ/2 (2 ), which is close to that observed experimentally. Although 
this qualitative picture does not take into account the strong interac-
tions (constraints) between neighbouring dimers, it can be extended 
by considering a minimal variational ansatz for the many-body wave 
function based on matrix product states that respect all blockade con-
straints (Methods). Using the time-dependent variational principle, we 
derive analytical equations of motion and obtain a crystalline-order 
oscillation with a frequency of about Ω/1.51 (see Extended Data  
Fig. 9), which is within 10% of the experimental observations. These 
considerations are supported by various numerical simulations. The 
exact numerics predict that this simplified model exhibits crystal oscil-
lations with the observed frequency, while the entanglement entropy 
grows at a rate much smaller than Ω, indicating that the oscillation 
persists over many cycles (Fig. 6d and Methods). The addition of long-
range interactions leads to a faster decay of the oscillations, with a 

timescale that is determined by 1/Vi,i+2, in good agreement with experi-
mental observations (Fig. 6b); the entanglement entropy also grows on 
this timescale (Fig. 6d, see also Extended Data Fig. 10).

Our observations and analysis therefore indicate that the decay of 
crystal oscillation is governed by weak next-nearest-neighbour inter-
actions. This relatively slow thermalization is rather unexpected, 
because our Hamiltonian, with or without long-range interactions, is 
far from any known integrable system30, and features neither strong 
disorder nor explicitly conserved quantities38. Instead, our observations 
are probably associated with constrained dynamics due to Rydberg 
blockade and large separations of timescales ( Ω+ +! !V Vi i i i, 1 , 2 ;  
ref. 39) that result in an effective Hilbert-space dimension that is deter-
mined by the golden ratio + /(1 5 ) 2N N  (refs 40, 41). The evolution 
within such a constrained Hilbert space gives rise to the so-called quan-
tum dimer models, which are known to possess non-trivial dynamics42. 
Although these considerations provide important insights into the 
origin of robust emergent dynamics, our results challenge conventional 
theoretical concepts and so warrant further studies.

Outlook
Our observations demonstrate that Rydberg excitation of arrays of 
neutral atoms is a promising way of studying quantum dynamics and 
quantum simulations in large systems. Our method can be extended 
and improved in several ways. Individual qubit rotations around the z 
axis could be implemented using light shifts associated with trap light, 
and a second acousto-optic deflector could be used for individual con-
trol of coherent rotations around other directions. Further improve-
ment in coherence and controllability could be obtained by encoding 
qubits into hyperfine sublevels of the electronic ground state and using 
state-selective Rydberg excitation23. Implementing two-dimensional 
arrays could provide a path towards realizing thousands of traps. 
Such two-dimensional configurations could be realized by using a  

–20
0

20

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Pulse duration (μs)

1

5

9

P
os

iti
on

in
 c

lu
st

er
/2
π 

(M
H

z)

0 0.5 1
Rydberg probability

0

0.5

1

0 0.4 0.8 1.2
Time after quench (μs)

0

0.2

0.4

0.6

D
om

ai
n-

w
al

l d
en

si
ty

9 atoms
51 atoms
MPS

0 0.4 0.8 1.2
Time after quench (μs)

Position in cluster

R
yd

be
rg

pr
ob

ab
ili

ty

0

0.2

0.4

0.6

0.8

D
om

ai
n-

w
al

l d
en

si
ty

NN blockade 1/R6 interactions

0

1

2

3

4

En
ta

ng
le

m
en

t e
nt

ro
py

a

b c d

Ti
m

e

Δ

|gr〉

|rg〉

|gg〉
Ω

Ω

t =   2πΩ

t =   2πΩ

Figure 6 | Emergent oscillations in many-body dynamics after sudden 
quench. a, A schematic of the sequence (top, showing ∆(t)), which 
involves adiabatic preparation and then a sudden quench to single-atom 
resonance. The single-atom trajectories are shown (bottom) for a 9-atom 
cluster, with the colour scale indicating the Rydberg probability. We 
observe that the initial crystal with a Rydberg excitation at every odd trap 
site (left inset) collapses after the quench, and a crystal with an excitation 
at every even site builds up (middle inset). At a later time, the initial crystal 
revives with a frequency of Ω/1.38(1) (right inset). Error bars denote 
68% confidence intervals. b, Domain-wall density after the quench. The 
dynamics decay slowly on a timescale of 0.88 µs. Shaded region represents 

the standard error of the mean. Solid blue line is a fully coherent matrix 
product state (MPS) simulation with bond dimension D = 256, taking into 
account measurement fidelity. c, Toy model of non-interacting dimers  
(see main text). Blue (white) circles represent atoms in state |g〉 (|r〉).  
d, Numerical calculations of the dynamics after a quench, starting from an 
ideal 25-atom crystal, obtained from exact diagonalization. Domain-wall 
density (red) and the growth of entanglement entropy of the half chain  
(13 atoms; blue) are shown as functions of time after the quench. Dashed 
lines take into account only the nearest-neighbour (NN) blockade 
constraint. Solid lines correspond to the full 1/R6 interaction potential.
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that even states belonging to the same symmetry sector
S, defined e.g. by the dipole moment, may become dy-
namically disconnected (Fig. 1b), when considering finite
order in perturbation theory. In this work we experi-
mentally study the properties of the underlying e↵ective
Hamiltonian that governs the transient dynamics. We
verify the e↵ective description by studying relaxation dy-
namics of a period-two charge density wave up to about
140 tunneling times for various doublon (doubly-occupied
site) fractions nD (Fig. 1c). The doublon-number depen-
dence is directly related to the underlying microscopic
processes in the emergent fragmented models.

Our experimental setup consists of a degenerate Fermi
gas of about 50(5) ⇥ 103 40K atoms at an average tem-
perature of 0.12(2)TF , where TF is the Fermi temper-
ature. The gas is prepared in an equal mixture of
two magnetic hyperfine states, |#i = |mF = �9/2i and
|"i = |mF = �7/2i, in the F = 9/2 ground-state hyper-
fine manifold. The fermions are loaded into a 3D opti-
cal lattice created by three pairs of retro-reflected laser
beams. The lattice along the primary axis has a wave-
length �p = 532 nm and the orthogonal lattices operate
at �? = 738 nm. We work at a primary lattice depth
of 12Er,p, where one tunneling time ⌧ = ~/J = 0.75 ms.
The orthogonal lattices are set to 55Er,?; here Er,i =
h2/(2m�2

i ) is the recoil energy, with i 2 {p,?}, m the
atomic mass, �i the respective lattice wavelength and
h the Planck constant. This creates a 2D array of 1D
chains, where the central chain has a length L ⇡ 290 and
coupling to neighboring chains is suppressed by a factor
of ⇠ 10�3, such that the system can be considered 1D on
our experimental time scales. A magnetic field generated
via a single coil induces a linear potential gradient (“tilt”)
along the primary lattice axis. Since the spins are en-
coded in di↵erent magnetic hyperfine states, the tilt ��,
� 2 {", #}, is slightly state-dependent, �" ' 0.9�# [31].
The dynamics of each 1D chain is described by the tilted
1D Fermi-Hubbard model (Fig. 1a)

Ĥ =� J
X

i,�

(ĉ†
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where ĉi,� (ĉ†
i,�) denotes the fermionic annihilation (cre-

ation) operator for spin � on site i and n̂i = ĉ†
i ĉi.

In order to study dynamics, we use a bichromatic su-
perlattice to prepare a period-two charge-density wave
(CDW), where only even sites are occupied [31]. Af-
ter a short dephasing time in the deep 3D lattice there
are no residual coherences and the initial state can be
described by an incoherent mixture of localized prod-
uct states with random spin configurations at zero net
magnetization. The dynamics is initiated by quenching
the primary lattice to the desired value. After initiat-
ing the dynamics, we probe the relaxation by measuring
the relative atom number on even (Ne) and odd (No)
lattice sites, given by the ensemble-averaged imbalance
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FIG. 2. E↵ective Hamiltonian dynamics for � � |U |, J.
a Imbalance time trace for singlon (nD ' 0) and mixed [nD =
0.28(2)] CDW initial states for �/J = 8.0(2), U/J = 2.7(2)
and �� = 0.6(2)% [resonant Rabi frequency ⌦0 = 85(1) kHz].
b Singlon- and doublon-resolved imbalance for the mixed ini-
tial state [nD = 0.28(2)] for the same parameters. The lines
in (a) and (b) are time-averaged TEBD simulations with
L = 101 lattice sites with the exact (dashed, transparent
lines) and the e↵ective model (solid lines) including a hole
fraction of 20% (comparable to Ref. [34]). The dashed ver-

tical line shows the e↵ective timescale 1/(2⇡J(3)). Experi-
mental data points are averaged ten times and error bars are
the standard error of the mean (SEM). c Relative tilt dif-
ference �� as a function of the resonant Rabi frequency ⌦0

in the presence of the RF dressing field. The solid line is a
fit of the analytic model defined in Eq. (S4). d Steady-state
imbalance averaged over ten data points between 67⌧ and
80⌧ as a function of the tilt di↵erence between both spins for
�/J = 8.0(2), U/J = 2.7(2) and nD = 0.47(4). Solid lines
of the same color as the data points are TEBD simulations
with the exact Hamiltonian (1) on 101 lattice sites, nD = 0.46
and a hole fraction of 20%. The black line represents the im-
balance of a Wannier-Stark localized doublon-hole pair (main
text). See table S1 in [31] for numerical details.

I = (Ne � No)/(Ne + No), which we directly extract
using a bandmapping technique [32, 33]. Moreover, us-
ing near-resonant light pulses to remove doubly-occupied
sites before detection, we have access to singlon (singly-
occupied site) and doublon-resolved imbalances, IS and
ID [31]. In this work we restrict our observation times to
140⌧ , since for longer times light-assisted collisions sig-
nificantly reduce the doublon fraction [31].
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Even more striking is the coherent and persistent oscillation 
of the crystalline order after the quantum quench. With respect 
to the quenched Hamiltonian (∆ = 0), the energy density of our  
Z2-ordered state corresponds to that of an infinite-temperature 
ensemble within the manifold constrained by Rydberg blockade. 
Also, our Hamiltonian does not have any explicitly conserved quan-
tities other than total energy. Nevertheless, the oscillations persist 
well beyond the natural timescale of local relaxation (1/Ω) and the 
fastest timescale (1/Vi,i+1).

To understand these observations, we consider a simplified model 
in which the effect of long-range interactions is neglected, and nearest- 
neighbour interactions are replaced by hard constraints on neigh-
bouring excitations of Rydberg states30. In this limit, the qualitative 
behaviour of the quench dynamics can be understood in terms of 
dimerized spins (Fig. 6c); owing to the blockade constraint, each dimer 
forms an effective spin-1 system with three states (|rg〉, |gg〉 and |gr〉), 
in which the resonant drive ‘rotates’ the three states over the period 

Ωπ/2 (2 ), which is close to that observed experimentally. Although 
this qualitative picture does not take into account the strong interac-
tions (constraints) between neighbouring dimers, it can be extended 
by considering a minimal variational ansatz for the many-body wave 
function based on matrix product states that respect all blockade con-
straints (Methods). Using the time-dependent variational principle, we 
derive analytical equations of motion and obtain a crystalline-order 
oscillation with a frequency of about Ω/1.51 (see Extended Data  
Fig. 9), which is within 10% of the experimental observations. These 
considerations are supported by various numerical simulations. The 
exact numerics predict that this simplified model exhibits crystal oscil-
lations with the observed frequency, while the entanglement entropy 
grows at a rate much smaller than Ω, indicating that the oscillation 
persists over many cycles (Fig. 6d and Methods). The addition of long-
range interactions leads to a faster decay of the oscillations, with a 

timescale that is determined by 1/Vi,i+2, in good agreement with experi-
mental observations (Fig. 6b); the entanglement entropy also grows on 
this timescale (Fig. 6d, see also Extended Data Fig. 10).

Our observations and analysis therefore indicate that the decay of 
crystal oscillation is governed by weak next-nearest-neighbour inter-
actions. This relatively slow thermalization is rather unexpected, 
because our Hamiltonian, with or without long-range interactions, is 
far from any known integrable system30, and features neither strong 
disorder nor explicitly conserved quantities38. Instead, our observations 
are probably associated with constrained dynamics due to Rydberg 
blockade and large separations of timescales ( Ω+ +! !V Vi i i i, 1 , 2 ;  
ref. 39) that result in an effective Hilbert-space dimension that is deter-
mined by the golden ratio + /(1 5 ) 2N N  (refs 40, 41). The evolution 
within such a constrained Hilbert space gives rise to the so-called quan-
tum dimer models, which are known to possess non-trivial dynamics42. 
Although these considerations provide important insights into the 
origin of robust emergent dynamics, our results challenge conventional 
theoretical concepts and so warrant further studies.

Outlook
Our observations demonstrate that Rydberg excitation of arrays of 
neutral atoms is a promising way of studying quantum dynamics and 
quantum simulations in large systems. Our method can be extended 
and improved in several ways. Individual qubit rotations around the z 
axis could be implemented using light shifts associated with trap light, 
and a second acousto-optic deflector could be used for individual con-
trol of coherent rotations around other directions. Further improve-
ment in coherence and controllability could be obtained by encoding 
qubits into hyperfine sublevels of the electronic ground state and using 
state-selective Rydberg excitation23. Implementing two-dimensional 
arrays could provide a path towards realizing thousands of traps. 
Such two-dimensional configurations could be realized by using a  
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Figure 6 | Emergent oscillations in many-body dynamics after sudden 
quench. a, A schematic of the sequence (top, showing ∆(t)), which 
involves adiabatic preparation and then a sudden quench to single-atom 
resonance. The single-atom trajectories are shown (bottom) for a 9-atom 
cluster, with the colour scale indicating the Rydberg probability. We 
observe that the initial crystal with a Rydberg excitation at every odd trap 
site (left inset) collapses after the quench, and a crystal with an excitation 
at every even site builds up (middle inset). At a later time, the initial crystal 
revives with a frequency of Ω/1.38(1) (right inset). Error bars denote 
68% confidence intervals. b, Domain-wall density after the quench. The 
dynamics decay slowly on a timescale of 0.88 µs. Shaded region represents 

the standard error of the mean. Solid blue line is a fully coherent matrix 
product state (MPS) simulation with bond dimension D = 256, taking into 
account measurement fidelity. c, Toy model of non-interacting dimers  
(see main text). Blue (white) circles represent atoms in state |g〉 (|r〉).  
d, Numerical calculations of the dynamics after a quench, starting from an 
ideal 25-atom crystal, obtained from exact diagonalization. Domain-wall 
density (red) and the growth of entanglement entropy of the half chain  
(13 atoms; blue) are shown as functions of time after the quench. Dashed 
lines take into account only the nearest-neighbour (NN) blockade 
constraint. Solid lines correspond to the full 1/R6 interaction potential.
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that even states belonging to the same symmetry sector
S, defined e.g. by the dipole moment, may become dy-
namically disconnected (Fig. 1b), when considering finite
order in perturbation theory. In this work we experi-
mentally study the properties of the underlying e↵ective
Hamiltonian that governs the transient dynamics. We
verify the e↵ective description by studying relaxation dy-
namics of a period-two charge density wave up to about
140 tunneling times for various doublon (doubly-occupied
site) fractions nD (Fig. 1c). The doublon-number depen-
dence is directly related to the underlying microscopic
processes in the emergent fragmented models.

Our experimental setup consists of a degenerate Fermi
gas of about 50(5) ⇥ 103 40K atoms at an average tem-
perature of 0.12(2)TF , where TF is the Fermi temper-
ature. The gas is prepared in an equal mixture of
two magnetic hyperfine states, |#i = |mF = �9/2i and
|"i = |mF = �7/2i, in the F = 9/2 ground-state hyper-
fine manifold. The fermions are loaded into a 3D opti-
cal lattice created by three pairs of retro-reflected laser
beams. The lattice along the primary axis has a wave-
length �p = 532 nm and the orthogonal lattices operate
at �? = 738 nm. We work at a primary lattice depth
of 12Er,p, where one tunneling time ⌧ = ~/J = 0.75 ms.
The orthogonal lattices are set to 55Er,?; here Er,i =
h2/(2m�2

i ) is the recoil energy, with i 2 {p,?}, m the
atomic mass, �i the respective lattice wavelength and
h the Planck constant. This creates a 2D array of 1D
chains, where the central chain has a length L ⇡ 290 and
coupling to neighboring chains is suppressed by a factor
of ⇠ 10�3, such that the system can be considered 1D on
our experimental time scales. A magnetic field generated
via a single coil induces a linear potential gradient (“tilt”)
along the primary lattice axis. Since the spins are en-
coded in di↵erent magnetic hyperfine states, the tilt ��,
� 2 {", #}, is slightly state-dependent, �" ' 0.9�# [31].
The dynamics of each 1D chain is described by the tilted
1D Fermi-Hubbard model (Fig. 1a)
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where ĉi,� (ĉ†
i,�) denotes the fermionic annihilation (cre-

ation) operator for spin � on site i and n̂i = ĉ†
i ĉi.

In order to study dynamics, we use a bichromatic su-
perlattice to prepare a period-two charge-density wave
(CDW), where only even sites are occupied [31]. Af-
ter a short dephasing time in the deep 3D lattice there
are no residual coherences and the initial state can be
described by an incoherent mixture of localized prod-
uct states with random spin configurations at zero net
magnetization. The dynamics is initiated by quenching
the primary lattice to the desired value. After initiat-
ing the dynamics, we probe the relaxation by measuring
the relative atom number on even (Ne) and odd (No)
lattice sites, given by the ensemble-averaged imbalance
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FIG. 2. E↵ective Hamiltonian dynamics for � � |U |, J.
a Imbalance time trace for singlon (nD ' 0) and mixed [nD =
0.28(2)] CDW initial states for �/J = 8.0(2), U/J = 2.7(2)
and �� = 0.6(2)% [resonant Rabi frequency ⌦0 = 85(1) kHz].
b Singlon- and doublon-resolved imbalance for the mixed ini-
tial state [nD = 0.28(2)] for the same parameters. The lines
in (a) and (b) are time-averaged TEBD simulations with
L = 101 lattice sites with the exact (dashed, transparent
lines) and the e↵ective model (solid lines) including a hole
fraction of 20% (comparable to Ref. [34]). The dashed ver-

tical line shows the e↵ective timescale 1/(2⇡J(3)). Experi-
mental data points are averaged ten times and error bars are
the standard error of the mean (SEM). c Relative tilt dif-
ference �� as a function of the resonant Rabi frequency ⌦0

in the presence of the RF dressing field. The solid line is a
fit of the analytic model defined in Eq. (S4). d Steady-state
imbalance averaged over ten data points between 67⌧ and
80⌧ as a function of the tilt di↵erence between both spins for
�/J = 8.0(2), U/J = 2.7(2) and nD = 0.47(4). Solid lines
of the same color as the data points are TEBD simulations
with the exact Hamiltonian (1) on 101 lattice sites, nD = 0.46
and a hole fraction of 20%. The black line represents the im-
balance of a Wannier-Stark localized doublon-hole pair (main
text). See table S1 in [31] for numerical details.

I = (Ne � No)/(Ne + No), which we directly extract
using a bandmapping technique [32, 33]. Moreover, us-
ing near-resonant light pulses to remove doubly-occupied
sites before detection, we have access to singlon (singly-
occupied site) and doublon-resolved imbalances, IS and
ID [31]. In this work we restrict our observation times to
140⌧ , since for longer times light-assisted collisions sig-
nificantly reduce the doublon fraction [31].
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Even more striking is the coherent and persistent oscillation 
of the crystalline order after the quantum quench. With respect 
to the quenched Hamiltonian (∆ = 0), the energy density of our  
Z2-ordered state corresponds to that of an infinite-temperature 
ensemble within the manifold constrained by Rydberg blockade. 
Also, our Hamiltonian does not have any explicitly conserved quan-
tities other than total energy. Nevertheless, the oscillations persist 
well beyond the natural timescale of local relaxation (1/Ω) and the 
fastest timescale (1/Vi,i+1).

To understand these observations, we consider a simplified model 
in which the effect of long-range interactions is neglected, and nearest- 
neighbour interactions are replaced by hard constraints on neigh-
bouring excitations of Rydberg states30. In this limit, the qualitative 
behaviour of the quench dynamics can be understood in terms of 
dimerized spins (Fig. 6c); owing to the blockade constraint, each dimer 
forms an effective spin-1 system with three states (|rg〉, |gg〉 and |gr〉), 
in which the resonant drive ‘rotates’ the three states over the period 

Ωπ/2 (2 ), which is close to that observed experimentally. Although 
this qualitative picture does not take into account the strong interac-
tions (constraints) between neighbouring dimers, it can be extended 
by considering a minimal variational ansatz for the many-body wave 
function based on matrix product states that respect all blockade con-
straints (Methods). Using the time-dependent variational principle, we 
derive analytical equations of motion and obtain a crystalline-order 
oscillation with a frequency of about Ω/1.51 (see Extended Data  
Fig. 9), which is within 10% of the experimental observations. These 
considerations are supported by various numerical simulations. The 
exact numerics predict that this simplified model exhibits crystal oscil-
lations with the observed frequency, while the entanglement entropy 
grows at a rate much smaller than Ω, indicating that the oscillation 
persists over many cycles (Fig. 6d and Methods). The addition of long-
range interactions leads to a faster decay of the oscillations, with a 

timescale that is determined by 1/Vi,i+2, in good agreement with experi-
mental observations (Fig. 6b); the entanglement entropy also grows on 
this timescale (Fig. 6d, see also Extended Data Fig. 10).

Our observations and analysis therefore indicate that the decay of 
crystal oscillation is governed by weak next-nearest-neighbour inter-
actions. This relatively slow thermalization is rather unexpected, 
because our Hamiltonian, with or without long-range interactions, is 
far from any known integrable system30, and features neither strong 
disorder nor explicitly conserved quantities38. Instead, our observations 
are probably associated with constrained dynamics due to Rydberg 
blockade and large separations of timescales ( Ω+ +! !V Vi i i i, 1 , 2 ;  
ref. 39) that result in an effective Hilbert-space dimension that is deter-
mined by the golden ratio + /(1 5 ) 2N N  (refs 40, 41). The evolution 
within such a constrained Hilbert space gives rise to the so-called quan-
tum dimer models, which are known to possess non-trivial dynamics42. 
Although these considerations provide important insights into the 
origin of robust emergent dynamics, our results challenge conventional 
theoretical concepts and so warrant further studies.

Outlook
Our observations demonstrate that Rydberg excitation of arrays of 
neutral atoms is a promising way of studying quantum dynamics and 
quantum simulations in large systems. Our method can be extended 
and improved in several ways. Individual qubit rotations around the z 
axis could be implemented using light shifts associated with trap light, 
and a second acousto-optic deflector could be used for individual con-
trol of coherent rotations around other directions. Further improve-
ment in coherence and controllability could be obtained by encoding 
qubits into hyperfine sublevels of the electronic ground state and using 
state-selective Rydberg excitation23. Implementing two-dimensional 
arrays could provide a path towards realizing thousands of traps. 
Such two-dimensional configurations could be realized by using a  
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Figure 6 | Emergent oscillations in many-body dynamics after sudden 
quench. a, A schematic of the sequence (top, showing ∆(t)), which 
involves adiabatic preparation and then a sudden quench to single-atom 
resonance. The single-atom trajectories are shown (bottom) for a 9-atom 
cluster, with the colour scale indicating the Rydberg probability. We 
observe that the initial crystal with a Rydberg excitation at every odd trap 
site (left inset) collapses after the quench, and a crystal with an excitation 
at every even site builds up (middle inset). At a later time, the initial crystal 
revives with a frequency of Ω/1.38(1) (right inset). Error bars denote 
68% confidence intervals. b, Domain-wall density after the quench. The 
dynamics decay slowly on a timescale of 0.88 µs. Shaded region represents 

the standard error of the mean. Solid blue line is a fully coherent matrix 
product state (MPS) simulation with bond dimension D = 256, taking into 
account measurement fidelity. c, Toy model of non-interacting dimers  
(see main text). Blue (white) circles represent atoms in state |g〉 (|r〉).  
d, Numerical calculations of the dynamics after a quench, starting from an 
ideal 25-atom crystal, obtained from exact diagonalization. Domain-wall 
density (red) and the growth of entanglement entropy of the half chain  
(13 atoms; blue) are shown as functions of time after the quench. Dashed 
lines take into account only the nearest-neighbour (NN) blockade 
constraint. Solid lines correspond to the full 1/R6 interaction potential.
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Beyond Conventional Symmetries

Several recent works: Conventional symmetries are not sufficient!

Equilibrium Physics:1 Subsystem/Higher-form symmetries, Fractons,
Categorical/MPO symmetries, Generalized Landau paradigm, . . .

⋯
Qα = ⋯ ⋯⋯

Non-Equilibrium Physics:2 Slow thermalization due to quantum scars,
Hilbert space fragmentation, strong zero modes, . . .2

that even states belonging to the same symmetry sector
S, defined e.g. by the dipole moment, may become dy-
namically disconnected (Fig. 1b), when considering finite
order in perturbation theory. In this work we experi-
mentally study the properties of the underlying e↵ective
Hamiltonian that governs the transient dynamics. We
verify the e↵ective description by studying relaxation dy-
namics of a period-two charge density wave up to about
140 tunneling times for various doublon (doubly-occupied
site) fractions nD (Fig. 1c). The doublon-number depen-
dence is directly related to the underlying microscopic
processes in the emergent fragmented models.

Our experimental setup consists of a degenerate Fermi
gas of about 50(5) ⇥ 103 40K atoms at an average tem-
perature of 0.12(2)TF , where TF is the Fermi temper-
ature. The gas is prepared in an equal mixture of
two magnetic hyperfine states, |#i = |mF = �9/2i and
|"i = |mF = �7/2i, in the F = 9/2 ground-state hyper-
fine manifold. The fermions are loaded into a 3D opti-
cal lattice created by three pairs of retro-reflected laser
beams. The lattice along the primary axis has a wave-
length �p = 532 nm and the orthogonal lattices operate
at �? = 738 nm. We work at a primary lattice depth
of 12Er,p, where one tunneling time ⌧ = ~/J = 0.75 ms.
The orthogonal lattices are set to 55Er,?; here Er,i =
h2/(2m�2

i ) is the recoil energy, with i 2 {p,?}, m the
atomic mass, �i the respective lattice wavelength and
h the Planck constant. This creates a 2D array of 1D
chains, where the central chain has a length L ⇡ 290 and
coupling to neighboring chains is suppressed by a factor
of ⇠ 10�3, such that the system can be considered 1D on
our experimental time scales. A magnetic field generated
via a single coil induces a linear potential gradient (“tilt”)
along the primary lattice axis. Since the spins are en-
coded in di↵erent magnetic hyperfine states, the tilt ��,
� 2 {", #}, is slightly state-dependent, �" ' 0.9�# [31].
The dynamics of each 1D chain is described by the tilted
1D Fermi-Hubbard model (Fig. 1a)

Ĥ =� J
X

i,�

(ĉ†
i+1,� ĉi,� + h.c.) + U

X

i

n̂i,"n̂i,#

+
X

i,�

��in̂i,�,
(1)

where ĉi,� (ĉ†
i,�) denotes the fermionic annihilation (cre-

ation) operator for spin � on site i and n̂i = ĉ†
i ĉi.

In order to study dynamics, we use a bichromatic su-
perlattice to prepare a period-two charge-density wave
(CDW), where only even sites are occupied [31]. Af-
ter a short dephasing time in the deep 3D lattice there
are no residual coherences and the initial state can be
described by an incoherent mixture of localized prod-
uct states with random spin configurations at zero net
magnetization. The dynamics is initiated by quenching
the primary lattice to the desired value. After initiat-
ing the dynamics, we probe the relaxation by measuring
the relative atom number on even (Ne) and odd (No)
lattice sites, given by the ensemble-averaged imbalance

0.7

0.8

0. 

1.0

I(
t)

nD =0 nD =0.28
a

b

FIG. 2. E↵ective Hamiltonian dynamics for � � |U |, J.
a Imbalance time trace for singlon (nD ' 0) and mixed [nD =
0.28(2)] CDW initial states for �/J = 8.0(2), U/J = 2.7(2)
and �� = 0.6(2)% [resonant Rabi frequency ⌦0 = 85(1) kHz].
b Singlon- and doublon-resolved imbalance for the mixed ini-
tial state [nD = 0.28(2)] for the same parameters. The lines
in (a) and (b) are time-averaged TEBD simulations with
L = 101 lattice sites with the exact (dashed, transparent
lines) and the e↵ective model (solid lines) including a hole
fraction of 20% (comparable to Ref. [34]). The dashed ver-

tical line shows the e↵ective timescale 1/(2⇡J(3)). Experi-
mental data points are averaged ten times and error bars are
the standard error of the mean (SEM). c Relative tilt dif-
ference �� as a function of the resonant Rabi frequency ⌦0

in the presence of the RF dressing field. The solid line is a
fit of the analytic model defined in Eq. (S4). d Steady-state
imbalance averaged over ten data points between 67⌧ and
80⌧ as a function of the tilt di↵erence between both spins for
�/J = 8.0(2), U/J = 2.7(2) and nD = 0.47(4). Solid lines
of the same color as the data points are TEBD simulations
with the exact Hamiltonian (1) on 101 lattice sites, nD = 0.46
and a hole fraction of 20%. The black line represents the im-
balance of a Wannier-Stark localized doublon-hole pair (main
text). See table S1 in [31] for numerical details.

I = (Ne � No)/(Ne + No), which we directly extract
using a bandmapping technique [32, 33]. Moreover, us-
ing near-resonant light pulses to remove doubly-occupied
sites before detection, we have access to singlon (singly-
occupied site) and doublon-resolved imbalances, IS and
ID [31]. In this work we restrict our observation times to
140⌧ , since for longer times light-assisted collisions sig-
nificantly reduce the doublon fraction [31].
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Even more striking is the coherent and persistent oscillation 
of the crystalline order after the quantum quench. With respect 
to the quenched Hamiltonian (∆ = 0), the energy density of our  
Z2-ordered state corresponds to that of an infinite-temperature 
ensemble within the manifold constrained by Rydberg blockade. 
Also, our Hamiltonian does not have any explicitly conserved quan-
tities other than total energy. Nevertheless, the oscillations persist 
well beyond the natural timescale of local relaxation (1/Ω) and the 
fastest timescale (1/Vi,i+1).

To understand these observations, we consider a simplified model 
in which the effect of long-range interactions is neglected, and nearest- 
neighbour interactions are replaced by hard constraints on neigh-
bouring excitations of Rydberg states30. In this limit, the qualitative 
behaviour of the quench dynamics can be understood in terms of 
dimerized spins (Fig. 6c); owing to the blockade constraint, each dimer 
forms an effective spin-1 system with three states (|rg〉, |gg〉 and |gr〉), 
in which the resonant drive ‘rotates’ the three states over the period 

Ωπ/2 (2 ), which is close to that observed experimentally. Although 
this qualitative picture does not take into account the strong interac-
tions (constraints) between neighbouring dimers, it can be extended 
by considering a minimal variational ansatz for the many-body wave 
function based on matrix product states that respect all blockade con-
straints (Methods). Using the time-dependent variational principle, we 
derive analytical equations of motion and obtain a crystalline-order 
oscillation with a frequency of about Ω/1.51 (see Extended Data  
Fig. 9), which is within 10% of the experimental observations. These 
considerations are supported by various numerical simulations. The 
exact numerics predict that this simplified model exhibits crystal oscil-
lations with the observed frequency, while the entanglement entropy 
grows at a rate much smaller than Ω, indicating that the oscillation 
persists over many cycles (Fig. 6d and Methods). The addition of long-
range interactions leads to a faster decay of the oscillations, with a 

timescale that is determined by 1/Vi,i+2, in good agreement with experi-
mental observations (Fig. 6b); the entanglement entropy also grows on 
this timescale (Fig. 6d, see also Extended Data Fig. 10).

Our observations and analysis therefore indicate that the decay of 
crystal oscillation is governed by weak next-nearest-neighbour inter-
actions. This relatively slow thermalization is rather unexpected, 
because our Hamiltonian, with or without long-range interactions, is 
far from any known integrable system30, and features neither strong 
disorder nor explicitly conserved quantities38. Instead, our observations 
are probably associated with constrained dynamics due to Rydberg 
blockade and large separations of timescales ( Ω+ +! !V Vi i i i, 1 , 2 ;  
ref. 39) that result in an effective Hilbert-space dimension that is deter-
mined by the golden ratio + /(1 5 ) 2N N  (refs 40, 41). The evolution 
within such a constrained Hilbert space gives rise to the so-called quan-
tum dimer models, which are known to possess non-trivial dynamics42. 
Although these considerations provide important insights into the 
origin of robust emergent dynamics, our results challenge conventional 
theoretical concepts and so warrant further studies.

Outlook
Our observations demonstrate that Rydberg excitation of arrays of 
neutral atoms is a promising way of studying quantum dynamics and 
quantum simulations in large systems. Our method can be extended 
and improved in several ways. Individual qubit rotations around the z 
axis could be implemented using light shifts associated with trap light, 
and a second acousto-optic deflector could be used for individual con-
trol of coherent rotations around other directions. Further improve-
ment in coherence and controllability could be obtained by encoding 
qubits into hyperfine sublevels of the electronic ground state and using 
state-selective Rydberg excitation23. Implementing two-dimensional 
arrays could provide a path towards realizing thousands of traps. 
Such two-dimensional configurations could be realized by using a  
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Figure 6 | Emergent oscillations in many-body dynamics after sudden 
quench. a, A schematic of the sequence (top, showing ∆(t)), which 
involves adiabatic preparation and then a sudden quench to single-atom 
resonance. The single-atom trajectories are shown (bottom) for a 9-atom 
cluster, with the colour scale indicating the Rydberg probability. We 
observe that the initial crystal with a Rydberg excitation at every odd trap 
site (left inset) collapses after the quench, and a crystal with an excitation 
at every even site builds up (middle inset). At a later time, the initial crystal 
revives with a frequency of Ω/1.38(1) (right inset). Error bars denote 
68% confidence intervals. b, Domain-wall density after the quench. The 
dynamics decay slowly on a timescale of 0.88 µs. Shaded region represents 

the standard error of the mean. Solid blue line is a fully coherent matrix 
product state (MPS) simulation with bond dimension D = 256, taking into 
account measurement fidelity. c, Toy model of non-interacting dimers  
(see main text). Blue (white) circles represent atoms in state |g〉 (|r〉).  
d, Numerical calculations of the dynamics after a quench, starting from an 
ideal 25-atom crystal, obtained from exact diagonalization. Domain-wall 
density (red) and the growth of entanglement entropy of the half chain  
(13 atoms; blue) are shown as functions of time after the quench. Dashed 
lines take into account only the nearest-neighbour (NN) blockade 
constraint. Solid lines correspond to the full 1/R6 interaction potential.
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Background: Quantum Dynamics and Weak Ergodicity Breaking

Review Articles:

• M.Serbyn, D.A.Abanin, Z.Papić, arXiv: 2011.09486

• Z.Papić, arXiv: 2108.03460

• SM, B. Andrei Bernevig, Nicolas Regnault, arXiv: 2109.00548

• A.Chandran, T.Iadecola, V.Khemani, R.Moessner, arXiv: 2206.11528



Ergodicity in Isolated Quantum Systems

Eigenstate Thermalization Hypothesis (ETH)3:
Eigenstates |E ⟩ are “thermal”

E ⇐⇒ β, TrB(|E ⟩⟨E |) ∼ e−βH|A

Volume law entanglement: S = −TrA (ρA log ρA) ∼ VA.

Symmetric Hamiltonians: Block-diagonalized
into symmetry sectors labelled by eigenvalues
under {Qα}.

Ergodicity/ETH expected within each sector
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Assumption ∼ All “blocks” are explained by symmetries

Recent analytical4 and experimental5 discovery of “weak” ergodicity
breaking put this into question

3J.M.Deutsch (1991), M.Srednicki (1994)
4SM, B.A.Bernevig, N.Regnault (2021)
5M.Serbyn, D.A.Abanin, Z.Papic (2020)
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Weak Ergodicity Breaking

Quantum Many-Body Scars

Solvable eigenstates deep in the spectrum6

Mid-spectrum: S ∼ log L =⇒ ETH violation!

Equally spaced quasiparticle tower
=⇒ Revivals from simple initial states

Hilbert Space Fragmentation

Local Hamiltonians with exp. many disconnected

blocks:7H =
⊕∼exp(L)

α=1 span
{
e−iHt |Rα⟩

}

Blocks not distinguished by conventional
symmetry quantum numbers, vastly different
properties!8

6SM, S.Rachel, B.A.Bernevig, N.Regnault (2017)
7P.Sala, T.Rakovszky, R.Verresen, M.Knap, F.Pollmann (2019); V.Khemani, M.Hermele, R.Nandkishore (2019)
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Equally spaced quasiparticle tower
=⇒ Revivals from simple initial states

Hilbert Space Fragmentation

Local Hamiltonians with exp. many disconnected

blocks:7H =
⊕∼exp(L)

α=1 span
{
e−iHt |Rα⟩

}

Blocks not distinguished by conventional
symmetry quantum numbers, vastly different
properties!8

6SM, S.Rachel, B.A.Bernevig, N.Regnault (2017)
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Outstanding Issue for Symmetries

Weak Ergodicity Breaking = Existence of unexpected blocks

…

Regular Quantum 
Number Sectors

qα,1

qα,2

qα,n−1
qα,n

Thermal

QMBS

…

(b) (c)

…

(a)

Regular Quantum 
Number Sectors

qα,1

qα,2

qα,n−1
qα,n

Puzzle: Conventional symmetries do not explain these hidden blocks!

Allowing arbitrary operators {Qα} to be valid conserved quantities not
very meaningful: projectors onto eigenstates of H always conserved

[H, |E ⟩⟨E |] = 0 =⇒ exponentially many conserved quantities?!

What is an appropriate definition of a symmetry/conserved quantity?
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Commutant Algebras: Definition

We want symmetries to commute with H: [Qα,
∑

j ĥj ,j+1] = 0

Ising Model:
[∏

j
Zj ,

∑
j
(XjXj+1 + gZj)

]
= 0

Key observation: Symmetries actually separately commute with each
local term: [Qα, ĥj ,j+1] = 0!.

[∏
j
Zj ,XjXj+1

]
= 0,

[∏
j
Zj ,Zj

]
= 0, for all j!

Definition of symmetry: [Qα, ĥj ,j+1] = 0 for all j?

Commutant Algebra C: Set of such operators {Qα}.
Qα ∈ C, Qβ ∈ C =⇒

{
cαQα + cβQβ ∈ C
QαQβ,QβQα ∈ C

Bond Algebra A = ⟨⟨{ĥj ,j+1}⟩⟩: Entire family of Hamiltonians

constructed from {ĥj ,j+1}, e.g.,
∑

j Jj ĥj ,j+1,
∑

j J
′
j ĥj−1,j ĥj ,j+1, . . . .

Symmetries in C ⇐⇒ Families of Hamiltonians in A
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Commutant Algebras: Block Structures

A and C are von Neumann algebras
(closed under †), centralizers of each
other (Double Commutant Theorem). !

Hamiltonians Symmetries

All Operators on ℋ

# {ĥj,j+1}̻̻ ̼̼=

Representation theory: ∃ basis such that
ĥA ∈ A and ĥC ∈ C have representations

W †ĥAW =
⊕

λ
(MDλ

⊗ 1dλ)

W †ĥCW =
⊕

λ
(1Dλ

⊗ Ndλ)

{Dλ}: Irreps of A = Block sizes
{dλ}: Irreps of C = Degeneracies

…

…

…

…

Symmetry Sectors: Basis in which all local terms {ĥj ,j+1}
simultaneously block diagonal!9

9SM, O.I.Motrunich (2021-23)
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Symmetries are Ground States!

Operators on H are states in a doubled Hilbert space H⊗H
Ô =

∑

µ,ν

oµν |vµ⟩⟨vν | ⇐⇒ |Ô) =
∑

µ,ν

oµν |vµ⟩ ⊗ |vν⟩

Rewrite commutant condition after converting operators to states

[ĥj ,j+1, Q̂α] = 0 ⇐⇒

L̂j,j+1:=︷ ︸︸ ︷
(ĥj ,j+1 ⊗ 1− 1⊗ ĥTj ,j+1) |Q̂α) = 0.

Frustration-free ground states of a local “super-Hamiltonian”10

P̂ :=
∑

j
L̂†j ,j+1L̂j ,j+1, P̂|Q̂α) = 0 ⇐⇒ L̂j ,j+1|Q̂α) = 0 ∀j ,

1 2 L − 1 L
t

b

L − 1 L1 2
t

b

j j + 1

̂ℒ†
j, j+1 ̂ℒ j, j+1

L − 1 L1 2
t

b

j j + 1

Number of ground states = dim(C).

10SM, O.I.Motrunich (2023)
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Z2 Symmetry = Ising Ferromagnet

Bond Algebra: AZ2 = ⟨⟨{XjXj+1}, {Zj}⟩⟩

Super-Hamiltonian P̂Z2 composed of commuting terms!

P̂Z2 = C −
∑

j
Xj ;tXj+1;tXj ;bXj+1;b −

∑
j
Zj ;tZj ;b

Define composite spins on rungs

|→̃⟩j :=
∣∣∣∣
↑
↑

〉

j

+

∣∣∣∣
↓
↓

〉

j

∼ 1j , |←̃⟩j :=
∣∣∣∣
↑
↑

〉

j

−
∣∣∣∣
↓
↓

〉

j

∼ Zj

Two degenerate ferromagnetic ground states11 = Z2 Symmetry

|→̃→̃ · · · →̃⟩ ∼ 1, |←̃←̃ · · · ←̃⟩ ∼
∏

j
Zj

Commutant Algebra: CZ2 = span{1,∏j Zj} = ⟨⟨
∏

j Zj⟩⟩

11Spontaneous Symmetry Breaking: Z2 × Z2 → Z2
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U(1) Symmetry = Heisenberg Ferromagnet

Bond Algebra: AU(1) = ⟨⟨{XjXj+1 + YjYj+1}, {Zj}⟩⟩

Super-Hamiltonian P̂U(1) maps to ferromagnetic Heisenberg model in
composite spin sector!

P̂U(1)|low energy =
∑

j
(|→̃←̃⟩ − |←̃→̃⟩)(⟨→̃←̃| − ⟨→̃←̃|)j ,j+1

= C −
∑

j
S⃗j · S⃗j+1

(L+ 1) ferromagnetic ground states = U(1) Symmetry

|→̃ · · · →̃⟩ ∼ 1,
∑

j
S−
j |→̃ · · · →̃⟩ ∼

∑
j
Zj = Ztot

(
∑

j
S−
j )n |→̃ · · · →̃⟩ ∼ F ({Zm

tot,m ≤ n}), |←̃ · · · ←̃⟩ ∼
∏

j
Zj

CU(1) = span{1,Ztot,Z
2
tot, · · · ,ZL

tot} = ⟨⟨Ztot⟩⟩ = ⟨⟨{
∏

j e
iαZj}⟩⟩

Generalization: SU(q) symmetry = SO(q2) ferromagnet.

13 / 21



U(1) Symmetry = Heisenberg Ferromagnet

Bond Algebra: AU(1) = ⟨⟨{XjXj+1 + YjYj+1}, {Zj}⟩⟩
Super-Hamiltonian P̂U(1) maps to ferromagnetic Heisenberg model in
composite spin sector!

P̂U(1)|low energy =
∑

j
(|→̃←̃⟩ − |←̃→̃⟩)(⟨→̃←̃| − ⟨→̃←̃|)j ,j+1

= C −
∑

j
S⃗j · S⃗j+1

(L+ 1) ferromagnetic ground states = U(1) Symmetry

|→̃ · · · →̃⟩ ∼ 1,
∑

j
S−
j |→̃ · · · →̃⟩ ∼

∑
j
Zj = Ztot

(
∑

j
S−
j )n |→̃ · · · →̃⟩ ∼ F ({Zm

tot,m ≤ n}), |←̃ · · · ←̃⟩ ∼
∏

j
Zj

CU(1) = span{1,Ztot,Z
2
tot, · · · ,ZL

tot} = ⟨⟨Ztot⟩⟩ = ⟨⟨{
∏

j e
iαZj}⟩⟩

Generalization: SU(q) symmetry = SO(q2) ferromagnet.

13 / 21



U(1) Symmetry = Heisenberg Ferromagnet

Bond Algebra: AU(1) = ⟨⟨{XjXj+1 + YjYj+1}, {Zj}⟩⟩
Super-Hamiltonian P̂U(1) maps to ferromagnetic Heisenberg model in
composite spin sector!

P̂U(1)|low energy =
∑

j
(|→̃←̃⟩ − |←̃→̃⟩)(⟨→̃←̃| − ⟨→̃←̃|)j ,j+1

= C −
∑

j
S⃗j · S⃗j+1

(L+ 1) ferromagnetic ground states = U(1) Symmetry

|→̃ · · · →̃⟩ ∼ 1,
∑

j
S−
j |→̃ · · · →̃⟩ ∼

∑
j
Zj = Ztot

(
∑

j
S−
j )n |→̃ · · · →̃⟩ ∼ F ({Zm

tot,m ≤ n}), |←̃ · · · ←̃⟩ ∼
∏

j
Zj

CU(1) = span{1,Ztot,Z
2
tot, · · · ,ZL

tot} = ⟨⟨Ztot⟩⟩ = ⟨⟨{
∏

j e
iαZj}⟩⟩

Generalization: SU(q) symmetry = SO(q2) ferromagnet.

13 / 21



U(1) Symmetry = Heisenberg Ferromagnet

Bond Algebra: AU(1) = ⟨⟨{XjXj+1 + YjYj+1}, {Zj}⟩⟩
Super-Hamiltonian P̂U(1) maps to ferromagnetic Heisenberg model in
composite spin sector!

P̂U(1)|low energy =
∑

j
(|→̃←̃⟩ − |←̃→̃⟩)(⟨→̃←̃| − ⟨→̃←̃|)j ,j+1

= C −
∑

j
S⃗j · S⃗j+1

(L+ 1) ferromagnetic ground states = U(1) Symmetry

|→̃ · · · →̃⟩ ∼ 1,
∑

j
S−
j |→̃ · · · →̃⟩ ∼

∑
j
Zj = Ztot

(
∑

j
S−
j )n |→̃ · · · →̃⟩ ∼ F ({Zm

tot,m ≤ n}), |←̃ · · · ←̃⟩ ∼
∏

j
Zj

CU(1) = span{1,Ztot,Z
2
tot, · · · ,ZL

tot} = ⟨⟨Ztot⟩⟩ = ⟨⟨{
∏

j e
iαZj}⟩⟩

Generalization: SU(q) symmetry = SO(q2) ferromagnet.

13 / 21



U(1) Symmetry = Heisenberg Ferromagnet

Bond Algebra: AU(1) = ⟨⟨{XjXj+1 + YjYj+1}, {Zj}⟩⟩
Super-Hamiltonian P̂U(1) maps to ferromagnetic Heisenberg model in
composite spin sector!

P̂U(1)|low energy =
∑

j
(|→̃←̃⟩ − |←̃→̃⟩)(⟨→̃←̃| − ⟨→̃←̃|)j ,j+1

= C −
∑

j
S⃗j · S⃗j+1

(L+ 1) ferromagnetic ground states = U(1) Symmetry

|→̃ · · · →̃⟩ ∼ 1,
∑

j
S−
j |→̃ · · · →̃⟩ ∼

∑
j
Zj = Ztot

(
∑

j
S−
j )n |→̃ · · · →̃⟩ ∼ F ({Zm

tot,m ≤ n}), |←̃ · · · ←̃⟩ ∼
∏

j
Zj

CU(1) = span{1,Ztot,Z
2
tot, · · · ,ZL

tot} = ⟨⟨Ztot⟩⟩ = ⟨⟨{
∏

j e
iαZj}⟩⟩

Generalization: SU(q) symmetry = SO(q2) ferromagnet.

13 / 21



Approximate Symmetries

Ground States = Exact Symmetries
Low-Energy Excitations = Approximate Symmetries?

Made precise using a “Brownian Circuit”12

Ô(t +∆t) = e i
∑

j J
(t)
j ĥj,j+1∆t Ô(t) e−i

∑
j J

(t)
j ĥj,j+1∆t

P(J
(t)
j ) ∼ e−(J

(t)
j )2/σ2

, σ2 = 2κ/∆t,

Ensemble-averaged behavior of operators as ∆t → 0

d

dt
|Ô(t)) = −κ

∑
j
L̂†j ,j+1L̂j ,j+1|Ô(t)) =⇒ |Ô(t)) = e−κP̂t |Ô(0))

Can be used to compute correlation functions

C
B̂,Â

(t) := Tr(B̂(0)†Â(t)) = (B̂(0)|Â(t)) = (B̂(0)|e−κP̂t |Â(0))

12X.Chen, T.Zhou (2019); C.Sünderhauf et al. (2019); D.Bernard, T.Jin (2019)
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Autocorrelation Functions

Super-Hamiltonian spectrum: P̂ |λµ⟩ = pµ |λµ⟩
Autocorrelation functions

C
Â
(t) = (Â(0)|e−κP̂t |Â(0)) =

∑

µ,pµ=0

|(λµ|Â)|2+
∑

µ,pµ>0

e−pµt |(λµ|Â)|2+· · ·

“Steady state” value C
Â
(∞) determined only by operators in C

(Symmetries) – fluctuations average out13

Approach to steady state controlled by low-energy excitations of P̂.
Z2 Symmetry: P̂Z2 composed of commuting terms =⇒ Gapped =⇒
Exponentially fast decay =⇒ No slow-modes

All discrete symmetries are gapped?

13Value also known as Mazur bound, usually specified as time-average under a fixed Hamiltonian evolution
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∑

µ,pµ=0

|(λµ|Â)|2+
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Gapless Symmetries and Slow-Modes

U(1) Symmetry: P̂U(1) ∼ C −∑
j (S⃗j · S⃗j+1)

|F ⟩ = |→̃ · · · →̃⟩ ∼ 1,
∑

j
S−
j |F ⟩ ∼

∑
j
Zj , · · ·

Low-energy modes = Spin-waves

|λk⟩ ∼
∑

j
e ikjS−

j |F ⟩ ∼
∑

j
e ikjZj , k ∈ 2π

L
Z

PU(1)|λk⟩ = 32κ sin2
(
k

2

)
|λk⟩ ∼ 8κk2|λk⟩

Can recover diffusion!14

(Zj ′(0)|Zj(t))
κt≫1≈

∫
dk

2π
e−8κk2te ik(j−j ′) =

e−
(j−j′)2
32κt√

32πκt
,

SU(q) symmetry: SO(q2) ferromagnet has spin-waves =⇒ Diffusion

Generalization: Dipole symmetry,15 low-energy modes ∼ k4,
autocorrelation decay ∼ t−1/4 =⇒ Subdiffusion

14O.Ogunnaike, J.Feldmeier, J.Y.Lee (2023)
15SM, A.Prem, D.A.Huse, A.Chan (2020)
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New View on Symmetries

Symmetries ⇐⇒ Building blocks {ĥj ,j+1} for families of Hamiltonians

A: Generated by a set of local operators
C: Set of operators that commute with A.

C = Ground states of super-Hamiltonian
P̂, which contains info on slow-modes

!
Hamiltonians Symmetries

All Operators on ℋ

# {ĥj,j+1}̻̻ ̼̼=

Conventional approach: Guess structure of symmetries – equivalent
to imposing restrictions on symmetries in C directly.

Our approach: Derive symmetries in C systematically with locality
requirement on family of Hamiltonians in A.

No explicit restriction on the structure of symmetries in C:
Novel unconventional symmetries!
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Unconventional Symmetries: Weak Ergodicity Breaking
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Hilbert Space Fragmentation

t − Jz Hamiltonian:16 hopping with two species of particles,

ĥj ,j+1 : {|↑ 0⟩ ↔ |0 ↑⟩ , |↓ 0⟩ ↔ |0 ↓⟩}j ,j+1

Full pattern of spins (↑ or ↓) preserved =⇒ Exp. many blocks

|0 ↑↓ 0 ↓↑ 0⟩ ←↛ |0 ↑↑ 0 ↓↓ 0⟩
Construct super-Hamiltonian corresponding to At−Jz = ⟨⟨{ĥj ,j+1}⟩⟩.

P̂t−Jz ∼
∑

j ,σ∈{↑,↓}

(
|σ̃ 0̃⟩ − |0̃ σ̃⟩

) (
⟨σ̃ 0̃| − ⟨0̃ σ̃|

)
j ,j+1

,

Exponentially many ground states, dim(Ct−Jz ) = 2L+1 − 1!17

Nσ1σ2···σk =
∑

j1<j2<···<jk

Nσ1
j1
Nσ2
j2
· · ·Nσk

jk
, σj ∈ {↑, ↓}

{Nσ1···σk} functionally independent of two obvious U(1) symmetries

N↑ =
∑

j N
↑
j and N↓ =

∑
j N

↓
j

16T.Rakovszky, P.Sala, R.Verresen, M.Knap, F.Pollmann (2019)
17SM, O.I.Motrunich (2021)
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|0 ↑↓ 0 ↓↑ 0⟩ ←↛ |0 ↑↑ 0 ↓↓ 0⟩
Construct super-Hamiltonian corresponding to At−Jz = ⟨⟨{ĥj ,j+1}⟩⟩.
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Quantum Many-Body Scars

QMBS eigenstates: H |ψn⟩ = En |ψn⟩ ⇐⇒ [H, |ψn⟩⟨ψn|] = 0.

Cscar = ⟨⟨|ψn⟩⟨ψn|⟩⟩ is a valid symmetry algebra if there exists a
corresponding locally-generated Ascar.

Spin-12 ferromagnetic multiplet {|Φn,0⟩ = (S−
tot)

n |F ⟩}, |F ⟩ = |↑ · · · ↑⟩

Ascar := ⟨⟨{Rj ,j+1σ
α
j+2, σ

α
j−1Rj ,j+1}⟩⟩, Rj ,j+1 =

1

4
− S⃗j · S⃗j+1.

Super-Hamiltonian P̂scar at low-energy is simply two decoupled
ferromagnetic Heisenberg chains

P̂scar|low-energy ∼ C −
∑

j

(
S⃗j ;t · S⃗j+1;t + S⃗j ;b · S⃗j+1;b

)
.

Ground states: {|Φn,0⟩t ⊗ |Φm,0⟩b} =⇒ Cscar = ⟨⟨{|Φn,0⟩⟨Φm,0|}⟩⟩.
Projectors onto some special states can be viewed as symmetries!18

18SM, O.I.Motrunich (2022)
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Unconventional Slow-Modes

P̂t−Jz also maps onto ferromagnetic Heisenberg model!

Tedious semi-analytical analysis19: CZj
(t) ∼ t−γ , γ ∈ [0.25, 0.3].

Tracer diffusion due to pattern conservation20

Low-energy spectrum: Spin-waves {|Φm,k⟩ = (S−
tot)

m
∑

j e
ikjS−

j |F ⟩}
Ground States: |Φm,0⟩t ⊗ |Φn,0⟩b Excited States: |Φm,k⟩t ⊗ |Φn,0⟩b

Autocorrelation of Â = |Φn,k⟩⟨Φn,0| used to lower-bound fidelity

| ⟨Φn,k(0)|Φn,k(t)⟩ |2 ≥
∣∣∣(Â(0)|Â(−t))

∣∣∣
2
= e−2κ sin2( k

2
)t ∼ e−

ct
L2 .

Asymptotic QMBS:21Fidelity decay timescale diverges with L even
though state orthogonal to QMBS – generically not possible!22

19SM, O.I.Motrunich (2023)
20J.Feldmeier, W. Witczak-Krempa, M.Knap (2022)
21L.Gotta, SM, L.Mazza (2023)
22M.C.Bañuls, D.A.Huse, J.I.Cirac (2021)
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tot)

m
∑

j e
ikjS−

j |F ⟩}
Ground States: |Φm,0⟩t ⊗ |Φn,0⟩b Excited States: |Φm,k⟩t ⊗ |Φn,0⟩b

Autocorrelation of Â = |Φn,k⟩⟨Φn,0| used to lower-bound fidelity

| ⟨Φn,k(0)|Φn,k(t)⟩ |2 ≥
∣∣∣(Â(0)|Â(−t))

∣∣∣
2
= e−2κ sin2( k

2
)t ∼ e−

ct
L2 .

Asymptotic QMBS:21Fidelity decay timescale diverges with L even
though state orthogonal to QMBS – generically not possible!22

19SM, O.I.Motrunich (2023)
20J.Feldmeier, W. Witczak-Krempa, M.Knap (2022)
21L.Gotta, SM, L.Mazza (2023)
22M.C.Bañuls, D.A.Huse, J.I.Cirac (2021)
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∣∣∣
2
= e−2κ sin2( k

2
)t ∼ e−

ct
L2 .

Asymptotic QMBS:21Fidelity decay timescale diverges with L even
though state orthogonal to QMBS – generically not possible!22

19SM, O.I.Motrunich (2023)
20J.Feldmeier, W. Witczak-Krempa, M.Knap (2022)
21L.Gotta, SM, L.Mazza (2023)
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Summary and Open Questions

Local Building Blocks ⇐⇒ Symmetry
A: Local algebra C: Commutant algebra

Symmetries are ground states, slow-modes
are low-energy excitations

Locality restrictions on generators of A
instead of C =⇒ Novel symmetries

Non-invertible/categorical symmetries in
this language? Dualities?23

Symmetry = Shadow of topological order?24

! "
Hamiltonians Symmetries

All Operators on ℋ

…

…

…

…

“Classification” of kinds of symmetries and slow-modes with locality?

Approximate symmetries without exact symmetries? Stability to
perturbations?

23E.Cobanera, G.Ortiz, Z.Nussinov (2011); H.Moradi, Ö.M.Aksoy, J.H.Bardarson, A.Tiwari (2023)
24J.McGreevy (2022); A.Chatterjee, X.-G. Wen (2023); H.Moradi, S.F.Moosavian, A.Tiwari (2022)
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Thank You!



Commutant Algebras: Block Structures (Informal)

Symmetry Sectors: Basis in which all local terms {ĥj ,j+1}
simultaneously block diagonal!

Entire families of Hamiltonians built from {ĥj ,j+1} block-diagonal in
same basis, including H =

∑
j ĥj ,j+1.

Nblocks =
∑

λ dλ (hard, requires rep. theory) scales as dim(C) = Number
of lin. ind. ops. in C (easy, count solutions to [ĥj,j+1, Ô] = 0)!25

Nblocks ∼ dim(C) Example
O(1) Discrete Global Symmetry

poly(L) Continuous Global Symmetry
exp(L) Fragmentation

Symmetries and associated quantum number sectors uniquely
determined from {ĥj ,j+1}!

25SM, O.I.Motrunich(2022)
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Conventional Symmetries

…

Regular Quantum 
Number Sectors
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Thermal
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…

(b) (c)

…

(a)

Regular Quantum 
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qα,2
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Simple Examples: Abelian C

Abelian C =⇒ dλ = 1, Nblocks = dim(C)
No symmetry: Generic {ĥj ,j+1}
Solve for [ĥj ,j+1, Ô] = 0

C = {1}, Nblocks = dim(C) = 1

…

Z2 Symmetry: {ĥj ,j+1} = {XjXj+1,Zj}.
Solve for [XjXj+1, Ô] = 0 and [Zj , Ô] = 0

CZ2 = span{1,
∏

j
Zj} = ⟨⟨

∏
j
Zj⟩⟩, Nblocks = dim(CZ2) = 2.

U(1) Symmetry: {ĥj ,j+1} = {XjXj+1 + YjYj+1,Zj}
Solve for [XjXj+1 + YjYj+1, Ô] = 0 and [Zj , Ô] = 0

CU(1) = span{1,Ztot,Z
2
tot, · · · ,ZL

tot} = ⟨⟨Ztot⟩⟩ = ⟨⟨{
∏

j e
iαZj}⟩⟩,

Ztot =
∑

j Zj , Nblocks = dim(CU(1)) = L+ 1.
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Simple Examples: Non-Abelian C

Non-Abelian C =⇒ some dλ > 1
=⇒ degeneracies

SU(2) Symmetry: {ĥj ,j+1} = {S⃗j · S⃗j+1}

CSU(2) = ⟨⟨Sx
tot, S

y
tot,S

z
tot⟩⟩ = ⟨⟨{

∏
j
e iαµS

µ
j }⟩⟩

= spanp,q,r{(Sx
tot)

p(Sy
tot)

q(Sz
tot)

r}

…

…

…

…

Block-diagonal form (Schur-Weyl duality):
0 ≤ λ ≤ L/2: S2 eigenvalues, dλ = 2λ+ 1: irreps of su(2)
Dλ: irreps of SL, Nblocks ∼ dim(CSU(2)) ∼ poly(L)

Another example: Stabilizer codes, e.g., toric code

A is the group algebra of the stabilizer group.
C consists of A and the non-trivial logical operators.
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Numerical Methods & Systematic Searches

Determining C given A: Hard in practice, need numerical methods.26

Simultaneous block diagonalization of generators of A – can extract
operators in C, their irreps, etc.
C frustration-free ground state space of a local superoperator
“Hamiltonian” – efficient to solve (at least in one dimension).

Systematic (numerical) scan through
physically relevant families of
Hamiltonians27

Discovers unconventional SU(2)q quantum
group symmetries, Strong Zero Modes28in
non-integrable models! 2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

h
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26SM, O.I.Motrunich (2023)
24SM, O.I.Motrunich (in preparation)
28P.Fendley (2016); D.V.Else, P.Fendley, J.Kemp, C.Nayak (2017)
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