Symmetries as Ground States

$\begin{array}{l} \textbf{Sanjay Moudgalya} \\ \textbf{Caltech} \rightarrow \textbf{TUM} \end{array}$

SM, Olexei I. Motrunich, arXiv: 2309.15167

 $\begin{array}{l} \mbox{Related Works} \left\{ \begin{array}{l} \mbox{arXiv: 2108.10824 [PRX 12, 011050 (2022)]} \\ \mbox{arXiv: 2209.03370 [Annals of Physics 455, 169384 (2023)]} \\ \mbox{arXiv: 2209.03377} \\ \mbox{arXiv: 2302.03028 [PRB 107, 224312 (2023)]} \end{array} \right. \end{array} \right. \label{eq:Related Works}$

YITP Kyoto 28th September 2023

Introduction: Symmetries in Quantum Many-Body Physics

Symmetries in Many-Body Physics

• Symmetries: Organizing principle for physical phenomena.

Symmetries in Many-Body Physics

- Symmetries: Organizing principle for physical phenomena.
- Conventional phases of matter and transitions understood using "Spontaneous symmetry breaking" (Landau paradigm)

Symmetries in Many-Body Physics

- Symmetries: Organizing principle for physical phenomena.
- Conventional phases of matter and transitions understood using "Spontaneous symmetry breaking" (Landau paradigm)

• Extensive conserved quantities required for correct thermodynamics, e.g., in the definition of Gibbs ensembles

• Physics of quantum many-body systems studied using toy models: Spin chain governed by a local Hamiltonian $H = \sum_{j=1}^{L} \hat{h}_{j,j+1}$.

• Physics of quantum many-body systems studied using toy models: Spin chain governed by a local Hamiltonian $H = \sum_{i=1}^{L} \hat{h}_{j,j+1}$.

$$\begin{array}{c} 1 \quad 2 \\ \bullet \quad \bullet \\ \hat{h}_{j,j+1} \end{array}$$

• Example:

- Hilbert space \mathcal{H} : Spanned by spins $|\uparrow\rangle_i$ and $|\downarrow\rangle_i$ on each site.
- Operators: Magnetization $Z_j = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, Spin-Flip $X_j = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
- Transverse Field Ising Model: $H = \sum_{j=1}^{L} \hat{h}_{j,j+1}$, $\hat{h}_{j,j+1} = (X_j X_{j+1} + gZ_j)$.

• Physics of quantum many-body systems studied using toy models: Spin chain governed by a local Hamiltonian $H = \sum_{i=1}^{L} \hat{h}_{j,j+1}$.

1 2
$$j-1$$
 j $j+1$ $j+2$ $L-1$ L
• • • • • • • • • • • • • • • • • • $\hat{h}_{j,j+1}$

• Example:

- Hilbert space \mathcal{H} : Spanned by spins $|\uparrow\rangle_i$ and $|\downarrow\rangle_i$ on each site.
- Operators: Magnetization $Z_j = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, Spin-Flip $X_j = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
- Transverse Field Ising Model: $H = \sum_{j=1}^{L} \hat{h}_{j,j+1}, \quad \hat{h}_{j,j+1} = (X_j X_{j+1} + gZ_j).$
- Symmetries/conserved quantities {Q_α}: Operators that commute with the Hamiltonian, [Q_α, H] = Q_αH HQ_α = 0.

• Physics of quantum many-body systems studied using toy models: Spin chain governed by a local Hamiltonian $H = \sum_{i=1}^{L} \hat{h}_{j,j+1}$.

• Example:

- Hilbert space \mathcal{H} : Spanned by spins $|\uparrow\rangle_j$ and $|\downarrow\rangle_j$ on each site.
- Operators: Magnetization $Z_j = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, Spin-Flip $X_j = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
- Transverse Field Ising Model: $H = \sum_{j=1}^{L} \hat{h}_{j,j+1}, \quad \hat{h}_{j,j+1} = (X_j X_{j+1} + gZ_j).$
- Symmetries/conserved quantities {Q_α}: Operators that commute with the Hamiltonian, [Q_α, H] = Q_αH - HQ_α = 0.

• Z_2 symmetry of Ising Model: Parity of total spin $Q_{\alpha} = \prod_{i=1}^{L} Z_i$.

• Conventionally, $\{Q_{\alpha}\}$ are not allowed to be arbitrary operators on \mathcal{H} – additional structure is imposed.

- Conventionally, {Q_α} are not allowed to be arbitrary operators on H additional structure is imposed.
- Internal symmetries: Product of on-site unitary operators $\{u_j\}$ chosen from group *G*, e.g., *Z*₂, *U*(1), *SU*(2), ...

$$Q_{\alpha} = u_1 \quad u_2 \quad \cdots \quad u_{j-1} \quad u_j \quad u_{j+1} \quad u_{j+2} \quad \cdots \quad u_{L-1} \quad u_L$$

- Conventionally, {Q_α} are not allowed to be arbitrary operators on H additional structure is imposed.
- Internal symmetries: Product of on-site unitary operators {u_j} chosen from group G, e.g., Z₂, U(1), SU(2), ...

• Lattice symmetries: Unitary operators that implement reflection, rotation, translation, etc.

- Conventionally, {Q_α} are not allowed to be arbitrary operators on H additional structure is imposed.
- Internal symmetries: Product of on-site unitary operators $\{u_j\}$ chosen from group *G*, e.g., *Z*₂, *U*(1), *SU*(2), ...

• Lattice symmetries: Unitary operators that implement reflection, rotation, translation, etc.

• These symmetries explain most "textbook" physical phenomena.

- Conventionally, {Q_α} are not allowed to be arbitrary operators on H additional structure is imposed.
- Internal symmetries: Product of on-site unitary operators $\{u_j\}$ chosen from group *G*, e.g., *Z*₂, *U*(1), *SU*(2), ...

• Lattice symmetries: Unitary operators that implement reflection, rotation, translation, etc.

• These symmetries explain most "textbook" physical phenomena. Are these the most general physical symmetries?

• Several recent works: Conventional symmetries are not sufficient!

¹N.Seiberg, S.H.Shao (2021); C.Cordova, T.T.Dumitrescu, K.Intrilligator, S.-H.Shao (2022); J.McGreevy (2022); . . .

²Bernien et al. Nature (2017); Scherg et al. Nat. Comm. (2021); Mi et al. Science (2022); Morvan et al. Nature (2022), ...

- Several recent works: Conventional symmetries are not sufficient!
- Equilibrium Physics:¹ Subsystem/Higher-form symmetries, Fractons, Categorical/MPO symmetries, Generalized Landau paradigm, ...

¹N.Seiberg, S.H.Shao (2021); C.Cordova, T.T.Dumitrescu, K.Intrilligator, S.-H.Shao (2022); J.McGreevy (2022); . . .

²Bernien et al. Nature (2017); Scherg et al. Nat. Comm. (2021); Mi et al. Science (2022); Morvan et al. Nature (2022), . . .

- Several recent works: Conventional symmetries are not sufficient!
- Equilibrium Physics:¹ Subsystem/Higher-form symmetries, Fractons, Categorical/MPO symmetries, Generalized Landau paradigm, ...

• Non-Equilibrium Physics:² Slow thermalization due to quantum scars, Hilbert space fragmentation, strong zero modes, ...

¹N.Seiberg, S.H.Shao (2021); C.Cordova, T.T.Dumitrescu, K.Intrilligator, S.-H.Shao (2022); J.McGreevy (2022); . . .

²Bernien et al. Nature (2017); Scherg et al. Nat. Comm. (2021); Mi et al. Science (2022); Morvan et al. Nature (2022), ...

- Several recent works: Conventional symmetries are not sufficient!
- Equilibrium Physics:¹ Subsystem/Higher-form symmetries, Fractons, Categorical/MPO symmetries, Generalized Landau paradigm, ...

• Non-Equilibrium Physics:² Slow thermalization due to quantum scars, Hilbert space fragmentation, strong zero modes, ...

Characterizing Properties of Symmetries?

¹N.Seiberg, S.H.Shao (2021); C.Cordova, T.T.Dumitrescu, K.Intrilligator, S.-H.Shao (2022); J.McGreevy (2022); . . .
 ²Bernien *et al.* Nature (2017); Scherg *et al.* Nat. Comm. (2021); Mi *et al.* Science (2022); Morvan *et al.* Nature (2022), . . .

Background: Quantum Dynamics and Weak Ergodicity Breaking

Review Articles:

- M.Serbyn, D.A.Abanin, Z.Papić, arXiv: 2011.09486
- Z.Papić, arXiv: 2108.03460
- SM, B. Andrei Bernevig, Nicolas Regnault, arXiv: 2109.00548
- A.Chandran, T.Iadecola, V.Khemani, R.Moessner, arXiv: 2206.11528

³J.M.Deutsch (1991), M.Srednicki (1994)

⁴SM, B.A.Bernevig, N.Regnault (2021)

⁵M.Serbyn, D.A.Abanin, Z.Papic (2020)

- Eigenstate Thermalization Hypothesis (ETH)³: Eigenstates $|E\rangle$ are "thermal"
 - $E \iff \beta$, $\operatorname{Tr}_B(|E\rangle\!\langle E|) \sim e^{-\beta H|_A}$
 - Volume law entanglement: $S = -\text{Tr}_A (\rho_A \log \rho_A) \sim V_A$.

³J.M.Deutsch (1991), M.Srednicki (1994)

⁴SM, B.A.Bernevig, N.Regnault (2021)

⁵M.Serbyn, D.A.Abanin, Z.Papic (2020)

- Eigenstate Thermalization Hypothesis (ETH)³: Eigenstates |E⟩ are "thermal"
 - $E \iff \beta$, $\operatorname{Tr}_B(|E\rangle\!\langle E|) \sim e^{-\beta H|_A}$
 - Volume law entanglement: $S = -\text{Tr}_A (\rho_A \log \rho_A) \sim V_A$.
 - Symmetric Hamiltonians: Block-diagonalized into symmetry sectors labelled by eigenvalues under {Q_α}.
 - Ergodicity/ETH expected within each sector

 $q_{\alpha,1}$

³J.M.Deutsch (1991), M.Srednicki (1994)

⁴SM, B.A.Bernevig, N.Regnault (2021)

⁵M.Serbyn, D.A.Abanin, Z.Papic (2020)

- Eigenstate Thermalization Hypothesis (ETH)³: Eigenstates |E⟩ are "thermal"
 - $E \iff \beta$, $\operatorname{Tr}_B(|E\rangle\!\langle E|) \sim e^{-\beta H|_A}$
 - Volume law entanglement: $S = -\text{Tr}_A (\rho_A \log \rho_A) \sim V_A$.
 - Symmetric Hamiltonians: Block-diagonalized into symmetry sectors labelled by eigenvalues under {Q_α}.

Ergodicity/ETH expected within each sector

Assumption \sim All "blocks" are explained by symmetries

ЕТН

}GS-like

³J.M.Deutsch (1991), M.Srednicki (1994)

⁴SM, B.A.Bernevig, N.Regnault (2021)

⁵M.Serbyn, D.A.Abanin, Z.Papic (2020)

- Eigenstate Thermalization Hypothesis (ETH)³: Eigenstates |E⟩ are "thermal"
 - $E \iff \beta$, $\operatorname{Tr}_B(|E\rangle\!\langle E|) \sim e^{-\beta H|_A}$
 - Volume law entanglement: $S = -\text{Tr}_A (\rho_A \log \rho_A) \sim V_A$.
 - Symmetric Hamiltonians: Block-diagonalized into symmetry sectors labelled by eigenvalues under {Q_α}.

Assumption \sim All "blocks" are explained by symmetries

 Recent analytical⁴ and experimental⁵ discovery of "weak" ergodicity breaking put this into question

³J.M.Deutsch (1991), M.Srednicki (1994)
 ⁴SM, B.A.Bernevig, N.Regnault (2021)
 ⁵M.Serbyn, D.A.Abanin, Z.Papic (2020)

Weak Ergodicity Breaking

⁶SM, S.Rachel, B.A.Bernevig, N.Regnault (2017)

⁷P.Sala, T.Rakovszky, R.Verresen, M.Knap, F.Pollmann (2019); V.Khemani, M.Hermele, R.Nandkishore (2019)

⁸SM, A.Prem, R.Nandkishore, N.Regnault, B.A.Bernevig (2019)

Weak Ergodicity Breaking

Quantum Many-Body Scars

- Solvable eigenstates deep in the spectrum⁶
- Mid-spectrum: $S \sim \log L \implies$ ETH violation!
- Equally spaced quasiparticle tower
 - \implies Revivals from simple initial states

⁶SM, S.Rachel, B.A.Bernevig, N.Regnault (2017)

⁷P.Sala, T.Rakovszky, R.Verresen, M.Knap, F.Pollmann (2019); V.Khemani, M.Hermele, R.Nandkishore (2019)

⁸SM, A.Prem, R.Nandkishore, N.Regnault, B.A.Bernevig (2019)

Weak Ergodicity Breaking

Quantum Many-Body Scars

- Solvable eigenstates deep in the spectrum⁶
- Mid-spectrum: $S \sim \log L \implies$ ETH violation!
- Equally spaced quasiparticle tower
 - \implies Revivals from simple initial states

Hilbert Space Fragmentation

- Local Hamiltonians with **exp. many** disconnected blocks:⁷ $\mathcal{H} = \bigoplus_{\alpha=1}^{\sim \exp(L)} \operatorname{span} \left\{ e^{-iHt} | R_{\alpha} \right\}$
- Blocks not distinguished by conventional symmetry quantum numbers, vastly different properties!⁸

⁸SM, A.Prem, R.Nandkishore, N.Regnault, B.A.Bernevig (2019)

⁶SM, S.Rachel, B.A.Bernevig, N.Regnault (2017)

⁷P.Sala, T.Rakovszky, R.Verresen, M.Knap, F.Pollmann (2019); V.Khemani, M.Hermele, R.Nandkishore (2019)

• Weak Ergodicity Breaking = Existence of unexpected blocks

• Weak Ergodicity Breaking = Existence of unexpected blocks

• Weak Ergodicity Breaking = Existence of unexpected blocks

• Puzzle: Conventional symmetries do not explain these hidden blocks!

• Weak Ergodicity Breaking = Existence of unexpected blocks

Puzzle: Conventional symmetries do not explain these hidden blocks!
Allowing *arbitrary* operators {Q_α} to be valid conserved quantities not

very meaningful: projectors onto eigenstates of H always conserved

 $[H, |E\rangle\langle E|] = 0 \implies$ exponentially many conserved quantities?!

• Weak Ergodicity Breaking = Existence of unexpected blocks

Puzzle: Conventional symmetries do not explain these hidden blocks!
Allowing *arbitrary* operators {Q_α} to be valid conserved quantities not very meaningful: projectors onto eigenstates of H always conserved

 $[H, |E\rangle\langle E|] = 0 \implies$ exponentially many conserved quantities?!

What is an appropriate definition of a symmetry/conserved quantity?

Our Recent Works: Symmetries and Commutant Algebras

SM, O.I.Motrunich {	arXiv: 2108.10824 [PRX 12, 011050 (2022)] arXiv: 2209.03370 [Ann. Phys. 455, 169384 (2023)] arXiv: 2209.03377
	arXiv: 2302.03028 [PRB 107, 224312 (2023)] arXiv: 2309.15167

Commutant Algebras: Definition

• We want symmetries to commute with $H: \ [Q_{lpha}, \sum_{j} \widehat{h}_{j,j+1}] = 0$

Ising Model: $\left[\prod_{j} Z_{j}, \sum_{j} (X_{j}X_{j+1} + gZ_{j})\right] = 0$
- We want symmetries to commute with H: $[Q_{\alpha}, \sum_{j} \hat{h}_{j,j+1}] = 0$ Ising Model: $\left[\prod_{j} Z_{j}, \sum_{j} (X_{j}X_{j+1} + gZ_{j})\right] = 0$
- Key observation: Symmetries actually separately commute with each local term: [Q_α, ĥ_{j,j+1}] = 0!.

$$\left[\prod_{j} Z_{j}, X_{j} X_{j+1}\right] = 0, \quad \left[\prod_{j} Z_{j}, Z_{j}\right] = 0, \quad \text{for all } j!$$

- We want symmetries to commute with H: $[Q_{\alpha}, \sum_{j} \hat{h}_{j,j+1}] = 0$ Ising Model: $\left[\prod_{j} Z_{j}, \sum_{j} (X_{j}X_{j+1} + gZ_{j})\right] = 0$
- Key observation: Symmetries actually separately commute with each local term: [Q_α, ĥ_{j,j+1}] = 0!.

$$\left[\prod_{j} Z_{j}, X_{j} X_{j+1}\right] = 0, \quad \left[\prod_{j} Z_{j}, Z_{j}\right] = 0, \quad \text{for all } j!$$

Definition of symmetry: $[Q_{\alpha}, \hat{h}_{j,j+1}] = 0$ for all *j*?

- We want symmetries to commute with $H: [Q_{\alpha}, \sum_{j} \hat{h}_{j,j+1}] = 0$ Ising Model: $\left[\prod_{j} Z_{j}, \sum_{j} (X_{j}X_{j+1} + gZ_{j})\right] = 0$
- Key observation: Symmetries actually separately commute with each local term: [Q_α, ĥ_{j,j+1}] = 0!.

$$\left[\prod_{j} Z_{j}, X_{j} X_{j+1}\right] = 0, \quad \left[\prod_{j} Z_{j}, Z_{j}\right] = 0, \quad \text{for all } j!$$

Definition of symmetry: $[Q_{\alpha}, \hat{h}_{j,j+1}] = 0$ for all *j*?

• Commutant Algebra C: Set of such operators $\{Q_{\alpha}\}$. $Q_{\alpha} \in C, \quad Q_{\beta} \in C \implies \begin{cases} c_{\alpha}Q_{\alpha} + c_{\beta}Q_{\beta} \in C \\ c_{\alpha}Q_{\alpha} + c_{\beta}Q_{\beta} \in C \end{cases}$

$$A_{\alpha} \in \mathcal{C}, \ \ Q_{\beta} \in \mathcal{C} \quad \Longrightarrow \quad \Big\{ \qquad Q_{\alpha} Q_{\beta}, Q_{\beta} Q_{\alpha} \in \mathcal{C} \}$$

- We want symmetries to commute with H: $[Q_{\alpha}, \sum_{j} \hat{h}_{j,j+1}] = 0$ Ising Model: $\left[\prod_{j} Z_{j}, \sum_{j} (X_{j}X_{j+1} + gZ_{j})\right] = 0$
- Key observation: Symmetries actually separately commute with each local term: [Q_α, ĥ_{j,j+1}] = 0!.

$$\left[\prod_{j} Z_{j}, X_{j} X_{j+1}\right] = 0, \quad \left[\prod_{j} Z_{j}, Z_{j}\right] = 0, \quad \text{for all } j!$$

Definition of symmetry: $[Q_{\alpha}, \hat{h}_{j,j+1}] = 0$ for all *j*?

• Commutant Algebra C: Set of such operators $\{Q_{\alpha}\}$. $Q_{\alpha} \in C, \quad Q_{\beta} \in C \implies \begin{cases} c_{\alpha}Q_{\alpha} + c_{\beta}Q_{\beta} \in C \\ Q_{\alpha}Q_{\beta}, Q_{\beta}Q_{\alpha} \in C \end{cases}$

• Bond Algebra $\mathcal{A} = \langle\!\langle \{\widehat{h}_{j,j+1}\}\rangle\!\rangle$: Entire family of Hamiltonians constructed from $\{\widehat{h}_{j,j+1}\}$, e.g., $\sum_{j} J_{j} \widehat{h}_{j,j+1}$, $\sum_{j} J'_{j} \widehat{h}_{j-1,j} \widehat{h}_{j,j+1}$,

- We want symmetries to commute with H: $[Q_{\alpha}, \sum_{j} \hat{h}_{j,j+1}] = 0$ Ising Model: $\left[\prod_{j} Z_{j}, \sum_{j} (X_{j}X_{j+1} + gZ_{j})\right] = 0$
- Key observation: Symmetries actually separately commute with each local term: [Q_α, ĥ_{j,j+1}] = 0!.

$$\left[\prod_{j} Z_{j}, X_{j} X_{j+1}\right] = 0, \quad \left[\prod_{j} Z_{j}, Z_{j}\right] = 0, \quad \text{for all } j!$$

Definition of symmetry: $[Q_{\alpha}, \hat{h}_{j,j+1}] = 0$ for all *j*?

• Commutant Algebra C: Set of such operators $\{Q_{\alpha}\}$. $Q_{\alpha} \in C, \quad Q_{\beta} \in C \implies \begin{cases} c_{\alpha}Q_{\alpha} + c_{\beta}Q_{\beta} \in C \\ Q_{\alpha}Q_{\beta}, Q_{\beta}Q_{\alpha} \in C \end{cases}$

• Bond Algebra $\mathcal{A} = \langle\!\langle \{\widehat{h}_{j,j+1}\}\rangle\!\rangle$: Entire family of Hamiltonians constructed from $\{\widehat{h}_{j,j+1}\}$, e.g., $\sum_{j} J_{j} \widehat{h}_{j,j+1}$, $\sum_{j} J'_{j} \widehat{h}_{j-1,j} \widehat{h}_{j,j+1}$,

Symmetries in $\mathcal{C} \iff$ Families of Hamiltonians in \mathcal{A}

Commutant Algebras: Block Structures

• A and C are von Neumann algebras (closed under †), centralizers of each other (Double Commutant Theorem).

⁹SM, O.I.Motrunich (2021-23)

Commutant Algebras: Block Structures

- A and C are von Neumann algebras (closed under †), centralizers of each other (Double Commutant Theorem).
- Representation theory: \exists basis such that $\hat{h}_{\mathcal{A}} \in \mathcal{A}$ and $\hat{h}_{\mathcal{C}} \in \mathcal{C}$ have representations

$$W^{\dagger}\widehat{h}_{\mathcal{A}}W = igoplus_{\lambda}(M_{D_{\lambda}}\otimes \mathbb{1}_{d_{\lambda}})
onumber \ W^{\dagger}\widehat{h}_{\mathcal{C}}W = igoplus_{\lambda}(\mathbb{1}_{D_{\lambda}}\otimes N_{d_{\lambda}})$$

• $\{D_{\lambda}\}$: Irreps of \mathcal{A} = Block sizes $\{d_{\lambda}\}$: Irreps of \mathcal{C} = Degeneracies

⁹SM, O.I.Motrunich (2021-23)

Commutant Algebras: Block Structures

- A and C are von Neumann algebras (closed under †), centralizers of each other (Double Commutant Theorem).
- Representation theory: \exists basis such that $\hat{h}_{\mathcal{A}} \in \mathcal{A}$ and $\hat{h}_{\mathcal{C}} \in \mathcal{C}$ have representations

$$egin{aligned} &W^{\dagger}\widehat{h}_{\mathcal{A}}W = igoplus_{\lambda}\left(M_{D_{\lambda}}\otimes\mathbb{1}_{d_{\lambda}}
ight) \ &W^{\dagger}\widehat{h}_{\mathcal{C}}W = igoplus_{\lambda}\left(\mathbb{1}_{D_{\lambda}}\otimes N_{d_{\lambda}}
ight) \end{aligned}$$

- $\{D_{\lambda}\}$: Irreps of $\mathcal{A} =$ Block sizes $\{d_{\lambda}\}$: Irreps of $\mathcal{C} =$ Degeneracies
- Symmetry Sectors: Basis in which **all** local terms $\{\hat{h}_{j,j+1}\}$ simultaneously block diagonal!⁹

⁹SM, O.I.Motrunich (2021-23)

¹⁰SM, O.I.Motrunich (2023)

Symmetries are Ground States!

 \bullet Operators on ${\cal H}$ are states in a doubled Hilbert space ${\cal H}\otimes {\cal H}$

$$\widehat{O} = \sum_{\mu,
u} o_{\mu
u} \ket{v_{\mu}}\!ig\langle v_{
u} | \iff |\widehat{O}) = \sum_{\mu,
u} o_{\mu
u} \ket{v_{\mu}} \otimes \ket{v_{
u}}$$

• Rewrite commutant condition after converting operators to states

$$[\widehat{h}_{j,j+1}, \widehat{Q}_{\alpha}] = 0 \quad \Longleftrightarrow \quad \overbrace{(\widehat{h}_{j,j+1} \otimes \mathbb{1} - \mathbb{1} \otimes \widehat{h}_{j,j+1}^{\mathcal{T}})}^{\widehat{\mathcal{L}}_{j,j+1}:=} |\widehat{Q}_{\alpha}) = 0.$$

¹⁰SM, O.I.Motrunich (2023)

Symmetries are Ground States!

 \bullet Operators on ${\cal H}$ are states in a doubled Hilbert space ${\cal H}\otimes {\cal H}$

$$\widehat{O} = \sum_{\mu,
u} o_{\mu
u} \ket{m{v}_{\mu}}m{\langle}m{v_{
u}} \ket{\ \Longleftrightarrow \ } |\widehat{O}) = \sum_{\mu,
u} o_{\mu
u} \ket{m{v}_{\mu}} \otimes \ket{m{v}_{
u}}$$

Rewrite commutant condition after converting operators to states

$$[\widehat{h}_{j,j+1},\widehat{Q}_{\alpha}] = 0 \quad \Longleftrightarrow \quad \overbrace{(\widehat{h}_{j,j+1} \otimes \mathbb{1} - \mathbb{1} \otimes \widehat{h}_{j,j+1}^{T})}^{\widehat{\mathcal{L}}_{j,j+1}:=} |\widehat{Q}_{\alpha}) = 0.$$

• Frustration-free ground states of a local "super-Hamiltonian" ¹⁰

Symmetries are Ground States!

 \bullet Operators on ${\cal H}$ are states in a doubled Hilbert space ${\cal H}\otimes {\cal H}$

$$\widehat{O} = \sum_{\mu,
u} o_{\mu
u} \ket{v_{\mu}}\!ig\langle v_{
u} | \iff |\widehat{O}) = \sum_{\mu,
u} o_{\mu
u} \ket{v_{\mu}} \otimes \ket{v_{
u}}$$

• Rewrite commutant condition after converting operators to states

$$[\widehat{h}_{j,j+1},\widehat{Q}_{\alpha}] = 0 \quad \Longleftrightarrow \quad \overbrace{(\widehat{h}_{j,j+1} \otimes \mathbb{1} - \mathbb{1} \otimes \widehat{h}_{j,j+1}^{\mathsf{T}})}^{\widehat{\mathcal{L}}_{j,j+1}:=} |\widehat{Q}_{\alpha}) = 0.$$

• Frustration-free ground states of a local "super-Hamiltonian" ¹⁰

• Number of ground states = dim(C).

¹⁰SM, O.I.Motrunich (2023)

• Bond Algebra: $\mathcal{A}_{Z_2} = \langle\!\langle \{X_j X_{j+1}\}, \{Z_j\} \rangle\!\rangle$

 $^{^{11}{\}rm Spontaneous}$ Symmetry Breaking: ${\it Z}_2\,\times\,{\it Z}_2\,\rightarrow\,{\it Z}_2$

- Bond Algebra: $\mathcal{A}_{Z_2} = \langle\!\langle \{X_j X_{j+1}\}, \{Z_j\} \rangle\!\rangle$
- Super-Hamiltonian $\widehat{\mathcal{P}}_{Z_2}$ composed of commuting terms!

$$\widehat{\mathcal{P}}_{Z_2} = \mathcal{C} - \sum_j X_{j;t} X_{j+1;t} X_{j;b} X_{j+1;b} - \sum_j Z_{j;t} Z_{j;b}$$

¹¹Spontaneous Symmetry Breaking: $Z_2 \times Z_2 \rightarrow Z_2$

- Bond Algebra: $\mathcal{A}_{Z_2} = \langle\!\langle \{X_j X_{j+1}\}, \{Z_j\} \rangle\!\rangle$
- Super-Hamiltonian $\widehat{\mathcal{P}}_{Z_2}$ composed of commuting terms!

$$\widehat{\mathcal{P}}_{Z_2} = C - \sum_j X_{j;t} X_{j+1;t} X_{j;b} X_{j+1;b} - \sum_j Z_{j;t} Z_{j;b}$$

Define composite spins on rungs

$$|\widetilde{\rightarrow}\rangle_{j} := \left| \begin{array}{c} \uparrow \\ \uparrow \end{array} \right\rangle_{j} + \left| \begin{array}{c} \downarrow \\ \downarrow \end{array} \right\rangle_{j} \sim \mathbb{1}_{j}, \quad |\widetilde{\leftarrow}\rangle_{j} := \left| \begin{array}{c} \uparrow \\ \uparrow \end{array} \right\rangle_{j} - \left| \begin{array}{c} \downarrow \\ \downarrow \end{array} \right\rangle_{j} \sim Z_{j}$$

 $^{^{11}{\}rm Spontaneous}$ Symmetry Breaking: ${\it Z}_2 \, \times \, {\it Z}_2 \rightarrow {\it Z}_2$

- Bond Algebra: $\mathcal{A}_{Z_2} = \langle\!\langle \{X_j X_{j+1}\}, \{Z_j\} \rangle\!\rangle$
- Super-Hamiltonian $\widehat{\mathcal{P}}_{Z_2}$ composed of commuting terms!

$$\widehat{\mathcal{P}}_{Z_2} = C - \sum_j X_{j;t} X_{j+1;t} X_{j;b} X_{j+1;b} - \sum_j Z_{j;t} Z_{j;b}$$

Define composite spins on rungs

$$|\widetilde{\rightarrow}\rangle_{j} := \left| \begin{array}{c} \uparrow \\ \uparrow \end{array} \right\rangle_{j} + \left| \begin{array}{c} \downarrow \\ \downarrow \end{array} \right\rangle_{j} \sim \mathbb{1}_{j}, \quad |\widetilde{\leftarrow}\rangle_{j} := \left| \begin{array}{c} \uparrow \\ \uparrow \end{array} \right\rangle_{j} - \left| \begin{array}{c} \downarrow \\ \downarrow \end{array} \right\rangle_{j} \sim Z_{j}$$

• Two degenerate ferromagnetic ground states¹¹ = Z_2 Symmetry

$$|\widetilde{\rightarrow}\widetilde{\rightarrow}\cdots\widetilde{\rightarrow}
angle\sim\mathbb{1},\ |\widetilde{\leftarrow}\widetilde{\leftarrow}\cdots\widetilde{\leftarrow}
angle\sim\prod_{j}Z_{j}$$

 $^{^{11}{\}rm Spontaneous}$ Symmetry Breaking: ${\it Z}_2 \, \times \, {\it Z}_2 \rightarrow {\it Z}_2$

- Bond Algebra: $\mathcal{A}_{Z_2} = \langle\!\langle \{X_j X_{j+1}\}, \{Z_j\} \rangle\!\rangle$
- Super-Hamiltonian $\widehat{\mathcal{P}}_{Z_2}$ composed of commuting terms!

$$\widehat{\mathcal{P}}_{Z_2} = C - \sum_j X_{j;t} X_{j+1;t} X_{j;b} X_{j+1;b} - \sum_j Z_{j;t} Z_{j;b}$$

Define composite spins on rungs

$$|\widetilde{\rightarrow}\rangle_{j} := \left| \begin{array}{c} \uparrow \\ \uparrow \end{array} \right\rangle_{j} + \left| \begin{array}{c} \downarrow \\ \downarrow \end{array} \right\rangle_{j} \sim \mathbb{1}_{j}, \quad |\widetilde{\leftarrow}\rangle_{j} := \left| \begin{array}{c} \uparrow \\ \uparrow \end{array} \right\rangle_{j} - \left| \begin{array}{c} \downarrow \\ \downarrow \end{array} \right\rangle_{j} \sim Z_{j}$$

• Two degenerate ferromagnetic ground states¹¹ = Z_2 Symmetry

$$|\widetilde{\rightarrow}\widetilde{\rightarrow}\cdots\widetilde{\rightarrow}
angle\sim \mathbb{1}, \quad |\widetilde{\leftarrow}\widetilde{\leftarrow}\cdots\widetilde{\leftarrow}
angle\sim \prod_{j}Z_{j}$$

• Commutant Algebra: $C_{Z_2} = \operatorname{span}\{\mathbb{1}, \prod_j Z_j\} = \langle\!\langle \prod_j Z_j \rangle\!\rangle$

 $^{11}\textsc{Spontaneous}$ Symmetry Breaking: Z_2 \times Z_2 \rightarrow Z_2

• Bond Algebra: $A_{U(1)} = \langle\!\langle \{X_j X_{j+1} + Y_j Y_{j+1}\}, \{Z_j\} \rangle\!\rangle$

- Bond Algebra: $\mathcal{A}_{U(1)} = \langle\!\langle \{X_j X_{j+1} + Y_j Y_{j+1}\}, \{Z_j\} \rangle\!\rangle$
- Super-Hamiltonian $\widehat{\mathcal{P}}_{U(1)}$ maps to ferromagnetic Heisenberg model in composite spin sector!

$$\begin{split} \widehat{\mathcal{P}}_{U(1)}|_{\mathsf{low energy}} &= \sum_{j} (|\widetilde{\rightarrow}\widetilde{\leftarrow}\rangle - |\widetilde{\leftarrow}\widetilde{\rightarrow}\rangle)(\langle\widetilde{\rightarrow}\widetilde{\leftarrow}| - \langle\widetilde{\rightarrow}\widetilde{\leftarrow}|)_{j,j+1} \\ &= \mathcal{C} - \sum_{j} \vec{S}_{j} \cdot \vec{S}_{j+1} \end{split}$$

- Bond Algebra: $\mathcal{A}_{U(1)} = \langle\!\langle \{X_j X_{j+1} + Y_j Y_{j+1}\}, \{Z_j\} \rangle\!\rangle$
- Super-Hamiltonian $\widehat{\mathcal{P}}_{U(1)}$ maps to ferromagnetic Heisenberg model in composite spin sector!

$$egin{aligned} \widehat{\mathcal{P}}_{U(1)}|_{\mathsf{low energy}} &= \sum_{j} (|\widetilde{
ightarrow}\widetilde{
ightarrow} - |\widetilde{
ightarrow}
ightarrow) (\langle\widetilde{
ightarrow}\widetilde{
ightarrow}| - \langle\widetilde{
ightarrow}\widetilde{
ightarrow}|)_{j,j+1} \ &= \mathcal{C} - \sum_{j} ec{\mathcal{S}}_{j} \cdot ec{\mathcal{S}}_{j+1} \end{aligned}$$

• (L+1) ferromagnetic ground states = U(1) Symmetry

$$\begin{split} &|\widetilde{\rightarrow}\cdots\widetilde{\rightarrow}\rangle\sim\mathbb{1},\ \sum_{j}S_{j}^{-}|\widetilde{\rightarrow}\cdots\widetilde{\rightarrow}\rangle\sim\sum_{j}Z_{j}=Z_{\mathrm{tot}}\\ &(\sum_{j}S_{j}^{-})^{n}|\widetilde{\rightarrow}\cdots\widetilde{\rightarrow}\rangle\sim F(\{Z_{\mathrm{tot}}^{m},m\leq n\}),\ |\widetilde{\leftarrow}\cdots\widetilde{\leftarrow}\rangle\sim\prod_{j}Z_{j} \end{split}$$

- Bond Algebra: $\mathcal{A}_{U(1)} = \langle\!\langle \{X_j X_{j+1} + Y_j Y_{j+1}\}, \{Z_j\} \rangle\!\rangle$
- Super-Hamiltonian $\widehat{\mathcal{P}}_{U(1)}$ maps to ferromagnetic Heisenberg model in composite spin sector!

$$\begin{split} \widehat{\mathcal{P}}_{U(1)}|_{\mathsf{low energy}} &= \sum_{j} \left(|\widetilde{\rightarrow} \widetilde{\leftarrow} \rangle - |\widetilde{\leftarrow} \widetilde{\rightarrow} \rangle \right) (\langle \widetilde{\rightarrow} \widetilde{\leftarrow} | - \langle \widetilde{\rightarrow} \widetilde{\leftarrow} |)_{j,j+1} \\ &= \mathcal{C} - \sum_{j} \vec{S}_{j} \cdot \vec{S}_{j+1} \end{split}$$

• (L+1) ferromagnetic ground states = U(1) Symmetry

$$|\widetilde{\rightarrow}\cdots\widetilde{\rightarrow}\rangle \sim \mathbb{1}, \quad \sum_{j} S_{j}^{-} |\widetilde{\rightarrow}\cdots\widetilde{\rightarrow}\rangle \sim \sum_{j} Z_{j} = Z_{\text{tot}}$$
$$(\sum_{j} S_{j}^{-})^{n} |\widetilde{\rightarrow}\cdots\widetilde{\rightarrow}\rangle \sim F(\{Z_{\text{tot}}^{m}, m \leq n\}), \quad |\widetilde{\leftarrow}\cdots\widetilde{\leftarrow}\rangle \sim \prod_{j} Z_{j}$$

• $\mathcal{C}_{U(1)} = \operatorname{span}\{\mathbb{1}, Z_{\operatorname{tot}}, Z_{\operatorname{tot}}^2, \cdots, Z_{\operatorname{tot}}^L\} = \langle\!\langle Z_{\operatorname{tot}} \rangle\!\rangle = \langle\!\langle \{\prod_j e^{i\alpha Z_j}\} \rangle\!\rangle$

- Bond Algebra: $\mathcal{A}_{U(1)} = \langle\!\langle \{X_j X_{j+1} + Y_j Y_{j+1}\}, \{Z_j\} \rangle\!\rangle$
- Super-Hamiltonian $\widehat{\mathcal{P}}_{U(1)}$ maps to ferromagnetic Heisenberg model in composite spin sector!

$$egin{aligned} \widehat{\mathcal{P}}_{U(1)}|_{\mathsf{low energy}} &= \sum_{j} (|\widetilde{
ightarrow}\widetilde{
ightarrow} - |\widetilde{
ightarrow}
ightarrow) (\langle\widetilde{
ightarrow}\widetilde{
ightarrow}| - \langle\widetilde{
ightarrow}\widetilde{
ightarrow}|)_{j,j+1} \ &= \mathcal{C} - \sum_{j} ec{\mathcal{S}}_{j} \cdot ec{\mathcal{S}}_{j+1} \end{aligned}$$

• (L+1) ferromagnetic ground states = U(1) Symmetry

$$|\widetilde{\rightarrow}\cdots\widetilde{\rightarrow}\rangle \sim \mathbb{1}, \quad \sum_{j} S_{j}^{-} |\widetilde{\rightarrow}\cdots\widetilde{\rightarrow}\rangle \sim \sum_{j} Z_{j} = Z_{\text{tot}} \\ (\sum_{j} S_{j}^{-})^{n} |\widetilde{\rightarrow}\cdots\widetilde{\rightarrow}\rangle \sim F(\{Z_{\text{tot}}^{m}, m \leq n\}), \quad |\widetilde{\leftarrow}\cdots\widetilde{\leftarrow}\rangle \sim \prod_{j} Z_{j}$$

• $C_{U(1)} = \operatorname{span}\{\mathbb{1}, Z_{\operatorname{tot}}, Z_{\operatorname{tot}}^2, \cdots, Z_{\operatorname{tot}}^L\} = \langle\!\langle Z_{\operatorname{tot}} \rangle\!\rangle = \langle\!\langle \{\prod_j e^{i\alpha Z_j}\} \rangle\!\rangle$

• Generalization: SU(q) symmetry = $SO(q^2)$ ferromagnet.

Approximate Symmetries

Ground States = Exact Symmetries Low-Energy Excitations = Approximate Symmetries?

¹²X.Chen, T.Zhou (2019); C.Sünderhauf et al. (2019); D.Bernard, T.Jin (2019)

Ground States = Exact Symmetries Low-Energy Excitations = Approximate Symmetries?

• Made precise using a "Brownian Circuit" ¹²

$$egin{aligned} \widehat{O}(t+\Delta t) &= e^{i\sum_j J_j^{(t)} \widehat{h}_{j,j+1}\Delta t} \ \widehat{O}(t) \ e^{-i\sum_j J_j^{(t)} \widehat{h}_{j,j+1}\Delta t} \ P(J_j^{(t)}) &\sim e^{-(J_j^{(t)})^2/\sigma^2}, \ \sigma^2 &= 2\kappa/\Delta t, \end{aligned}$$

¹²X.Chen, T.Zhou (2019); C.Sünderhauf et al. (2019); D.Bernard, T.Jin (2019)

Ground States = Exact Symmetries Low-Energy Excitations = Approximate Symmetries?

• Made precise using a "Brownian Circuit" ¹²

$$egin{aligned} \widehat{O}(t+\Delta t) &= e^{i\sum_j J_j^{(t)} \widehat{h}_{j,j+1}\Delta t} \; \widehat{O}(t) \; e^{-i\sum_j J_j^{(t)} \widehat{h}_{j,j+1}\Delta t} \ P(J_j^{(t)}) &\sim e^{-(J_j^{(t)})^2/\sigma^2}, \; \; \sigma^2 &= 2\kappa/\Delta t, \end{aligned}$$

• Ensemble-averaged behavior of operators as $\Delta t
ightarrow 0$

$$\frac{d}{dt}|\overline{\widehat{O}(t)}) = -\kappa \sum_{j} \widehat{\mathcal{L}}_{j,j+1}^{\dagger} \widehat{\mathcal{L}}_{j,j+1} | \overline{\widehat{O}(t)}) \implies |\overline{\widehat{O}(t)}) = e^{-\kappa \widehat{\mathcal{P}}t} | \widehat{O}(0))$$

¹²X.Chen, T.Zhou (2019); C.Sünderhauf et al. (2019); D.Bernard, T.Jin (2019)

Ground States = Exact Symmetries Low-Energy Excitations = Approximate Symmetries?

• Made precise using a "Brownian Circuit" ¹²

$$egin{aligned} \widehat{O}(t+\Delta t) &= e^{i\sum_j J_j^{(t)} \widehat{h}_{j,j+1}\Delta t} \ \widehat{O}(t) \ e^{-i\sum_j J_j^{(t)} \widehat{h}_{j,j+1}\Delta t} \ P(J_j^{(t)}) &\sim e^{-(J_j^{(t)})^2/\sigma^2}, \ \sigma^2 &= 2\kappa/\Delta t, \end{aligned}$$

• Ensemble-averaged behavior of operators as $\Delta t
ightarrow 0$

$$\frac{d}{dt}|\overline{\widehat{O}(t)}) = -\kappa \sum_{j} \widehat{\mathcal{L}}_{j,j+1}^{\dagger} \widehat{\mathcal{L}}_{j,j+1} | \overline{\widehat{O}(t)}) \implies |\overline{\widehat{O}(t)}) = e^{-\kappa \widehat{\mathcal{P}}t} | \widehat{O}(0))$$

• Can be used to compute correlation functions

$$\overline{\mathcal{C}_{\widehat{B},\widehat{A}}(t)} := \overline{\mathsf{Tr}(\widehat{B}(0)^{\dagger}\widehat{A}(t))} = (\widehat{B}(0)|\overline{\widehat{A}(t)}) = (\widehat{B}(0)|e^{-\kappa\widehat{\mathcal{P}}t}|\widehat{A}(0))$$

¹²X.Chen, T.Zhou (2019); C.Sünderhauf et al. (2019); D.Bernard, T.Jin (2019)

- Super-Hamiltonian spectrum: $\widehat{\mathcal{P}} \ket{\lambda_{\mu}} = p_{\mu} \ket{\lambda_{\mu}}$
- Autocorrelation functions

$$\overline{C_{\widehat{A}}(t)} = (\widehat{A}(0)|e^{-\kappa\widehat{\mathcal{P}}t}|\widehat{A}(0)) = \sum_{\mu,\rho_{\mu}=0} |(\lambda_{\mu}|\widehat{A})|^{2} + \sum_{\mu,\rho_{\mu}>0} e^{-\rho_{\mu}t}|(\lambda_{\mu}|\widehat{A})|^{2} + \cdots$$

 $^{^{13}}$ Value also known as Mazur bound, usually specified as time-average under a fixed Hamiltonian evolution

- Super-Hamiltonian spectrum: $\widehat{\mathcal{P}} \ket{\lambda_{\mu}} = p_{\mu} \ket{\lambda_{\mu}}$
- Autocorrelation functions

$$\overline{C_{\widehat{A}}(t)} = (\widehat{A}(0)|e^{-\kappa\widehat{\mathcal{P}}t}|\widehat{A}(0)) = \sum_{\mu,p_{\mu}=0} |(\lambda_{\mu}|\widehat{A})|^{2} + \sum_{\mu,p_{\mu}>0} e^{-p_{\mu}t}|(\lambda_{\mu}|\widehat{A})|^{2} + \cdots$$

• "Steady state" value $\overline{C_{\widehat{A}}(\infty)}$ determined only by operators in \mathcal{C} (Symmetries) – fluctuations average out¹³

 $^{^{13}}$ Value also known as Mazur bound, usually specified as time-average under a fixed Hamiltonian evolution

- Super-Hamiltonian spectrum: $\widehat{\mathcal{P}} \ket{\lambda_{\mu}} = p_{\mu} \ket{\lambda_{\mu}}$
- Autocorrelation functions

$$\overline{C_{\widehat{A}}(t)} = (\widehat{A}(0)|e^{-\kappa\widehat{\mathcal{P}}t}|\widehat{A}(0)) = \sum_{\mu,\rho_{\mu}=0} |(\lambda_{\mu}|\widehat{A})|^{2} + \sum_{\mu,\rho_{\mu}>0} e^{-\rho_{\mu}t}|(\lambda_{\mu}|\widehat{A})|^{2} + \cdots$$

- "Steady state" value $\overline{C_{\widehat{A}}(\infty)}$ determined only by operators in \mathcal{C} (Symmetries) – fluctuations average out^{13}
- Approach to steady state controlled by low-energy excitations of $\widehat{\mathcal{P}}$.

 $^{^{13}}$ Value also known as Mazur bound, usually specified as time-average under a fixed Hamiltonian evolution

- Super-Hamiltonian spectrum: $\widehat{\mathcal{P}} \ket{\lambda_{\mu}} = p_{\mu} \ket{\lambda_{\mu}}$
- Autocorrelation functions

$$\overline{C_{\widehat{A}}(t)} = (\widehat{A}(0)|e^{-\kappa\widehat{\mathcal{P}}t}|\widehat{A}(0)) = \sum_{\mu,\rho_{\mu}=0} |(\lambda_{\mu}|\widehat{A})|^{2} + \sum_{\mu,\rho_{\mu}>0} e^{-\rho_{\mu}t}|(\lambda_{\mu}|\widehat{A})|^{2} + \cdots$$

- "Steady state" value $\overline{C_{\widehat{A}}(\infty)}$ determined only by operators in \mathcal{C} (Symmetries) – fluctuations average out^{13}
- Approach to steady state controlled by low-energy excitations of $\widehat{\mathcal{P}}.$
- Z_2 Symmetry: $\widehat{\mathcal{P}}_{Z_2}$ composed of commuting terms \implies Gapped \implies Exponentially fast decay \implies No slow-modes

 $^{^{13}}$ Value also known as Mazur bound, usually specified as time-average under a fixed Hamiltonian evolution

- Super-Hamiltonian spectrum: $\widehat{\mathcal{P}} \ket{\lambda_{\mu}} = p_{\mu} \ket{\lambda_{\mu}}$
- Autocorrelation functions

$$\overline{C_{\widehat{A}}(t)} = (\widehat{A}(0)|e^{-\kappa\widehat{\mathcal{P}}t}|\widehat{A}(0)) = \sum_{\mu,\rho_{\mu}=0} |(\lambda_{\mu}|\widehat{A})|^{2} + \sum_{\mu,\rho_{\mu}>0} e^{-\rho_{\mu}t}|(\lambda_{\mu}|\widehat{A})|^{2} + \cdots$$

- "Steady state" value $\overline{C_{\widehat{A}}(\infty)}$ determined only by operators in \mathcal{C} (Symmetries) – fluctuations average out^{13}
- Approach to steady state controlled by low-energy excitations of $\widehat{\mathcal{P}}.$
- Z_2 Symmetry: $\widehat{\mathcal{P}}_{Z_2}$ composed of commuting terms \implies Gapped \implies Exponentially fast decay \implies No slow-modes
- All discrete symmetries are gapped?

 $^{^{13}}$ Value also known as Mazur bound, usually specified as time-average under a fixed Hamiltonian evolution

¹⁴O.Ogunnaike, J.Feldmeier, J.Y.Lee (2023)

¹⁵SM, A.Prem, D.A.Huse, A.Chan (2020)

•
$$U(1)$$
 Symmetry: $\widehat{\mathcal{P}}_{U(1)} \sim C - \sum_{j} (\vec{S}_{j} \cdot \vec{S}_{j+1})$
 $|F\rangle = |\widetilde{\rightarrow} \cdots \widetilde{\rightarrow} \rangle \sim \mathbb{1}, \quad \sum_{j} S_{j}^{-} |F\rangle \sim \sum_{j} Z_{j}, \quad \cdots$

¹⁴O.Ogunnaike, J.Feldmeier, J.Y.Lee (2023)

¹⁵SM, A.Prem, D.A.Huse, A.Chan (2020)

•
$$U(1)$$
 Symmetry: $\widehat{\mathcal{P}}_{U(1)} \sim C - \sum_{j} (\vec{S}_{j} \cdot \vec{S}_{j+1})$
 $|F\rangle = |\widetilde{\rightarrow} \cdots \widetilde{\rightarrow} \rangle \sim \mathbb{1}, \quad \sum_{j} S_{j}^{-} |F\rangle \sim \sum_{j} Z_{j}, \quad \cdots$

Low-energy modes = Spin-waves

$$\begin{aligned} |\lambda_k\rangle &\sim \sum_j e^{ikj} S_j^- |F\rangle \sim \sum_j e^{ikj} Z_j, \quad k \in \frac{2\pi}{L} \mathbb{Z} \\ \mathcal{P}_{U(1)} |\lambda_k\rangle &= 32\kappa \sin^2\left(\frac{k}{2}\right) |\lambda_k\rangle \sim 8\kappa k^2 |\lambda_k\rangle \end{aligned}$$

¹⁴O.Ogunnaike, J.Feldmeier, J.Y.Lee (2023)

¹⁵SM, A.Prem, D.A.Huse, A.Chan (2020)

•
$$U(1)$$
 Symmetry: $\widehat{\mathcal{P}}_{U(1)} \sim C - \sum_{j} (\vec{S}_{j} \cdot \vec{S}_{j+1})$
 $|F\rangle = |\widetilde{\rightarrow} \cdots \widetilde{\rightarrow} \rangle \sim \mathbb{1}, \quad \sum_{j} S_{j}^{-} |F\rangle \sim \sum_{j} Z_{j}, \quad \cdots$

Low-energy modes = Spin-waves

$$\begin{aligned} |\lambda_k\rangle &\sim \sum_j e^{ikj} S_j^- |F\rangle \sim \sum_j e^{ikj} Z_j, \quad k \in \frac{2\pi}{L} \mathbb{Z} \\ \mathcal{P}_{U(1)} |\lambda_k\rangle &= 32\kappa \sin^2\left(\frac{k}{2}\right) |\lambda_k\rangle \sim 8\kappa k^2 |\lambda_k\rangle \end{aligned}$$

• Can recover diffusion!¹⁴

$$\overline{(Z_{j'}(0)|Z_j(t))} \overset{\kappa t \gg 1}{\approx} \int \frac{\mathrm{d}k}{2\pi} \ e^{-8\kappa k^2 t} e^{ik(j-j')} = \frac{e^{-\frac{(j-j')^2}{32\kappa t}}}{\sqrt{32\pi\kappa t}},$$

1. 1.2

¹⁴O.Ogunnaike, J.Feldmeier, J.Y.Lee (2023)

¹⁵SM, A.Prem, D.A.Huse, A.Chan (2020)

•
$$U(1)$$
 Symmetry: $\widehat{\mathcal{P}}_{U(1)} \sim C - \sum_{j} (\vec{S}_{j} \cdot \vec{S}_{j+1})$
 $|F\rangle = |\widetilde{\rightarrow} \cdots \widetilde{\rightarrow} \rangle \sim \mathbb{1}, \quad \sum_{j} S_{j}^{-} |F\rangle \sim \sum_{j} Z_{j}, \quad \cdots$

Low-energy modes = Spin-waves

$$\begin{aligned} |\lambda_k\rangle &\sim \sum_j e^{ikj} S_j^- |F\rangle \sim \sum_j e^{ikj} Z_j, \quad k \in \frac{2\pi}{L} \mathbb{Z} \\ \mathcal{P}_{U(1)} |\lambda_k\rangle &= 32\kappa \sin^2\left(\frac{k}{2}\right) |\lambda_k\rangle \sim 8\kappa k^2 |\lambda_k\rangle \end{aligned}$$

• Can recover diffusion!¹⁴

$$\overline{(Z_{j'}(0)|Z_j(t))} \overset{\kappa t \gg 1}{\approx} \int \frac{\mathrm{d}k}{2\pi} \ e^{-8\kappa k^2 t} e^{ik(j-j')} = \frac{e^{-\frac{(j-j')^2}{32\kappa t}}}{\sqrt{32\pi\kappa t}},$$

• SU(q) symmetry: $SO(q^2)$ ferromagnet has spin-waves \implies Diffusion

1. 1.2

¹⁴O.Ogunnaike, J.Feldmeier, J.Y.Lee (2023)

¹⁵SM, A.Prem, D.A.Huse, A.Chan (2020)
Gapless Symmetries and Slow-Modes

•
$$U(1)$$
 Symmetry: $\widehat{\mathcal{P}}_{U(1)} \sim C - \sum_{j} (\vec{S}_{j} \cdot \vec{S}_{j+1})$
 $|F\rangle = |\widetilde{\rightarrow} \cdots \widetilde{\rightarrow} \rangle \sim \mathbb{1}, \quad \sum_{j} S_{j}^{-} |F\rangle \sim \sum_{j} Z_{j}, \quad \cdots$

Low-energy modes = Spin-waves

$$\begin{aligned} |\lambda_k\rangle &\sim \sum_j e^{ikj} S_j^- |F\rangle \sim \sum_j e^{ikj} Z_j, \quad k \in \frac{2\pi}{L} \mathbb{Z} \\ \mathcal{P}_{U(1)} |\lambda_k\rangle &= 32\kappa \sin^2\left(\frac{k}{2}\right) |\lambda_k\rangle \sim 8\kappa k^2 |\lambda_k\rangle \end{aligned}$$

Can recover diffusion!¹⁴

$$\overline{(Z_{j'}(0)|Z_j(t))} \overset{\kappa t \gg 1}{\approx} \int \frac{\mathrm{d}k}{2\pi} \ e^{-8\kappa k^2 t} e^{ik(j-j')} = \frac{e^{-\frac{(j-j')^2}{32\kappa t}}}{\sqrt{32\pi\kappa t}},$$

• SU(q) symmetry: $SO(q^2)$ ferromagnet has spin-waves \implies Diffusion • Generalization: Dipole symmetry,¹⁵ low-energy modes $\sim k^4$, <u>autocorrelation decay $\sim t^{-1/4} \implies$ Subdiffusion</u>

¹⁴O.Ogunnaike, J.Feldmeier, J.Y.Lee (2023)
¹⁵SM, A.Prem, D.A.Huse, A.Chan (2020)

. .

• Symmetries \iff **Building blocks** $\{\hat{h}_{j,j+1}\}$ for families of Hamiltonians

- Symmetries \iff **Building blocks** $\{\hat{h}_{j,j+1}\}$ for families of Hamiltonians
- A: Generated by a set of **local** operators
 C: Set of operators that commute with A.
- $\mathcal{C} =$ Ground states of super-Hamiltonian $\widehat{\mathcal{P}}$, which contains info on slow-modes

- Symmetries \iff **Building blocks** $\{\hat{h}_{j,j+1}\}$ for families of Hamiltonians
- A: Generated by a set of **local** operators C: Set of operators that commute with A.
- C = Ground states of super-Hamiltonian $\widehat{\mathcal{P}}$, which contains info on slow-modes

• **Conventional approach: Guess** structure of symmetries – equivalent to imposing restrictions on symmetries in C directly.

- Symmetries \iff **Building blocks** $\{\hat{h}_{j,j+1}\}$ for families of Hamiltonians
- A: Generated by a set of **local** operators
 C: Set of operators that commute with A.
- C = Ground states of super-Hamiltonian $\widehat{\mathcal{P}}$, which contains info on slow-modes

- **Conventional approach: Guess** structure of symmetries equivalent to imposing restrictions on symmetries in C directly.
- Our approach: Derive symmetries in C systematically with locality requirement on family of Hamiltonians in A.

- Symmetries \iff **Building blocks** $\{\hat{h}_{j,j+1}\}$ for families of Hamiltonians
- A: Generated by a set of **local** operators
 C: Set of operators that commute with A.
- C = Ground states of super-Hamiltonian $\widehat{\mathcal{P}}$, which contains info on slow-modes

- **Conventional approach: Guess** structure of symmetries equivalent to imposing restrictions on symmetries in C directly.
- Our approach: Derive symmetries in C systematically with locality requirement on family of Hamiltonians in A.

No explicit restriction on the structure of symmetries in C: Novel unconventional symmetries!

Unconventional Symmetries: Weak Ergodicity Breaking

• $t - J_z$ Hamiltonian:¹⁶ hopping with two species of particles, $\hat{h}_{j,j+1}: \{|\uparrow 0\rangle \leftrightarrow |0\uparrow\rangle, |\downarrow 0\rangle \leftrightarrow |0\downarrow\rangle\}_{j,j+1}$

 ¹⁶T.Rakovszky, P.Sala, R.Verresen, M.Knap, F.Pollmann (2019)
 ¹⁷SM, O.I.Motrunich (2021)

- $t J_z$ Hamiltonian:¹⁶ hopping with two species of particles, $\hat{h}_{j,j+1}: \{|\uparrow 0\rangle \leftrightarrow |0\uparrow\rangle, |\downarrow 0\rangle \leftrightarrow |0\downarrow\rangle\}_{j,j+1}$
- Full pattern of spins (\uparrow or $\downarrow)$ preserved \implies Exp. many blocks

 $|0\uparrow\downarrow 0\downarrow\uparrow 0\rangle \longleftrightarrow |0\uparrow\uparrow 0\downarrow\downarrow 0\rangle$

 ¹⁶T.Rakovszky, P.Sala, R.Verresen, M.Knap, F.Pollmann (2019)
 ¹⁷SM. O.I.Motrunich (2021)

- $t J_z$ Hamiltonian:¹⁶ hopping with two species of particles, $\hat{h}_{j,j+1}: \{|\uparrow 0\rangle \leftrightarrow |0\uparrow\rangle, |\downarrow 0\rangle \leftrightarrow |0\downarrow\rangle\}_{j,j+1}$
- Full pattern of spins (\uparrow or \downarrow) preserved \implies Exp. many blocks

 $|0\uparrow\downarrow 0\downarrow\uparrow 0\rangle\longleftrightarrow |0\uparrow\uparrow 0\downarrow\downarrow 0\rangle$

• Construct super-Hamiltonian corresponding to $\mathcal{A}_{t-J_z} = \langle\!\langle \{\widehat{h}_{j,j+1}\} \rangle\!\rangle$.

$$\widehat{\mathcal{P}}_{t-J_z} \sim \sum_{j,\sigma \in \{\uparrow,\downarrow\}} \left(|\tilde{\sigma} \ \tilde{0}\rangle - |\tilde{0} \ \tilde{\sigma}\rangle \right) \left(\langle \tilde{\sigma} \ \tilde{0} | - \langle \tilde{0} \ \tilde{\sigma} | \right)_{j,j+1},$$

¹⁶T.Rakovszky, P.Sala, R.Verresen, M.Knap, F.Pollmann (2019)

¹⁷SM, O.I.Motrunich (2021)

- $t J_z$ Hamiltonian:¹⁶ hopping with two species of particles, $\hat{h}_{j,j+1}: \{|\uparrow 0\rangle \leftrightarrow |0\uparrow\rangle, |\downarrow 0\rangle \leftrightarrow |0\downarrow\rangle\}_{j,j+1}$
- Full pattern of spins (\uparrow or \downarrow) preserved \implies Exp. many blocks

$$|0\uparrow\downarrow 0\downarrow\uparrow 0\rangle\longleftrightarrow |0\uparrow\uparrow 0\downarrow\downarrow 0\rangle$$

• Construct super-Hamiltonian corresponding to $\mathcal{A}_{t-J_z} = \langle\!\langle \{\widehat{h}_{j,j+1}\} \rangle\!\rangle$.

$$\widehat{\mathcal{P}}_{t-J_z} \sim \sum_{j,\sigma \in \{\uparrow,\downarrow\}} \left(|\tilde{\sigma} \ \tilde{0}\rangle - |\tilde{0} \ \tilde{\sigma}\rangle \right) \left(\langle \tilde{\sigma} \ \tilde{0}| - \langle \tilde{0} \ \tilde{\sigma}| \right)_{j,j+1},$$

• Exponentially many ground states, $\dim(\mathcal{C}_{t-J_z}) = 2^{L+1} - 1!^{17}$

$$\mathsf{N}^{\sigma_1 \sigma_2 \cdots \sigma_k} = \sum_{j_1 < j_2 < \cdots < j_k} \mathsf{N}_{j_1}^{\sigma_1} \mathsf{N}_{j_2}^{\sigma_2} \cdots \mathsf{N}_{j_k}^{\sigma_k}, \ \sigma_j \in \{\uparrow, \downarrow\}$$

¹⁶T.Rakovszky, P.Sala, R.Verresen, M.Knap, F.Pollmann (2019)

¹⁷SM, O.I.Motrunich (2021)

- $t J_z$ Hamiltonian:¹⁶ hopping with two species of particles, $\hat{h}_{j,j+1}: \{|\uparrow 0\rangle \leftrightarrow |0\uparrow\rangle, |\downarrow 0\rangle \leftrightarrow |0\downarrow\rangle\}_{j,j+1}$
- Full pattern of spins (\uparrow or $\downarrow)$ preserved \implies Exp. many blocks

$$|0\uparrow\downarrow 0\downarrow\uparrow 0\rangle\longleftrightarrow |0\uparrow\uparrow 0\downarrow\downarrow 0\rangle$$

• Construct super-Hamiltonian corresponding to $\mathcal{A}_{t-J_z} = \langle\!\langle \{\widehat{h}_{j,j+1}\} \rangle\!\rangle$.

$$\widehat{\mathcal{P}}_{t-J_z} \sim \sum_{j,\sigma \in \{\uparrow,\downarrow\}} \left(| ilde{\sigma} \,\, ilde{0}
angle - | ilde{0} \,\, ilde{\sigma}
angle
ight) \left(\langle ilde{\sigma} \,\, ilde{0} | - \langle ilde{0} \,\, ilde{\sigma} |
ight)_{j,j+1},$$

• Exponentially many ground states, $\dim(\mathcal{C}_{t-J_z}) = 2^{L+1} - 1!^{17}$

$$N^{\sigma_1 \sigma_2 \cdots \sigma_k} = \sum_{j_1 < j_2 < \cdots < j_k} N_{j_1}^{\sigma_1} N_{j_2}^{\sigma_2} \cdots N_{j_k}^{\sigma_k}, \ \sigma_j \in \{\uparrow, \downarrow\}$$

• $\{N^{\sigma_1\cdots\sigma_k}\}$ functionally independent of two obvious U(1) symmetries $N^{\uparrow} = \sum_j N_j^{\uparrow}$ and $N^{\downarrow} = \sum_j N_j^{\downarrow}$

¹⁶T.Rakovszky, P.Sala, R.Verresen, M.Knap, F.Pollmann (2019)
 ¹⁷SM, O.I.Motrunich (2021)

• QMBS eigenstates: $H |\psi_n\rangle = E_n |\psi_n\rangle \iff [H, |\psi_n\rangle\langle\psi_n|] = 0.$

¹⁸SM, O.I.Motrunich (2022)

- QMBS eigenstates: $H |\psi_n\rangle = E_n |\psi_n\rangle \iff [H, |\psi_n\rangle\langle\psi_n|] = 0.$
- $C_{scar} = \langle \langle |\psi_n \rangle \langle \psi_n | \rangle \rangle$ is a valid symmetry algebra if there exists a corresponding locally-generated A_{scar} .

¹⁸SM, O.I.Motrunich (2022)

- QMBS eigenstates: $H |\psi_n\rangle = E_n |\psi_n\rangle \iff [H, |\psi_n\rangle\langle\psi_n|] = 0.$
- $C_{scar} = \langle \! \langle |\psi_n \rangle \! \langle \psi_n | \rangle \! \rangle$ is a valid symmetry algebra if there exists a corresponding locally-generated \mathcal{A}_{scar} .
- Spin- $\frac{1}{2}$ ferromagnetic multiplet $\{|\Phi_{n,0}\rangle = (S_{tot}^{-})^n |F\rangle\}, |F\rangle = |\uparrow \cdots \uparrow\rangle$

$$\mathcal{A}_{scar} := \langle\!\langle \{R_{j,j+1}\sigma_{j+2}^{\alpha}, \sigma_{j-1}^{\alpha}R_{j,j+1}\}\rangle\!\rangle, \quad R_{j,j+1} = \frac{1}{4} - \vec{S}_{j} \cdot \vec{S}_{j+1}.$$

- QMBS eigenstates: $H |\psi_n\rangle = E_n |\psi_n\rangle \iff [H, |\psi_n\rangle\langle\psi_n|] = 0.$
- $C_{scar} = \langle\!\langle |\psi_n \rangle\!\langle \psi_n | \rangle\!\rangle$ is a valid symmetry algebra if there exists a corresponding locally-generated \mathcal{A}_{scar} .
- Spin- $\frac{1}{2}$ ferromagnetic multiplet $\{|\Phi_{n,0}\rangle = (S_{tot}^-)^n |F\rangle\}, |F\rangle = |\uparrow \cdots \uparrow\rangle$ $\mathcal{A}_{scar} := \langle\!\langle \{R_{j,j+1}\sigma_{j+2}^\alpha, \sigma_{j-1}^\alpha R_{j,j+1}\}\rangle\!\rangle, R_{j,j+1} = \frac{1}{4} - \vec{S_j} \cdot \vec{S_{j+1}}.$
- Super-Hamiltonian $\widehat{\mathcal{P}}_{\sf scar}$ at low-energy is simply two decoupled ferromagnetic Heisenberg chains

$$\widehat{\mathcal{P}}_{\mathsf{scar}}|_{\mathsf{low-energy}} \sim C - \sum_{j} \Big(ec{S}_{j;t} \cdot ec{S}_{j+1;t} + ec{S}_{j;b} \cdot ec{S}_{j+1;b} \Big).$$

¹⁸SM, O.I.Motrunich (2022)

- QMBS eigenstates: $H |\psi_n\rangle = E_n |\psi_n\rangle \iff [H, |\psi_n\rangle\langle\psi_n|] = 0.$
- $C_{scar} = \langle\!\langle |\psi_n \rangle\!\langle \psi_n | \rangle\!\rangle$ is a valid symmetry algebra if there exists a corresponding locally-generated \mathcal{A}_{scar} .
- Spin- $\frac{1}{2}$ ferromagnetic multiplet $\{|\Phi_{n,0}\rangle = (S_{tot}^-)^n |F\rangle\}, |F\rangle = |\uparrow \cdots \uparrow\rangle$ $\mathcal{A}_{scar} := \langle\!\langle \{R_{j,j+1}\sigma_{j+2}^\alpha, \sigma_{j-1}^\alpha R_{j,j+1}\}\rangle\!\rangle, R_{j,j+1} = \frac{1}{4} - \vec{S_j} \cdot \vec{S_{j+1}}.$
- Super-Hamiltonian $\widehat{\mathcal{P}}_{\sf scar}$ at low-energy is simply two decoupled ferromagnetic Heisenberg chains

$$\widehat{\mathcal{P}}_{\mathsf{scar}}|_{\mathsf{low-energy}} \sim C - \sum_{j} \Big(ec{S}_{j;t} \cdot ec{S}_{j+1;t} + ec{S}_{j;b} \cdot ec{S}_{j+1;b} \Big).$$

• Ground states: $\{ |\Phi_{n,0}\rangle_t \otimes |\Phi_{m,0}\rangle_b \} \implies \mathcal{C}_{\mathsf{scar}} = \langle\!\langle \{ |\Phi_{n,0}\rangle\!\langle \Phi_{m,0}| \} \rangle\!\rangle.$

¹⁸SM, O.I.Motrunich (2022)

- QMBS eigenstates: $H |\psi_n\rangle = E_n |\psi_n\rangle \iff [H, |\psi_n\rangle\langle\psi_n|] = 0.$
- $C_{scar} = \langle\!\langle |\psi_n \rangle\!\langle \psi_n | \rangle\!\rangle$ is a valid symmetry algebra if there exists a corresponding locally-generated \mathcal{A}_{scar} .
- Spin- $\frac{1}{2}$ ferromagnetic multiplet $\{|\Phi_{n,0}\rangle = (S_{tot}^-)^n |F\rangle\}, |F\rangle = |\uparrow \cdots \uparrow\rangle$ $\mathcal{A}_{scar} := \langle\!\langle \{R_{j,j+1}\sigma_{j+2}^\alpha, \sigma_{j-1}^\alpha R_{j,j+1}\}\rangle\!\rangle, R_{j,j+1} = \frac{1}{4} - \vec{S_j} \cdot \vec{S_{j+1}}.$
- Super-Hamiltonian $\widehat{\mathcal{P}}_{\sf scar}$ at low-energy is simply two decoupled ferromagnetic Heisenberg chains

$$\widehat{\mathcal{P}}_{\mathsf{scar}}|_{\mathsf{low-energy}} \sim \mathcal{C} - \sum_{j} \Big(ec{S}_{j;t} \cdot ec{S}_{j+1;t} + ec{S}_{j;b} \cdot ec{S}_{j+1;b} \Big).$$

• Ground states: $\{ |\Phi_{n,0}\rangle_t \otimes |\Phi_{m,0}\rangle_b \} \implies \mathcal{C}_{\mathsf{scar}} = \langle\!\langle \{ |\Phi_{n,0}\rangle\!\langle \Phi_{m,0}| \} \rangle\!\rangle.$

• Projectors onto some **special** states can be viewed as symmetries!¹⁸

¹⁸SM, O.I.Motrunich (2022)

¹⁹SM, O.I.Motrunich (2023)

²⁰ J.Feldmeier, W. Witczak-Krempa, M.Knap (2022)
 ²¹ L.Gotta, **SM**, L.Mazza (2023)
 ²² M.C.Bañuls, D.A.Huse, J.I.Cirac (2021)

• $\widehat{\mathcal{P}}_{t-J_z}$ also maps onto ferromagnetic Heisenberg model!

¹⁹SM, O.I.Motrunich (2023)
 ²⁰J.Feldmeier, W. Witczak-Krempa, M.Knap (2022)
 ²¹L.Gotta, SM, L.Mazza (2023)

²²

²²M.C.Bañuls, D.A.Huse, J.I.Cirac (2021)

- $\widehat{\mathcal{P}}_{t-J_z}$ also maps onto ferromagnetic Heisenberg model!
- Tedious semi-analytical analysis¹⁹: $\overline{C_{Z_i}(t)} \sim t^{-\gamma}, \ \gamma \in [0.25, 0.3].$

¹⁹SM, O.I.Motrunich (2023)
 ²⁰J.Feldmeier, W. Witczak-Krempa, M.Knap (2022)
 ²¹L.Gotta, SM, L.Mazza (2023)

²²M.C.Bañuls, D.A.Huse, J.I.Cirac (2021)

- $\widehat{\mathcal{P}}_{t-J_z}$ also maps onto ferromagnetic Heisenberg model!
- Tedious semi-analytical analysis¹⁹: $\overline{C_{Z_i}(t)} \sim t^{-\gamma}, \ \gamma \in [0.25, 0.3].$
- Tracer diffusion due to pattern conservation²⁰

¹⁹SM, O.I.Motrunich (2023)
 ²⁰J.Feldmeier, W. Witczak-Krempa, M.Knap (2022)
 ²¹L.Gotta, SM, L.Mazza (2023)
 ²²M.C.Bañuls, D.A.Huse, J.I.Cirac (2021)

- $\widehat{\mathcal{P}}_{t-J_z}$ also maps onto ferromagnetic Heisenberg model!
- Tedious semi-analytical analysis¹⁹: $\overline{C_{Z_i}(t)} \sim t^{-\gamma}, \ \gamma \in [0.25, 0.3].$
- Tracer diffusion due to pattern conservation²⁰

• Low-energy spectrum: Spin-waves $\{|\Phi_{m,k}\rangle = (S_{tot}^{-})^m \sum_j e^{ikj} S_j^{-} |F\rangle\}$ Ground States: $|\Phi_{m,0}\rangle_t \otimes |\Phi_{n,0}\rangle_b$ Excited States: $|\Phi_{m,k}\rangle_t \otimes |\Phi_{n,0}\rangle_b$

¹⁹SM, O.I.Motrunich (2023)
 ²⁰J.Feldmeier, W. Witczak-Krempa, M.Knap (2022)
 ²¹L.Gotta, SM, L.Mazza (2023)
 ²²M.C.Bañuls, D.A.Huse, J.I.Cirac (2021)

- $\widehat{\mathcal{P}}_{t-J_z}$ also maps onto ferromagnetic Heisenberg model!
- Tedious semi-analytical analysis¹⁹: $\overline{C_{Z_i}(t)} \sim t^{-\gamma}, \ \gamma \in [0.25, 0.3].$
- Tracer diffusion due to pattern conservation²⁰
- Low-energy spectrum: Spin-waves $\{|\Phi_{m,k}\rangle = (S_{tot}^{-})^m \sum_j e^{ikj} S_j^{-} |F\rangle\}$ Ground States: $|\Phi_{m,0}\rangle_t \otimes |\Phi_{n,0}\rangle_b$ Excited States: $|\Phi_{m,k}\rangle_t \otimes |\Phi_{n,0}\rangle_b$
- Autocorrelation of $\widehat{A} = |\Phi_{n,k}\rangle\langle\Phi_{n,0}|$ used to lower-bound fidelity

$$\overline{|\langle \Phi_{n,k}(0)|\Phi_{n,k}(t)\rangle|^2} \geq \left|\overline{(\widehat{A}(0)|\widehat{A}(-t))}\right|^2 = e^{-2\kappa\sin^2(\frac{k}{2})t} \sim e^{-\frac{ct}{L^2}}.$$

¹⁹SM, O.I.Motrunich (2023)
 ²⁰J.Feldmeier, W. Witczak-Krempa, M.Knap (2022)
 ²¹L.Gotta, SM, L.Mazza (2023)
 ²²M.C.Bañuls, D.A.Huse, J.I.Cirac (2021)

- $\widehat{\mathcal{P}}_{t-J_z}$ also maps onto ferromagnetic Heisenberg model!
- Tedious semi-analytical analysis¹⁹: $\overline{C_{Z_i}(t)} \sim t^{-\gamma}, \ \gamma \in [0.25, 0.3].$
- Tracer diffusion due to pattern conservation²⁰
- Low-energy spectrum: Spin-waves $\{|\Phi_{m,k}\rangle = (S_{tot}^{-})^m \sum_j e^{ikj} S_j^{-} |F\rangle\}$ Ground States: $|\Phi_{m,0}\rangle_t \otimes |\Phi_{n,0}\rangle_b$ Excited States: $|\Phi_{m,k}\rangle_t \otimes |\Phi_{n,0}\rangle_b$
- Autocorrelation of $\widehat{A} = |\Phi_{n,k}\rangle\langle\Phi_{n,0}|$ used to lower-bound fidelity

$$\overline{|\langle \Phi_{n,k}(0)|\Phi_{n,k}(t)\rangle|^2} \geq \left|\overline{(\widehat{A}(0)|\widehat{A}(-t))}\right|^2 = e^{-2\kappa \sin^2(\frac{k}{2})t} \sim e^{-\frac{ct}{L^2}}$$

 Asymptotic QMBS:²¹Fidelity decay timescale diverges with L even though state orthogonal to QMBS – generically not possible!²²

¹⁹SM, O.I.Motrunich (2023)

²⁰ J.Feldmeier, W. Witczak-Krempa, M.Knap (2022)
 ²¹ L.Gotta, **SM**, L.Mazza (2023)
 ²² M.C.Bañuls, D.A.Huse, J.I.Cirac (2021)

Summary and Open Questions

- Local Building Blocks ⇐⇒ Symmetry
 A: Local algebra C: Commutant algebra
- Symmetries are ground states, slow-modes are low-energy excitations
- Locality restrictions on generators of A instead of C ⇒ Novel symmetries
- Non-invertible/categorical symmetries in this language? Dualities?²³
- Symmetry = Shadow of topological order?²⁴

Approximate symmetries without exact symmetries? Stability to perturbations?

 ²³E.Cobanera, G.Ortiz, Z.Nussinov (2011); H.Moradi, Ö.M.Aksoy, J.H.Bardarson, A.Tiwari (2023)
 ²⁴J.McGreevy (2022); A.Chatteriee, X.-G. Wen (2023); H.Moradi, S.F.Moosavian, A.Tiwari (2022)

Thank You!

Commutant Algebras: Block Structures (Informal)

- Symmetry Sectors: Basis in which **all** local terms $\{\hat{h}_{j,j+1}\}$ **simultaneously** block diagonal!
- Entire families of Hamiltonians built from $\{\hat{h}_{j,j+1}\}$ block-diagonal in same basis, including $H = \sum_{j} \hat{h}_{j,j+1}$.
- $N_{\text{blocks}} = \sum_{\lambda} d_{\lambda}$ (hard, requires rep. theory) scales as dim $(\mathcal{C}) =$ Number of lin. ind. ops. in \mathcal{C} (easy, count solutions to $[\hat{h}_{j,j+1}, \hat{O}] = 0$)!²⁵

$N_{blocks} \sim \dim(\mathcal{C})$	Example
$\mathcal{O}(1)$	Discrete Global Symmetry
poly(L)	Continuous Global Symmetry
exp(L)	Fragmentation

• Symmetries and associated quantum number sectors **uniquely** determined from $\{\hat{h}_{j,j+1}\}!$

²⁵SM, O.I.Motrunich(2022)

Conventional Symmetries

Simple Examples: Abelian \mathcal{C}

۲

• Abelian
$$\mathcal{C} \implies d_{\lambda} = 1, \ \textit{N}_{\sf blocks} = {\sf dim}(\mathcal{C})$$

• No symmetry: Generic
$$\{\hat{h}_{j,j+1}\}$$

Solve for $[\hat{h}_{j,j+1}, \widehat{O}] = 0$

$$\mathcal{C} = \{1\}, \; \textit{N}_{\sf blocks} = {\sf dim}(\mathcal{C}) = 1$$

$$Z_2 \text{ Symmetry: } \{\hat{h}_{j,j+1}\} = \{X_j X_{j+1}, Z_j\}.$$

Solve for $[X_j X_{j+1}, \widehat{O}] = 0$ and $[Z_j, \widehat{O}] = 0$
$$\mathcal{C}_{Z_2} = \text{span}\{\mathbb{1}, \prod_j Z_j\} = \langle\!\langle \prod_j Z_j \rangle\!\rangle, \quad N_{\text{blocks}} = \dim(\mathcal{C}_{Z_2}) = 2.$$

•
$$U(1)$$
 Symmetry: $\{\hat{h}_{j,j+1}\} = \{X_j X_{j+1} + Y_j Y_{j+1}, Z_j\}$
Solve for $[X_j X_{j+1} + Y_j Y_{j+1}, \widehat{O}] = 0$ and $[Z_j, \widehat{O}] = 0$

$$\begin{aligned} \mathcal{C}_{U(1)} = \text{span}\{\mathbb{1}, Z_{\text{tot}}, Z_{\text{tot}}^2, \cdots, Z_{\text{tot}}^L\} &= \langle\!\langle Z_{\text{tot}} \rangle\!\rangle = \langle\!\langle \{\prod_j e^{i\alpha Z_j}\} \rangle\!\rangle, \\ Z_{\text{tot}} &= \sum_j Z_j, \ N_{\text{blocks}} = \dim(\mathcal{C}_{U(1)}) = L + 1. \end{aligned}$$

Simple Examples: Non-Abelian C

• Non-Abelian
$$\mathcal{C} \implies$$
 some $d_{\lambda} > 1$
 \implies degeneracies

•
$$SU(2)$$
 Symmetry: $\{\hat{h}_{j,j+1}\} = \{\vec{S}_j \cdot \vec{S}_{j+1}\}$

$$\mathcal{C}_{SU(2)} = \langle\!\langle S_{\text{tot}}^{\mathsf{x}}, S_{\text{tot}}^{\mathsf{y}}, S_{\text{tot}}^{\mathsf{z}} \rangle\!\rangle = \langle\!\langle \{\prod_{j} e^{i\alpha_{\mu}S_{j}^{\mu}}\}\rangle\!\rangle$$
$$= \operatorname{span}_{\rho,q,r}\{(S_{\text{tot}}^{\mathsf{x}})^{\rho}(S_{\text{tot}}^{\mathsf{y}})^{q}(S_{\text{tot}}^{\mathsf{z}})^{r}\}$$

- Block-diagonal form (Schur-Weyl duality): $0 \le \lambda \le L/2$: S^2 eigenvalues, $d_{\lambda} = 2\lambda + 1$: irreps of $\mathfrak{su}(2)$ D_{λ} : irreps of S_L , $N_{\text{blocks}} \sim \dim(\mathcal{C}_{SU(2)}) \sim poly(L)$
- Another example: Stabilizer codes, e.g., toric code
 - \mathcal{A} is the group algebra of the stabilizer group.
 - $\bullet \ \mathcal{C}$ consists of \mathcal{A} and the non-trivial logical operators.

Numerical Methods & Systematic Searches

- \bullet Determining ${\cal C}$ given ${\cal A}:$ Hard in practice, need numerical methods.^{26}
 - Simultaneous block diagonalization of generators of A can extract operators in C, their irreps, etc.
 - C frustration-free ground state space of a local superoperator "Hamiltonian" efficient to solve (at least in one dimension).
- Systematic (numerical) scan through physically relevant families of Hamiltonians²⁷
- Discovers unconventional SU(2)_q quantum group symmetries, Strong Zero Modes²⁸in non-integrable models!

²⁶SM, O.I.Motrunich (2023)

²⁴SM, O.I.Motrunich (in preparation)

²⁸P.Fendley (2016); D.V.Else, P.Fendley, J.Kemp, C.Nayak (2017)