Symmetries as Ground States

Sanjay Moudgalya

Caltech \rightarrow TUM

SM, Olexei I. Motrunich, arXiv: 2309.15167

Related Works $\left\{\begin{array}{l}\text { arXiv: } 2108.10824 \text { [PRX 12, } 011050 \text { (2022)] } \\ \text { arXiv: } 2209.03370 \text { [Annals of Physics 455, 169384 (2023)] } \\ \text { arXiv: } 2209.03377 \text { [PRB 107, } 224312 \text { (2023)] } \\ \text { arXiv: } 2302.03028 \text { [PR }\end{array}\right.$

YITP Kyoto
28th September 2023

Introduction: Symmetries in Quantum Many-Body Physics

Symmetries in Many-Body Physics

- Symmetries: Organizing principle for physical phenomena.

Symmetries in Many-Body Physics

- Symmetries: Organizing principle for physical phenomena.
- Conventional phases of matter and transitions understood using "Spontaneous symmetry breaking" (Landau paradigm)

Symmetries in Many-Body Physics

- Symmetries: Organizing principle for physical phenomena.
- Conventional phases of matter and transitions understood using "Spontaneous symmetry breaking" (Landau paradigm)

- Extensive conserved quantities required for correct thermodynamics, e.g., in the definition of Gibbs ensembles

Symmetries in Quantum Many-Body Physics

- Physics of quantum many-body systems studied using toy models: Spin chain governed by a local Hamiltonian $H=\sum_{j=1}^{L} \hat{h}_{j, j+1}$.

Symmetries in Quantum Many-Body Physics

- Physics of quantum many-body systems studied using toy models: Spin chain governed by a local Hamiltonian $H=\sum_{j=1}^{L} \hat{h}_{j, j+1}$.

- Example:
- Hilbert space \mathcal{H} : Spanned by spins $|\uparrow\rangle_{j}$ and $|\downarrow\rangle_{j}$ on each site.
- Operators: Magnetization $Z_{j}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$, Spin-Flip $X_{j}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
- Transverse Field Ising Model: $H=\sum_{j=1}^{L} \widehat{h}_{j, j+1}, \hat{h}_{j, j+1}=\left(X_{j} X_{j+1}+g Z_{j}\right)$.

Symmetries in Quantum Many-Body Physics

- Physics of quantum many-body systems studied using toy models:

Spin chain governed by a local Hamiltonian $H=\sum_{j=1}^{L} \hat{h}_{j, j+1}$.

- Example:
- Hilbert space \mathcal{H} : Spanned by spins $|\uparrow\rangle_{j}$ and $|\downarrow\rangle_{j}$ on each site.
- Operators: Magnetization $Z_{j}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$, Spin-Flip $X_{j}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
- Transverse Field Ising Model: $H=\sum_{j=1}^{L} \widehat{h}_{j, j+1}, \hat{h}_{j, j+1}=\left(X_{j} X_{j+1}+g Z_{j}\right)$.
- Symmetries/conserved quantities $\left\{Q_{\alpha}\right\}$: Operators that commute with the Hamiltonian, $\left[Q_{\alpha}, H\right]=Q_{\alpha} H-H Q_{\alpha}=0$.

Symmetries in Quantum Many-Body Physics

- Physics of quantum many-body systems studied using toy models: Spin chain governed by a local Hamiltonian $H=\sum_{j=1}^{L} \hat{h}_{j, j+1}$.

- Example:
- Hilbert space \mathcal{H} : Spanned by spins $|\uparrow\rangle_{j}$ and $|\downarrow\rangle_{j}$ on each site.
- Operators: Magnetization $Z_{j}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$, Spin-Flip $X_{j}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
- Transverse Field Ising Model: $H=\sum_{j=1}^{L} \widehat{h}_{j, j+1}, \hat{h}_{j, j+1}=\left(X_{j} X_{j+1}+g Z_{j}\right)$.
- Symmetries/conserved quantities $\left\{Q_{\alpha}\right\}$: Operators that commute with the Hamiltonian, $\left[Q_{\alpha}, H\right]=Q_{\alpha} H-H Q_{\alpha}=0$.
- Z_{2} symmetry of Ising Model: Parity of total spin $Q_{\alpha}=\prod_{j=1}^{L} Z_{j}$.

Conventional Symmetries

- Conventionally, $\left\{Q_{\alpha}\right\}$ are not allowed to be arbitrary operators on \mathcal{H} additional structure is imposed.

Conventional Symmetries

- Conventionally, $\left\{Q_{\alpha}\right\}$ are not allowed to be arbitrary operators on \mathcal{H} additional structure is imposed.
- Internal symmetries: Product of on-site unitary operators $\left\{u_{j}\right\}$ chosen from group G, e.g., $Z_{2}, U(1), S U(2), \ldots$

$$
\begin{array}{lllllllll}
\Omega & & & \Omega & \Omega & \Omega & & & \Omega \\
Q_{\alpha}= & \bullet & \ldots & \bullet & \bullet & \bullet & \bullet & \ldots & \bullet \\
u_{1} & u_{2} & \ldots & u_{j-1} & u_{j} & u_{j+1} u_{j+2} & \cdots & u_{L-1} u_{L}
\end{array}
$$

Conventional Symmetries

- Conventionally, $\left\{Q_{\alpha}\right\}$ are not allowed to be arbitrary operators on \mathcal{H} additional structure is imposed.
- Internal symmetries: Product of on-site unitary operators $\left\{u_{j}\right\}$ chosen from group G, e.g., $Z_{2}, U(1), S U(2), \ldots$

$$
\begin{array}{lllllllll}
\Omega & \ddots & \Omega & \Omega & \Omega & & \Omega & \ddots \\
Q_{\alpha}= & \bullet & u_{1} & u_{2} & \ldots & u_{j-1} & u_{j} & u_{j+1} u_{j+2} & \cdots
\end{array} u_{L-1} u_{L}
$$

- Lattice symmetries: Unitary operators that implement reflection, rotation, translation, etc.

Conventional Symmetries

- Conventionally, $\left\{Q_{\alpha}\right\}$ are not allowed to be arbitrary operators on \mathcal{H} additional structure is imposed.
- Internal symmetries: Product of on-site unitary operators $\left\{u_{j}\right\}$ chosen from group G, e.g., $Z_{2}, U(1), S U(2), \ldots$

$$
\begin{array}{lllllllll}
\Omega & & & \Omega & \Omega & \Omega & & & \Omega \\
Q_{\alpha}= & \bullet & \ldots & \bullet & \bullet & \bullet & \bullet & \ldots & \bullet \\
u_{1} & u_{2} & \ldots & u_{j-1} & u_{j} & u_{j+1} u_{j+2} & \cdots & u_{L-1} u_{L}
\end{array}
$$

- Lattice symmetries: Unitary operators that implement reflection, rotation, translation, etc.

- These symmetries explain most "textbook" physical phenomena.

Conventional Symmetries

- Conventionally, $\left\{Q_{\alpha}\right\}$ are not allowed to be arbitrary operators on \mathcal{H} additional structure is imposed.
- Internal symmetries: Product of on-site unitary operators $\left\{u_{j}\right\}$ chosen from group G, e.g., $Z_{2}, U(1), S U(2), \ldots$

$$
\begin{array}{lllllllll}
\Omega & & & \Omega & \Omega & \Omega & & & \Omega \\
Q_{\alpha}= & \bullet & \ldots & \bullet & \bullet & \bullet & \bullet & \ldots & \bullet \\
u_{1} & u_{2} & \ldots & u_{j-1} & u_{j} & u_{j+1} u_{j+2} & \cdots & u_{L-1} u_{L}
\end{array}
$$

- Lattice symmetries: Unitary operators that implement reflection, rotation, translation, etc.

- These symmetries explain most "textbook" physical phenomena. Are these the most general physical symmetries?

Beyond Conventional Symmetries

- Several recent works: Conventional symmetries are not sufficient!

[^0]
Beyond Conventional Symmetries

- Several recent works: Conventional symmetries are not sufficient!
- Equilibrium Physics: ${ }^{1}$ Subsystem/Higher-form symmetries, Fractons, Categorical/MPO symmetries, Generalized Landau paradigm, ...

[^1]
Beyond Conventional Symmetries

- Several recent works: Conventional symmetries are not sufficient!
- Equilibrium Physics: ${ }^{1}$ Subsystem/Higher-form symmetries, Fractons, Categorical/MPO symmetries, Generalized Landau paradigm, ...

- Non-Equilibrium Physics: ${ }^{2}$ Slow thermalization due to quantum scars, Hilbert space fragmentation, strong zero modes, ...

[^2]
Beyond Conventional Symmetries

- Several recent works: Conventional symmetries are not sufficient!
- Equilibrium Physics: ${ }^{1}$ Subsystem/Higher-form symmetries, Fractons, Categorical/MPO symmetries, Generalized Landau paradigm, ...

- Non-Equilibrium Physics: ${ }^{2}$ Slow thermalization due to quantum scars, Hilbert space fragmentation, strong zero modes, ...

Characterizing Properties of Symmetries?

[^3]Background: Quantum Dynamics and Weak Ergodicity Breaking

Review Articles:

- M.Serbyn, D.A.Abanin, Z.Papić, arXiv: 2011.09486
- Z.Papić, arXiv: 2108.03460
- SM, B. Andrei Bernevig, Nicolas Regnault, arXiv: 2109.00548
- A.Chandran, T.ladecola, V.Khemani, R.Moessner, arXiv: 2206.11528

Ergodicity in Isolated Quantum Systems

[^4]
Ergodicity in Isolated Quantum Systems

- Eigenstate Thermalization Hypothesis (ETH) ${ }^{3}$: Eigenstates $|E\rangle$ are "thermal"
- $E \Longleftrightarrow \beta, \operatorname{Tr}_{B}(|E\rangle\langle E|) \sim e^{-\left.\beta H\right|_{A}}$
- Volume law entanglement: $S=-\operatorname{Tr}_{A}\left(\rho_{A} \log \rho_{A}\right) \sim V_{A}$.

[^5]
Ergodicity in Isolated Quantum Systems

- Eigenstate Thermalization Hypothesis (ETH) ${ }^{3}$: Eigenstates $|E\rangle$ are "thermal"
- $E \Longleftrightarrow \beta, \operatorname{Tr}_{B}\left(|E\rangle(E \mid) \sim e^{-\left.\beta H\right|_{A}}\right.$
- Volume law entanglement: $S=-\operatorname{Tr}_{A}\left(\rho_{A} \log \rho_{A}\right) \sim V_{A}$.

- Symmetric Hamiltonians: Block-diagonalized into symmetry sectors labelled by eigenvalues under $\left\{Q_{\alpha}\right\}$.
- Ergodicity/ETH expected within each sector

[^6]
Ergodicity in Isolated Quantum Systems

- Eigenstate Thermalization Hypothesis (ETH) ${ }^{3}$: Eigenstates $|E\rangle$ are "thermal"
- $E \Longleftrightarrow \beta, \operatorname{Tr}_{B}\left(|E\rangle(E \mid) \sim e^{-\left.\beta H\right|_{A}}\right.$
- Volume law entanglement: $S=-\operatorname{Tr}_{A}\left(\rho_{A} \log \rho_{A}\right) \sim V_{A}$.

- Symmetric Hamiltonians: Block-diagonalized into symmetry sectors labelled by eigenvalues under $\left\{Q_{\alpha}\right\}$.
- Ergodicity/ETH expected within each sector

Assumption \sim All "blocks" are explained by symmetries

[^7]
Ergodicity in Isolated Quantum Systems

- Eigenstate Thermalization Hypothesis (ETH) ${ }^{3}$: Eigenstates $|E\rangle$ are "thermal"
- $E \Longleftrightarrow \beta, \operatorname{Tr}_{B}(|E\rangle\langle E|) \sim e^{-\left.\beta H\right|_{A}}$
- Volume law entanglement: $S=-\operatorname{Tr}_{A}\left(\rho_{A} \log \rho_{A}\right) \sim V_{A}$.

- Symmetric Hamiltonians: Block-diagonalized into symmetry sectors labelled by eigenvalues under $\left\{Q_{\alpha}\right\}$.
- Ergodicity/ETH expected within each sector

Assumption \sim All "blocks" are explained by symmetries

- Recent analytical ${ }^{4}$ and experimental ${ }^{5}$ discovery of "weak" ergodicity breaking put this into question

[^8]
Weak Ergodicity Breaking

[^9]
Weak Ergodicity Breaking

Quantum Many-Body Scars

- Solvable eigenstates deep in the spectrum ${ }^{6}$
- Mid-spectrum: $S \sim \log L \Longrightarrow$ ETH violation!
- Equally spaced quasiparticle tower
\Longrightarrow Revivals from simple initial states

[^10]
Weak Ergodicity Breaking

Quantum Many-Body Scars

- Solvable eigenstates deep in the spectrum ${ }^{6}$
- Mid-spectrum: $S \sim \log L \Longrightarrow$ ETH violation!
- Equally spaced quasiparticle tower
\Longrightarrow Revivals from simple initial states

Hilbert Space Fragmentation

- Local Hamiltonians with exp. many disconnected blocks: ${ }^{7} \mathcal{H}=\bigoplus_{\alpha=1}^{\sim \exp (L)} \operatorname{span}\left\{e^{-i H t}\left|R_{\alpha}\right\rangle\right\}$
- Blocks not distinguished by conventional symmetry quantum numbers, vastly different properties! ${ }^{8}$

[^11]
Outstanding Issue for Symmetries

Outstanding Issue for Symmetries

- Weak Ergodicity Breaking = Existence of unexpected blocks

Outstanding Issue for Symmetries

- Weak Ergodicity Breaking = Existence of unexpected blocks

(b)

(c)

Outstanding Issue for Symmetries

- Weak Ergodicity Breaking = Existence of unexpected blocks

(c) $\left[\begin{array}{lll} & \\ & \\ & \\ & & \\ & \text { amermal }\end{array}\right]$
- Puzzle: Conventional symmetries do not explain these hidden blocks!

Outstanding Issue for Symmetries

- Weak Ergodicity Breaking = Existence of unexpected blocks
(a)

(b)

(c)

- Puzzle: Conventional symmetries do not explain these hidden blocks!
- Allowing arbitrary operators $\left\{Q_{\alpha}\right\}$ to be valid conserved quantities not very meaningful: projectors onto eigenstates of H always conserved

$$
[H,|E\rangle\langle E|]=0 \quad \Longrightarrow \text { exponentially many conserved quantities?! }
$$

Outstanding Issue for Symmetries

- Weak Ergodicity Breaking = Existence of unexpected blocks
(a)

(b)

(c)

- Puzzle: Conventional symmetries do not explain these hidden blocks!
- Allowing arbitrary operators $\left\{Q_{\alpha}\right\}$ to be valid conserved quantities not very meaningful: projectors onto eigenstates of H always conserved

$$
[H,|E\rangle\langle E|]=0 \quad \Longrightarrow \text { exponentially many conserved quantities?! }
$$

What is an appropriate definition of a symmetry/conserved quantity?

Our Recent Works: Symmetries and Commutant Algebras

SM, O.I.Motrunich $\left\{\begin{array}{l}\text { arXiv: 2108.10824 [PRX 12, 011050 (2022)] } \\ \text { arXiv: 2209.03370 [Ann. Phys. 455, 169384 (2023)] } \\ \text { arXiv: 2209.03377 } \\ \text { arXiv: 2302.03028 [PRB 107, 224312 (2023)] } \\ \text { arXiv: 2309.15167 }\end{array}\right.$

Commutant Algebras: Definition

Commutant Algebras: Definition

- We want symmetries to commute with $H:\left[Q_{\alpha}, \sum_{j} \widehat{h}_{j, j+1}\right]=0$ Ising Model: $\left[\prod_{j} Z_{j}, \sum_{j}\left(X_{j} X_{j+1}+g Z_{j}\right)\right]=0$

Commutant Algebras: Definition

- We want symmetries to commute with $H:\left[Q_{\alpha}, \sum_{j} \widehat{h}_{j, j+1}\right]=0$ Ising Model: $\left[\prod_{j} Z_{j}, \sum_{j}\left(X_{j} X_{j+1}+g Z_{j}\right)\right]=0$
- Key observation: Symmetries actually separately commute with each local term: $\left[Q_{\alpha}, \widehat{h}_{j, j+1}\right]=0!$.

$$
\left[\prod_{j} Z_{j}, X_{j} X_{j+1}\right]=0, \quad\left[\prod_{j} Z_{j}, Z_{j}\right]=0, \quad \text { for all } j!
$$

Commutant Algebras: Definition

- We want symmetries to commute with $H:\left[Q_{\alpha}, \sum_{j} \widehat{h}_{j, j+1}\right]=0$ Ising Model: $\left[\prod_{j} Z_{j}, \sum_{j}\left(X_{j} X_{j+1}+g Z_{j}\right)\right]=0$
- Key observation: Symmetries actually separately commute with each local term: $\left[Q_{\alpha}, \widehat{h}_{j, j+1}\right]=0$!.

$$
\left[\prod_{j} Z_{j}, X_{j} X_{j+1}\right]=0, \quad\left[\prod_{j} Z_{j}, Z_{j}\right]=0, \quad \text { for all } j!
$$

Definition of symmetry: $\left[Q_{\alpha}, \widehat{h}_{j, j+1}\right]=0$ for all j ?

Commutant Algebras: Definition

- We want symmetries to commute with $H:\left[Q_{\alpha}, \sum_{j} \widehat{h}_{j, j+1}\right]=0$ Ising Model: $\left[\prod_{j} Z_{j}, \sum_{j}\left(X_{j} X_{j+1}+g Z_{j}\right)\right]=0$
- Key observation: Symmetries actually separately commute with each local term: $\left[Q_{\alpha}, \widehat{h}_{j, j+1}\right]=0$!.

$$
\left[\prod_{j} Z_{j}, X_{j} X_{j+1}\right]=0, \quad\left[\prod_{j} z_{j}, Z_{j}\right]=0, \quad \text { for all } j!
$$

Definition of symmetry: $\left[Q_{\alpha}, \widehat{h}_{j, j+1}\right]=0$ for all j ?

- Commutant Algebra \mathcal{C} : Set of such operators $\left\{Q_{\alpha}\right\}$.

$$
Q_{\alpha} \in \mathcal{C}, \quad Q_{\beta} \in \mathcal{C} \quad \Longrightarrow \quad\left\{\begin{array}{l}
c_{\alpha} Q_{\alpha}+c_{\beta} Q_{\beta} \in \mathcal{C} \\
Q_{\alpha} Q_{\beta}, Q_{\beta} Q_{\alpha} \in \mathcal{C}
\end{array}\right.
$$

Commutant Algebras: Definition

- We want symmetries to commute with $H:\left[Q_{\alpha}, \sum_{j} \widehat{h}_{j, j+1}\right]=0$

$$
\text { Ising Model: }\left[\prod_{j} Z_{j}, \sum_{j}\left(X_{j} X_{j+1}+g Z_{j}\right)\right]=0
$$

- Key observation: Symmetries actually separately commute with each local term: $\left[Q_{\alpha}, \widehat{h}_{j, j+1}\right]=0$!.

$$
\left[\prod_{j} Z_{j}, X_{j} X_{j+1}\right]=0, \quad\left[\prod_{j} Z_{j}, Z_{j}\right]=0, \quad \text { for all } j!
$$

Definition of symmetry: $\left[Q_{\alpha}, \widehat{h}_{j, j+1}\right]=0$ for all j ?

- Commutant Algebra \mathcal{C} : Set of such operators $\left\{Q_{\alpha}\right\}$.

$$
Q_{\alpha} \in \mathcal{C}, \quad Q_{\beta} \in \mathcal{C} \quad \Longrightarrow \quad\left\{\begin{array}{l}
c_{\alpha} Q_{\alpha}+c_{\beta} Q_{\beta} \in \mathcal{C} \\
Q_{\alpha} Q_{\beta}, Q_{\beta} Q_{\alpha} \in \mathcal{C}
\end{array}\right.
$$

- Bond Algebra $\mathcal{A}=\left\langle\left\langle\left\{\widehat{h}_{j, j+1}\right\}\right\rangle\right\rangle$: Entire family of Hamiltonians constructed from $\left\{\widehat{h}_{j, j+1}\right\}$, e.g., $\sum_{j} J_{j} \widehat{h}_{j, j+1}, \sum_{j} J_{j}^{\prime} \widehat{h}_{j-1, j} \widehat{h}_{j, j+1}, \ldots$

Commutant Algebras: Definition

- We want symmetries to commute with $H:\left[Q_{\alpha}, \sum_{j} \widehat{h}_{j, j+1}\right]=0$ Ising Model: $\left[\prod_{j} Z_{j}, \sum_{j}\left(X_{j} X_{j+1}+g Z_{j}\right)\right]=0$
- Key observation: Symmetries actually separately commute with each local term: $\left[Q_{\alpha}, \widehat{h}_{j, j+1}\right]=0$!.

$$
\left[\prod_{j} Z_{j}, X_{j} X_{j+1}\right]=0, \quad\left[\prod_{j} Z_{j}, Z_{j}\right]=0, \quad \text { for all } j!
$$

Definition of symmetry: $\left[Q_{\alpha}, \widehat{h}_{j, j+1}\right]=0$ for all j ?

- Commutant Algebra \mathcal{C} : Set of such operators $\left\{Q_{\alpha}\right\}$.

$$
Q_{\alpha} \in \mathcal{C}, \quad Q_{\beta} \in \mathcal{C} \quad \Longrightarrow \quad\left\{\begin{array}{l}
c_{\alpha} Q_{\alpha}+c_{\beta} Q_{\beta} \in \mathcal{C} \\
Q_{\alpha} Q_{\beta}, Q_{\beta} Q_{\alpha} \in \mathcal{C}
\end{array}\right.
$$

- Bond Algebra $\mathcal{A}=\left\langle\left\langle\left\{\widehat{h}_{j, j+1}\right\}\right\rangle\right\rangle$: Entire family of Hamiltonians constructed from $\left\{\widehat{h}_{j, j+1}\right\}$, e.g., $\sum_{j} J_{j} \widehat{h}_{j, j+1}, \sum_{j} J_{j}^{\prime} \widehat{h}_{j-1, j} \widehat{h}_{j, j+1}, \ldots$

Symmetries in $\mathcal{C} \Longleftrightarrow$ Families of Hamiltonians in \mathcal{A}

Commutant Algebras: Block Structures

- \mathcal{A} and \mathcal{C} are von Neumann algebras (closed under \dagger), centralizers of each other (Double Commutant Theorem).

Commutant Algebras: Block Structures

- \mathcal{A} and \mathcal{C} are von Neumann algebras (closed under \dagger), centralizers of each other (Double Commutant Theorem).

- Representation theory: \exists basis such that $\widehat{h}_{\mathcal{A}} \in \mathcal{A}$ and $\widehat{h}_{\mathcal{C}} \in \mathcal{C}$ have representations

$$
\begin{aligned}
& W^{\dagger} \widehat{h}_{\mathcal{A}} W=\bigoplus_{\lambda}\left(M_{D_{\lambda}} \otimes \mathbb{1}_{d_{\lambda}}\right) \\
& W^{\dagger} \widehat{h}_{\mathcal{C}} W=\bigoplus_{\lambda}\left(\mathbb{1}_{D_{\lambda}} \otimes N_{d_{\lambda}}\right)
\end{aligned}
$$

- $\left\{D_{\lambda}\right\}$: Irreps of $\mathcal{A}=$ Block sizes $\left\{d_{\lambda}\right\}:$ Irreps of $\mathcal{C}=$ Degeneracies

Commutant Algebras: Block Structures

- \mathcal{A} and \mathcal{C} are von Neumann algebras (closed under \dagger), centralizers of each other (Double Commutant Theorem).

- Representation theory: \exists basis such that $\widehat{h}_{\mathcal{A}} \in \mathcal{A}$ and $\widehat{h}_{\mathcal{C}} \in \mathcal{C}$ have representations

$$
\begin{aligned}
& W^{\dagger} \widehat{h}_{\mathcal{A}} W=\bigoplus_{\lambda}\left(M_{D_{\lambda}} \otimes \mathbb{1}_{d_{\lambda}}\right) \\
& W^{\dagger} \widehat{h}_{\mathcal{C}} W=\bigoplus_{\lambda}\left(\mathbb{1}_{D_{\lambda}} \otimes N_{d_{\lambda}}\right)
\end{aligned}
$$

- $\left\{D_{\lambda}\right\}$: Irreps of $\mathcal{A}=$ Block sizes
 $\left\{d_{\lambda}\right\}$: Irreps of $\mathcal{C}=$ Degeneracies
- Symmetry Sectors: Basis in which all local terms $\left\{\widehat{h}_{j, j+1}\right\}$ simultaneously block diagonal! ${ }^{9}$
${ }^{9}$ SM, O.I.Motrunich (2021-23)

Symmetries are Ground States!

${ }^{10}$ SM, O.I.Motrunich (2023)

Symmetries are Ground States!

- Operators on \mathcal{H} are states in a doubled Hilbert space $\mathcal{H} \otimes \mathcal{H}$

$$
\left.\widehat{O}=\sum_{\mu, \nu} o_{\mu \nu}\left|v_{\mu}\right\rangle\left\langle v_{\nu}\right| \Longleftrightarrow \mid \widehat{O}\right)=\sum_{\mu, \nu} o_{\mu \nu}\left|v_{\mu}\right\rangle \otimes\left|v_{\nu}\right\rangle
$$

- Rewrite commutant condition after converting operators to states

$$
\left[\widehat{h}_{j, j+1}, \widehat{Q}_{\alpha}\right]=0 \Longleftrightarrow \overbrace{\left(\widehat{h}_{j, j+1} \otimes \mathbb{1}-\mathbb{1} \otimes \widehat{h}_{j, j+1}^{T}\right)}^{\widehat{\mathcal{L}}_{j, j+1}:=} \mid \widehat{Q}_{\alpha})=0 .
$$

Symmetries are Ground States!

- Operators on \mathcal{H} are states in a doubled Hilbert space $\mathcal{H} \otimes \mathcal{H}$

$$
\left.\widehat{O}=\sum_{\mu, \nu} o_{\mu \nu}\left|v_{\mu}\right\rangle\left\langle v_{\nu}\right| \Longleftrightarrow \mid \widehat{O}\right)=\sum_{\mu, \nu} o_{\mu \nu}\left|v_{\mu}\right\rangle \otimes\left|v_{\nu}\right\rangle
$$

- Rewrite commutant condition after converting operators to states

$$
\left[\widehat{h}_{j, j+1}, \widehat{Q}_{\alpha}\right]=0 \Longleftrightarrow \overbrace{\left(\hat{h}_{j, j+1} \otimes \mathbb{1}-\mathbb{1} \otimes \hat{h}_{j, j+1}^{T}\right)}^{\widehat{\mathcal{L}}_{j, j+1}:=} \mid \widehat{Q}_{\alpha})=0 .
$$

- Frustration-free ground states of a local "super-Hamiltonian" 10

$$
\left.\left.\widehat{\mathcal{P}}:=\sum_{j} \widehat{\mathcal{L}}_{j, j+1}^{\dagger} \widehat{\mathcal{L}}_{j, j+1}, \quad \widehat{\mathcal{P}} \mid \widehat{Q}_{\alpha}\right)=0 \Longleftrightarrow \widehat{\mathcal{L}}_{j, j+1} \mid \widehat{Q}_{\alpha}\right)=0 \forall j,
$$

[^12]
Symmetries are Ground States!

- Operators on \mathcal{H} are states in a doubled Hilbert space $\mathcal{H} \otimes \mathcal{H}$

$$
\left.\widehat{O}=\sum_{\mu, \nu} o_{\mu \nu}\left|v_{\mu}\right\rangle\left\langle v_{\nu}\right| \Longleftrightarrow \mid \widehat{O}\right)=\sum_{\mu, \nu} o_{\mu \nu}\left|v_{\mu}\right\rangle \otimes\left|v_{\nu}\right\rangle
$$

- Rewrite commutant condition after converting operators to states

$$
\left[\widehat{h}_{j, j+1}, \widehat{Q}_{\alpha}\right]=0 \Longleftrightarrow \overbrace{\left(\widehat{h}_{j, j+1} \otimes \mathbb{1}-\mathbb{1} \otimes \hat{h}_{j, j+1}^{T}\right)}^{\widehat{\mathcal{L}}_{j, j+1}:=} \mid \widehat{Q}_{\alpha})=0 .
$$

- Frustration-free ground states of a local "super-Hamiltonian" 10

$$
\left.\left.\widehat{\mathcal{P}}:=\sum_{j} \widehat{\mathcal{L}}_{j, j+1}^{\dagger} \widehat{\mathcal{L}}_{j, j+1}, \quad \widehat{\mathcal{P}} \mid \widehat{Q}_{\alpha}\right)=0 \Longleftrightarrow \widehat{\mathcal{L}}_{j, j+1} \mid \widehat{Q}_{\alpha}\right)=0 \quad \forall j,
$$

- Number of ground states $=\operatorname{dim}(\mathcal{C})$.
${ }^{10}$ SM, O.I.Motrunich (2023)

Z_{2} Symmetry = Ising Ferromagnet

- Bond Algebra: $\mathcal{A}_{Z_{2}}=\left\langle\left\langle\left\{X_{j} X_{j+1}\right\},\left\{Z_{j}\right\}\right\rangle\right\rangle$
${ }^{11}$ Spontaneous Symmetry Breaking: $Z_{2} \times Z_{2} \rightarrow Z_{2}$

Z_{2} Symmetry = Ising Ferromagnet

- Bond Algebra: $\mathcal{A}_{Z_{2}}=\left\langle\left\langle\left\{X_{j} X_{j+1}\right\},\left\{Z_{j}\right\}\right\rangle\right\rangle$
- Super-Hamiltonian $\widehat{\mathcal{P}}_{Z_{2}}$ composed of commuting terms!

$$
\widehat{\mathcal{P}}_{Z_{2}}=C-\sum_{j} X_{j ; t} X_{j+1 ; t} X_{j ; b} X_{j+1 ; b}-\sum_{j} Z_{j ; t} Z_{j ; b}
$$

[^13]
Z_{2} Symmetry $=$ Ising Ferromagnet

- Bond Algebra: $\mathcal{A}_{Z_{2}}=\left\langle\left\langle\left\{X_{j} X_{j+1}\right\},\left\{Z_{j}\right\}\right\rangle\right\rangle$
- Super-Hamiltonian $\widehat{\mathcal{P}}_{Z_{2}}$ composed of commuting terms!

$$
\widehat{\mathcal{P}}_{Z_{2}}=C-\sum_{j} X_{j ; t} X_{j+1 ; t} X_{j ; b} X_{j+1 ; b}-\sum_{j} Z_{j ; t} Z_{j ; b}
$$

- Define composite spins on rungs

$$
|\widetilde{\rightrightarrows}\rangle_{j}:=\left|\begin{array}{l}
\uparrow \\
\uparrow
\end{array}\right\rangle_{j}+\left|\begin{array}{l}
\downarrow \\
\downarrow
\end{array}\right\rangle_{j} \sim \mathbb{1}_{j}, \quad|\widetilde{F}\rangle_{j}:=\left|\begin{array}{l}
\uparrow \\
\uparrow
\end{array}\right\rangle_{j}-\left|\begin{array}{l}
\downarrow \\
\downarrow
\end{array}\right\rangle_{j} \sim Z_{j}
$$

[^14]
Z_{2} Symmetry = Ising Ferromagnet

- Bond Algebra: $\mathcal{A}_{Z_{2}}=\left\langle\left\langle\left\{X_{j} X_{j+1}\right\},\left\{Z_{j}\right\}\right\rangle\right\rangle$
- Super-Hamiltonian $\widehat{\mathcal{P}}_{Z_{2}}$ composed of commuting terms!

$$
\widehat{\mathcal{P}}_{Z_{2}}=C-\sum_{j} X_{j ; t} X_{j+1 ; t} X_{j ; b} X_{j+1 ; b}-\sum_{j} Z_{j ; t} Z_{j ; b}
$$

- Define composite spins on rungs

$$
|\widetilde{\rightrightarrows}\rangle_{j}:=\left|\begin{array}{l}
\uparrow \\
\uparrow
\end{array}\right\rangle_{j}+\left|\begin{array}{l}
\downarrow \\
\downarrow
\end{array}\right\rangle_{j} \sim \mathbb{1}_{j}, \quad|\widetilde{F}\rangle_{j}:=\left|\begin{array}{l}
\uparrow \\
\uparrow
\end{array}\right\rangle_{j}-\left|\begin{array}{l}
\downarrow \\
\downarrow
\end{array}\right\rangle_{j} \sim Z_{j}
$$

- Two degenerate ferromagnetic ground states ${ }^{11}=Z_{2}$ Symmetry

$$
|\widetilde{\rightarrow} \rightarrow \cdots \widetilde{\rightarrow}\rangle \sim \mathbb{1}, \quad|\leftleftarrows \leftleftarrows \ldots \widetilde{\leftarrow}\rangle \sim \prod_{j} Z_{j}
$$

[^15]
Z_{2} Symmetry = Ising Ferromagnet

- Bond Algebra: $\mathcal{A}_{Z_{2}}=\left\langle\left\langle\left\{X_{j} X_{j+1}\right\},\left\{Z_{j}\right\}\right\rangle\right\rangle$
- Super-Hamiltonian $\widehat{\mathcal{P}}_{Z_{2}}$ composed of commuting terms!

$$
\widehat{\mathcal{P}}_{Z_{2}}=C-\sum_{j} X_{j ; t} X_{j+1 ; t} X_{j ; b} X_{j+1 ; b}-\sum_{j} Z_{j ; t} Z_{j ; b}
$$

- Define composite spins on rungs

$$
|\widetilde{\rightarrow}\rangle_{j}:=\left|\begin{array}{l}
\uparrow \\
\uparrow
\end{array}\right\rangle_{j}+\left|\begin{array}{l}
\downarrow \\
\downarrow
\end{array}\right\rangle_{j} \sim \mathbb{1}_{j}, \quad|\widetilde{F}\rangle_{j}:=\left|\begin{array}{l}
\uparrow \\
\uparrow
\end{array}\right\rangle_{j}-\left|\begin{array}{l}
\downarrow \\
\downarrow
\end{array}\right\rangle_{j} \sim Z_{j}
$$

- Two degenerate ferromagnetic ground states ${ }^{11}=Z_{2}$ Symmetry

$$
|\widetilde{\rightarrow} \rightarrow \cdots \widetilde{\rightarrow}\rangle \sim \mathbb{1}, \quad|\leftleftarrows \leftleftarrows \ldots \widetilde{\leftarrow}\rangle \sim \prod_{j} Z_{j}
$$

- Commutant Algebra: $\mathcal{C}_{Z_{2}}=\operatorname{span}\left\{\mathbb{1}, \prod_{j} Z_{j}\right\}=\left\langle\left\langle\prod_{j} Z_{j}\right\rangle\right\rangle$

[^16]
U(1) Symmetry = Heisenberg Ferromagnet

- Bond Algebra: $\mathcal{A}_{U(1)}=\left\langle\left\langle\left\{X_{j} X_{j+1}+Y_{j} Y_{j+1}\right\},\left\{Z_{j}\right\}\right\rangle\right\rangle$

U(1) Symmetry $=$ Heisenberg Ferromagnet

- Bond Algebra: $\mathcal{A}_{U(1)}=\left\langle\left\langle\left\{X_{j} X_{j+1}+Y_{j} Y_{j+1}\right\},\left\{Z_{j}\right\}\right\rangle\right\rangle$
- Super-Hamiltonian $\widehat{\mathcal{P}}_{U_{(1)}}$ maps to ferromagnetic Heisenberg model in composite spin sector!

$$
\begin{aligned}
\widehat{\mathcal{P}}_{U(1)} \mid \text { low energy } & =\sum_{j}(|\widetilde{\rightarrow} \widetilde{\leftarrow}\rangle-|\widetilde{\Im}\rangle)(\langle\widetilde{\rightarrow} \widetilde{F}|-\langle\widetilde{\rightarrow} \widetilde{F}|)_{j, j+1} \\
& =C-\sum_{j} \vec{S}_{j} \cdot \vec{S}_{j+1}
\end{aligned}
$$

U(1) Symmetry $=$ Heisenberg Ferromagnet

- Bond Algebra: $\mathcal{A}_{U(1)}=\left\langle\left\langle\left\{X_{j} X_{j+1}+Y_{j} Y_{j+1}\right\},\left\{Z_{j}\right\}\right\rangle\right.$
- Super-Hamiltonian $\widehat{\mathcal{P}}_{U_{(1)}}$ maps to ferromagnetic Heisenberg model in composite spin sector!

$$
\begin{aligned}
\widehat{\mathcal{P}}_{U(1)} \mid \text { low energy } & =\sum_{j}(|\widetilde{\rightarrow} \leftleftarrows\rangle-|\widetilde{\Im}\rangle)(\langle\widetilde{\rightarrow} \leftleftarrows|-\langle\widetilde{\rightarrow} \leftleftarrows|)_{j, j+1} \\
& =C-\sum_{j} \vec{S}_{j} \cdot \vec{S}_{j+1}
\end{aligned}
$$

- $(L+1)$ ferromagnetic ground states $=U(1)$ Symmetry

$$
\begin{aligned}
|\widetilde{\rightarrow} \cdots \widetilde{\rightarrow}\rangle & \sim \mathbb{1}, \quad \sum_{j} S_{j}^{-}|\widetilde{\rightarrow} \cdots \widetilde{\rightarrow}\rangle \sim \sum_{j} Z_{j}=Z_{\text {tot }} \\
\left(\sum_{j} S_{j}^{-}\right)^{n}|\Im \rightarrow \widetilde{\rightarrow}\rangle & \sim F\left(\left\{Z_{\text {tot }}^{m}, m \leq n\right\}\right), \quad|\leftleftarrows \cdots \widetilde{F}\rangle \sim \prod_{j} Z_{j}
\end{aligned}
$$

U(1) Symmetry $=$ Heisenberg Ferromagnet

- Bond Algebra: $\mathcal{A}_{U(1)}=\left\langle\left\langle\left\{X_{j} X_{j+1}+Y_{j} Y_{j+1}\right\},\left\{Z_{j}\right\}\right\rangle\right.$
- Super-Hamiltonian $\widehat{\mathcal{P}}_{U_{(1)}}$ maps to ferromagnetic Heisenberg model in composite spin sector!

$$
\begin{aligned}
\widehat{\mathcal{P}}_{U(1)} \mid \text { low energy } & =\sum_{j}(|\widetilde{\rightarrow} \leftleftarrows\rangle-|\widetilde{\Im}\rangle)(\langle\widetilde{\rightarrow} \leftleftarrows|-\langle\widetilde{\rightarrow} \widetilde{\leftarrow}|)_{j, j+1} \\
& =C-\sum_{j} \vec{S}_{j} \cdot \vec{S}_{j+1}
\end{aligned}
$$

- $(L+1)$ ferromagnetic ground states $=U(1)$ Symmetry

$$
\begin{aligned}
&|\widetilde{\rightarrow} \cdots \widetilde{\rightarrow}\rangle \sim \mathbb{1}, \quad \sum_{j} S_{j}^{-}|\widetilde{\rightarrow} \cdots \widetilde{\rightarrow}\rangle \sim \sum_{j} Z_{j}=Z_{\text {tot }} \\
&\left(\sum_{j} S_{j}^{-}\right)^{n}|\widetilde{\rightarrow} \cdots \widetilde{\rightarrow}\rangle \sim F\left(\left\{Z_{\text {tot }}^{m}, m \leq n\right\}\right), \quad|\leftleftarrows \cdots \widetilde{\leftarrow}\rangle \sim \prod_{j} Z_{j}
\end{aligned}
$$

- $\mathcal{C}_{U(1)}=\operatorname{span}\left\{1, Z_{\text {tot }}, Z_{\text {tot }}^{2}, \cdots, Z_{\text {tot }}^{L}\right\}=\left\langle\left\langle Z_{\text {tot }}\right\rangle\right\rangle=\left\langle\left\langle\left\{\prod_{j} e^{i \alpha Z_{j}}\right\}\right\rangle\right\rangle$

U(1) Symmetry $=$ Heisenberg Ferromagnet

- Bond Algebra: $\mathcal{A}_{U(1)}=\left\langle\left\langle\left\{X_{j} X_{j+1}+Y_{j} Y_{j+1}\right\},\left\{Z_{j}\right\}\right\rangle\right.$
- Super-Hamiltonian $\widehat{\mathcal{P}}_{U_{(1)}}$ maps to ferromagnetic Heisenberg model in composite spin sector!

$$
\begin{aligned}
\widehat{\mathcal{P}}_{U(1)} \mid \text { low energy } & =\sum_{j}(|\widetilde{\rightarrow} \leftleftarrows\rangle-|\widetilde{\Im}\rangle)(\langle\widetilde{\rightarrow} \leftleftarrows|-\langle\widetilde{\rightarrow} \widetilde{\leftarrow}|)_{j, j+1} \\
& =C-\sum_{j} \vec{S}_{j} \cdot \vec{S}_{j+1}
\end{aligned}
$$

- $(L+1)$ ferromagnetic ground states $=U(1)$ Symmetry

$$
\begin{gathered}
|\widetilde{\rightarrow} \cdots \widetilde{\rightarrow}\rangle \sim \mathbb{1}, \quad \sum_{j} S_{j}^{-}|\widetilde{\rightarrow} \cdots \widetilde{\rightarrow}\rangle \sim \sum_{j} Z_{j}=Z_{\text {tot }} \\
\left(\sum_{j} S_{j}^{-}\right)^{n}|\widetilde{\rightarrow} \cdots \widetilde{\rightarrow}\rangle \sim F\left(\left\{Z_{\text {tot }}^{m}, m \leq n\right\}\right), \quad|\leftarrow \cdots \widetilde{F}\rangle \sim \prod_{j} Z_{j}
\end{gathered}
$$

- $\mathcal{C}_{U(1)}=\operatorname{span}\left\{1, Z_{\text {tot }}, Z_{\text {tot }}^{2}, \cdots, Z_{\text {tot }}^{L}\right\}=\left\langle\left\langle Z_{\text {tot }}\right\rangle\right\rangle=\left\langle\left\langle\left\{\prod_{j} e^{i \alpha Z_{j}}\right\}\right\rangle\right\rangle$
- Generalization: $S U(q)$ symmetry $=S O\left(q^{2}\right)$ ferromagnet.

Approximate Symmetries

Ground States $=$ Exact Symmetries Low-Energy Excitations = Approximate Symmetries?

${ }^{12}$ X.Chen, T.Zhou (2019); C.Sünderhauf et al. (2019); D.Bernard, T.Jin (2019)

Approximate Symmetries

Ground States $=$ Exact Symmetries Low-Energy Excitations = Approximate Symmetries?

- Made precise using a "Brownian Circuit" 12

$$
\begin{aligned}
\widehat{O}(t+\Delta t) & =e^{i \sum_{j} J_{j}^{(t)} \widehat{h}_{j, j+1} \Delta t} \widehat{O}(t) e^{-i \sum_{j} J_{j}^{(t)} \widehat{h}_{j, j+1} \Delta t} \\
P\left(J_{j}^{(t)}\right) & \sim e^{-\left(J_{j}^{(t)}\right)^{2} / \sigma^{2}}, \quad \sigma^{2}=2 \kappa / \Delta t,
\end{aligned}
$$

[^17]
Approximate Symmetries

Ground States $=$ Exact Symmetries
 Low-Energy Excitations = Approximate Symmetries?

- Made precise using a "Brownian Circuit" 12

$$
\begin{aligned}
\widehat{O}(t+\Delta t) & =e^{i \sum_{j} J_{j}^{(t)} \widehat{h}_{j, j+1} \Delta t} \widehat{O}(t) e^{-i \sum_{j} J_{j}^{(t)} \widehat{h}_{j, j+1} \Delta t} \\
P\left(J_{j}^{(t)}\right) & \sim e^{-\left(J_{j}^{(t)}\right)^{2} / \sigma^{2}}, \quad \sigma^{2}=2 \kappa / \Delta t
\end{aligned}
$$

- Ensemble-averaged behavior of operators as $\Delta t \rightarrow 0$

$$
\left.\left.\left.\left.\left.\frac{d}{d t} \right\rvert\, \overline{\widehat{O}(t)}\right)=-\kappa \sum_{j} \widehat{\mathcal{L}}_{j, j+1}^{\dagger} \widehat{\mathcal{L}}_{j, j+1} \mid \overline{\widehat{O}(t)}\right) \Longrightarrow \mid \overline{\widehat{O}(t)}\right)=e^{-\kappa \widehat{\mathcal{P}} t} \mid \widehat{O}(0)\right)
$$

[^18]
Approximate Symmetries

Ground States $=$ Exact Symmetries Low-Energy Excitations = Approximate Symmetries?

- Made precise using a "Brownian Circuit" 12

$$
\begin{aligned}
\widehat{O}(t+\Delta t) & =e^{i \sum_{j} J_{j}^{(t)} \widehat{h}_{j, j+1} \Delta t} \widehat{O}(t) e^{-i \sum_{j} J_{j}^{(t)} \widehat{h}_{j, j+1} \Delta t} \\
P\left(J_{j}^{(t)}\right) & \sim e^{-\left(J_{j}^{(t)}\right)^{2} / \sigma^{2}}, \quad \sigma^{2}=2 \kappa / \Delta t
\end{aligned}
$$

- Ensemble-averaged behavior of operators as $\Delta t \rightarrow 0$

$$
\left.\left.\left.\left.\left.\frac{d}{d t} \right\rvert\, \overline{\widehat{O}(t)}\right)=-\kappa \sum_{j} \widehat{\mathcal{L}}_{j, j+1}^{\dagger} \widehat{\mathcal{L}}_{j, j+1} \mid \overline{\widehat{O}(t)}\right) \Longrightarrow \mid \overline{\widehat{O}(t)}\right)=e^{-\kappa \widehat{\mathcal{P}} t} \mid \widehat{O}(0)\right)
$$

- Can be used to compute correlation functions

$$
\overline{C_{\widehat{B}, \widehat{A}}(t)}:=\overline{\operatorname{Tr}\left(\widehat{B}(0)^{\dagger} \widehat{A}(t)\right)}=(\widehat{B}(0) \mid \overline{\hat{A}(t)})=\left(\widehat{B}(0)\left|e^{-\kappa \widehat{\mathcal{P}} t}\right| \widehat{A}(0)\right)
$$

[^19]
Autocorrelation Functions

- Super-Hamiltonian spectrum: $\widehat{\mathcal{P}}\left|\lambda_{\mu}\right\rangle=p_{\mu}\left|\lambda_{\mu}\right\rangle$
- Autocorrelation functions

$$
\overline{C_{\widehat{A}}(t)}=\left(\widehat{A}(0)\left|e^{-\kappa \widehat{\mathcal{P}} t}\right| \widehat{A}(0)\right)=\sum_{\mu, p_{\mu}=0}\left|\left(\lambda_{\mu} \mid \widehat{A}\right)\right|^{2}+\sum_{\mu, p_{\mu}>0} e^{-p_{\mu} t}\left|\left(\lambda_{\mu} \mid \widehat{A}\right)\right|^{2}+\cdots
$$

[^20]
Autocorrelation Functions

- Super-Hamiltonian spectrum: $\widehat{\mathcal{P}}\left|\lambda_{\mu}\right\rangle=p_{\mu}\left|\lambda_{\mu}\right\rangle$
- Autocorrelation functions

$$
\overline{C_{\widehat{A}}(t)}=\left(\widehat{A}(0)\left|e^{-\kappa \widehat{\mathcal{P}} t}\right| \widehat{A}(0)\right)=\sum_{\mu, p_{\mu}=0}\left|\left(\lambda_{\mu} \mid \widehat{A}\right)\right|^{2}+\sum_{\mu, p_{\mu}>0} e^{-p_{\mu} t}\left|\left(\lambda_{\mu} \mid \widehat{A}\right)\right|^{2}+\cdots
$$

- "Steady state" value $\overline{C_{\widehat{A}}(\infty)}$ determined only by operators in \mathcal{C} (Symmetries) - fluctuations average out ${ }^{13}$

[^21]
Autocorrelation Functions

- Super-Hamiltonian spectrum: $\widehat{\mathcal{P}}\left|\lambda_{\mu}\right\rangle=p_{\mu}\left|\lambda_{\mu}\right\rangle$
- Autocorrelation functions

$$
\overline{C_{\widehat{A}}(t)}=\left(\widehat{A}(0)\left|e^{-\kappa \widehat{\mathcal{P}} t}\right| \widehat{A}(0)\right)=\sum_{\mu, p_{\mu}=0}\left|\left(\lambda_{\mu} \mid \widehat{A}\right)\right|^{2}+\sum_{\mu, p_{\mu}>0} e^{-p_{\mu} t}\left|\left(\lambda_{\mu} \mid \widehat{A}\right)\right|^{2}+\cdots
$$

- "Steady state" value $\overline{C_{\widehat{A}}(\infty)}$ determined only by operators in \mathcal{C} (Symmetries) - fluctuations average out ${ }^{13}$
- Approach to steady state controlled by low-energy excitations of $\widehat{\mathcal{P}}$.

[^22]
Autocorrelation Functions

- Super-Hamiltonian spectrum: $\widehat{\mathcal{P}}\left|\lambda_{\mu}\right\rangle=p_{\mu}\left|\lambda_{\mu}\right\rangle$
- Autocorrelation functions

$$
\overline{C_{\widehat{A}}(t)}=\left(\widehat{A}(0)\left|e^{-\kappa \widehat{\mathcal{P}} t}\right| \widehat{A}(0)\right)=\sum_{\mu, p_{\mu}=0}\left|\left(\lambda_{\mu} \mid \widehat{A}\right)\right|^{2}+\sum_{\mu, p_{\mu}>0} e^{-p_{\mu} t}\left|\left(\lambda_{\mu} \mid \widehat{A}\right)\right|^{2}+\cdots
$$

- "Steady state" value $\overline{C_{\widehat{A}}(\infty)}$ determined only by operators in \mathcal{C} (Symmetries) - fluctuations average out ${ }^{13}$
- Approach to steady state controlled by low-energy excitations of $\widehat{\mathcal{P}}$.
- Z_{2} Symmetry: $\widehat{\mathcal{P}}_{Z_{2}}$ composed of commuting terms \Longrightarrow Gapped \Longrightarrow Exponentially fast decay \Longrightarrow No slow-modes

[^23]
Autocorrelation Functions

- Super-Hamiltonian spectrum: $\widehat{\mathcal{P}}\left|\lambda_{\mu}\right\rangle=p_{\mu}\left|\lambda_{\mu}\right\rangle$
- Autocorrelation functions

$$
\overline{C_{\widehat{A}}(t)}=\left(\widehat{A}(0)\left|e^{-\kappa \widehat{\mathcal{P}} t}\right| \widehat{A}(0)\right)=\sum_{\mu, p_{\mu}=0}\left|\left(\lambda_{\mu} \mid \widehat{A}\right)\right|^{2}+\sum_{\mu, p_{\mu}>0} e^{-p_{\mu} t}\left|\left(\lambda_{\mu} \mid \widehat{A}\right)\right|^{2}+\cdots
$$

- "Steady state" value $\overline{C_{\widehat{A}}(\infty)}$ determined only by operators in \mathcal{C} (Symmetries) - fluctuations average out ${ }^{13}$
- Approach to steady state controlled by low-energy excitations of $\widehat{\mathcal{P}}$.
- Z_{2} Symmetry: $\widehat{\mathcal{P}}_{Z_{2}}$ composed of commuting terms \Longrightarrow Gapped \Longrightarrow Exponentially fast decay \Longrightarrow No slow-modes
- All discrete symmetries are gapped?

[^24]
Gapless Symmetries and Slow-Modes

${ }^{14}$ O.Ogunnaike, J.Feldmeier, J.Y.Lee (2023)
${ }^{15}$ SM, A.Prem, D.A.Huse, A.Chan (2020)

Gapless Symmetries and Slow-Modes

- $U(1)$ Symmetry: $\widehat{\mathcal{P}}_{U(1)} \sim C-\sum_{j}\left(\vec{S}_{j} \cdot \vec{S}_{j+1}\right)$

$$
|F\rangle=|\widetilde{\rightarrow} \cdots \widetilde{\rightarrow}\rangle \sim \mathbb{1}, \quad \sum_{j} S_{j}^{-}|F\rangle \sim \sum_{j} Z_{j}, \quad \cdots
$$

${ }^{15}$ SM, A.Prem, D.A.Huse, A.Chan (2020)

Gapless Symmetries and Slow-Modes

- $U(1)$ Symmetry: $\widehat{\mathcal{P}}_{U(1)} \sim C-\sum_{j}\left(\vec{S}_{j} \cdot \vec{S}_{j+1}\right)$

$$
|F\rangle=|\widetilde{\rightarrow} \cdots \widetilde{\rightarrow}\rangle \sim \mathbb{1}, \quad \sum_{j} S_{j}^{-}|F\rangle \sim \sum_{j} Z_{j}, \quad \cdots
$$

- Low-energy modes $=$ Spin-waves

$$
\begin{aligned}
& \left|\lambda_{k}\right\rangle \sim \sum_{j} e^{i k j} S_{j}^{-}|F\rangle \sim \sum_{j} e^{i k j} Z_{j}, \quad k \in \frac{2 \pi}{L} \mathbb{Z} \\
& \mathcal{P}_{U(1)}\left|\lambda_{k}\right\rangle=32 \kappa \sin ^{2}\left(\frac{k}{2}\right)\left|\lambda_{k}\right\rangle \sim 8 \kappa k^{2}\left|\lambda_{k}\right\rangle
\end{aligned}
$$

[^25]
Gapless Symmetries and Slow-Modes

- $U(1)$ Symmetry: $\widehat{\mathcal{P}}_{U(1)} \sim C-\sum_{j}\left(\vec{S}_{j} \cdot \vec{S}_{j+1}\right)$

$$
|F\rangle=|\widetilde{\rightarrow} \cdots \widetilde{\rightarrow}\rangle \sim \mathbb{1}, \quad \sum_{j} S_{j}^{-}|F\rangle \sim \sum_{j} Z_{j}, \quad \cdots
$$

- Low-energy modes $=$ Spin-waves

$$
\begin{aligned}
& \left|\lambda_{k}\right\rangle \sim \sum_{j} e^{i k j} S_{j}^{-}|F\rangle \sim \sum_{j} e^{i k j} Z_{j}, \quad k \in \frac{2 \pi}{L} \mathbb{Z} \\
& \mathcal{P}_{U(1)}\left|\lambda_{k}\right\rangle=32 \kappa \sin ^{2}\left(\frac{k}{2}\right)\left|\lambda_{k}\right\rangle \sim 8 \kappa k^{2}\left|\lambda_{k}\right\rangle
\end{aligned}
$$

- Can recover diffusion! ${ }^{14}$

$$
\overline{\left(Z_{j^{\prime}}(0) \mid Z_{j}(t)\right)} \stackrel{\kappa t \gg 1}{\approx} \int \frac{\mathrm{~d} k}{2 \pi} e^{-8 \kappa k^{2} t} e^{i k\left(j-j^{\prime}\right)}=\frac{e^{-\frac{\left(j-j^{\prime}\right)^{2}}{32 \kappa t}}}{\sqrt{32 \pi \kappa t}}
$$

[^26]
Gapless Symmetries and Slow-Modes

- $U(1)$ Symmetry: $\widehat{\mathcal{P}}_{U(1)} \sim C-\sum_{j}\left(\vec{S}_{j} \cdot \vec{S}_{j+1}\right)$

$$
|F\rangle=|\widetilde{\rightarrow} \cdots \widetilde{\rightarrow}\rangle \sim \mathbb{1}, \quad \sum_{j} S_{j}^{-}|F\rangle \sim \sum_{j} Z_{j}, \quad \cdots
$$

- Low-energy modes $=$ Spin-waves

$$
\begin{aligned}
& \left|\lambda_{k}\right\rangle \sim \sum_{j} e^{i k j} S_{j}^{-}|F\rangle \sim \sum_{j} e^{i k j} Z_{j}, \quad k \in \frac{2 \pi}{L} \mathbb{Z} \\
& \mathcal{P}_{U(1)}\left|\lambda_{k}\right\rangle=32 \kappa \sin ^{2}\left(\frac{k}{2}\right)\left|\lambda_{k}\right\rangle \sim 8 \kappa k^{2}\left|\lambda_{k}\right\rangle
\end{aligned}
$$

- Can recover diffusion! ${ }^{14}$

$$
\overline{\left(Z_{j^{\prime}}(0) \mid Z_{j}(t)\right)} \kappa \stackrel{\otimes 1}{\approx} \frac{\mathrm{~d} k}{2 \pi} e^{-8 \kappa k^{2} t} e^{i k\left(j-j^{\prime}\right)}=\frac{e^{-\frac{\left(j-j^{\prime}\right)^{2}}{32 \kappa t}}}{\sqrt{32 \pi \kappa t}}
$$

- $S U(q)$ symmetry: $S O\left(q^{2}\right)$ ferromagnet has spin-waves \Longrightarrow Diffusion

[^27]
Gapless Symmetries and Slow-Modes

- $U(1)$ Symmetry: $\widehat{\mathcal{P}}_{U(1)} \sim C-\sum_{j}\left(\vec{S}_{j} \cdot \vec{S}_{j+1}\right)$

$$
|F\rangle=|\widetilde{\rightarrow} \cdots \widetilde{\rightarrow}\rangle \sim \mathbb{1}, \quad \sum_{j} S_{j}^{-}|F\rangle \sim \sum_{j} Z_{j}, \quad \cdots
$$

- Low-energy modes $=$ Spin-waves

$$
\begin{aligned}
& \left|\lambda_{k}\right\rangle \sim \sum_{j} e^{i k j} S_{j}^{-}|F\rangle \sim \sum_{j} e^{i k j} Z_{j}, \quad k \in \frac{2 \pi}{L} \mathbb{Z} \\
& \mathcal{P}_{U(1)}\left|\lambda_{k}\right\rangle=32 \kappa \sin ^{2}\left(\frac{k}{2}\right)\left|\lambda_{k}\right\rangle \sim 8 \kappa k^{2}\left|\lambda_{k}\right\rangle
\end{aligned}
$$

- Can recover diffusion! ${ }^{14}$

$$
\overline{\left(Z_{j^{\prime}}(0) \mid Z_{j}(t)\right)} \kappa \stackrel{\approx}{\approx} \int \frac{\mathrm{d} k}{2 \pi} e^{-8 \kappa k^{2} t} e^{i k\left(j-j^{\prime}\right)}=\frac{e^{-\frac{\left(j-j^{\prime}\right)^{2}}{32 \kappa t}}}{\sqrt{32 \pi \kappa t}}
$$

- $S U(q)$ symmetry: $S O\left(q^{2}\right)$ ferromagnet has spin-waves \Longrightarrow Diffusion
- Generalization: Dipole symmetry, ${ }^{15}$ low-energy modes $\sim k^{4}$, autocorrelation decay $\sim t^{-1 / 4} \Longrightarrow$ Subdiffusion

[^28]
New View on Symmetries

New View on Symmetries

- Symmetries \Longleftrightarrow Building blocks $\left\{\hat{h}_{j, j+1}\right\}$ for families of Hamiltonians

New View on Symmetries

- Symmetries \Longleftrightarrow Building blocks $\left\{\hat{h}_{j, j+1}\right\}$ for families of Hamiltonians
- \mathcal{A} : Generated by a set of local operators \mathcal{C} : Set of operators that commute with \mathcal{A}.
- $\mathcal{C}=$ Ground states of super-Hamiltonian $\widehat{\mathcal{P}}$, which contains info on slow-modes

All Operators on \mathscr{H}

New View on Symmetries

- Symmetries \Longleftrightarrow Building blocks $\left\{\hat{h}_{j, j+1}\right\}$ for families of Hamiltonians
- \mathcal{A} : Generated by a set of local operators \mathcal{C} : Set of operators that commute with \mathcal{A}.
- $\mathcal{C}=$ Ground states of super-Hamiltonian $\widehat{\mathcal{P}}$, which contains info on slow-modes

- Conventional approach: Guess structure of symmetries - equivalent to imposing restrictions on symmetries in \mathcal{C} directly.

New View on Symmetries

- Symmetries \Longleftrightarrow Building blocks $\left\{\hat{h}_{j, j+1}\right\}$ for families of Hamiltonians
- \mathcal{A} : Generated by a set of local operators \mathcal{C} : Set of operators that commute with \mathcal{A}.
- $\mathcal{C}=$ Ground states of super-Hamiltonian $\widehat{\mathcal{P}}$, which contains info on slow-modes

- Conventional approach: Guess structure of symmetries - equivalent to imposing restrictions on symmetries in \mathcal{C} directly.
- Our approach: Derive symmetries in \mathcal{C} systematically with locality requirement on family of Hamiltonians in \mathcal{A}.

New View on Symmetries

- Symmetries \Longleftrightarrow Building blocks $\left\{\hat{h}_{j, j+1}\right\}$ for families of Hamiltonians
- \mathcal{A} : Generated by a set of local operators \mathcal{C} : Set of operators that commute with \mathcal{A}.
- $\mathcal{C}=$ Ground states of super-Hamiltonian $\widehat{\mathcal{P}}$, which contains info on slow-modes

- Conventional approach: Guess structure of symmetries - equivalent to imposing restrictions on symmetries in \mathcal{C} directly.
- Our approach: Derive symmetries in \mathcal{C} systematically with locality requirement on family of Hamiltonians in \mathcal{A}.

No explicit restriction on the structure of symmetries in \mathcal{C} : Novel unconventional symmetries!

Unconventional Symmetries: Weak Ergodicity Breaking

Hilbert Space Fragmentation

- $t-J_{z}$ Hamiltonian: ${ }^{16}$ hopping with two species of particles,

$$
\hat{h}_{j, j+1}:\{|\uparrow 0\rangle \leftrightarrow|0 \uparrow\rangle,|\downarrow 0\rangle \leftrightarrow|0 \downarrow\rangle\}_{j, j+1}
$$

[^29]
Hilbert Space Fragmentation

- $t-J_{z}$ Hamiltonian: ${ }^{16}$ hopping with two species of particles,

$$
\hat{h}_{j, j+1}:\{|\uparrow 0\rangle \leftrightarrow|0 \uparrow\rangle,|\downarrow 0\rangle \leftrightarrow|0 \downarrow\rangle\}_{j, j+1}
$$

- Full pattern of spins $(\uparrow$ or \downarrow) preserved \Longrightarrow Exp. many blocks

$$
|0 \uparrow \downarrow 0 \downarrow \uparrow 0\rangle \longleftrightarrow|0 \uparrow \uparrow 0 \downarrow \downarrow 0\rangle
$$

[^30]
Hilbert Space Fragmentation

- $t-J_{z}$ Hamiltonian: ${ }^{16}$ hopping with two species of particles,

$$
\hat{h}_{j, j+1}:\{|\uparrow 0\rangle \leftrightarrow|0 \uparrow\rangle,|\downarrow 0\rangle \leftrightarrow|0 \downarrow\rangle\}_{j, j+1}
$$

- Full pattern of spins $(\uparrow$ or \downarrow) preserved \Longrightarrow Exp. many blocks

$$
|0 \uparrow \downarrow 0 \downarrow \uparrow 0\rangle \leftrightarrow|0 \uparrow \uparrow 0 \downarrow \downarrow 0\rangle
$$

- Construct super-Hamiltonian corresponding to $\mathcal{A}_{t-J_{z}}=\left\langle\left\langle\left\{\widehat{h}_{j, j+1}\right\}\right\rangle\right\rangle$.

$$
\widehat{\mathcal{P}}_{t-J_{z}} \sim \sum_{j, \sigma \in\{\uparrow, \downarrow\}}(|\tilde{\sigma} \tilde{0}\rangle-|\tilde{0} \tilde{\sigma}\rangle)(\langle\tilde{\sigma} \tilde{0}|-\langle\tilde{0} \tilde{\sigma}|)_{j, j+1}
$$

[^31]
Hilbert Space Fragmentation

- $t-J_{z}$ Hamiltonian: ${ }^{16}$ hopping with two species of particles,

$$
\hat{h}_{j, j+1}:\{|\uparrow 0\rangle \leftrightarrow|0 \uparrow\rangle,|\downarrow 0\rangle \leftrightarrow|0 \downarrow\rangle\}_{j, j+1}
$$

- Full pattern of spins $(\uparrow$ or \downarrow) preserved \Longrightarrow Exp. many blocks

$$
|0 \uparrow \downarrow 0 \downarrow \uparrow 0\rangle \leftrightarrow|0 \uparrow \uparrow 0 \downarrow \downarrow 0\rangle
$$

- Construct super-Hamiltonian corresponding to $\mathcal{A}_{t-J_{z}}=\left\langle\left\langle\left\{\widehat{h}_{j, j+1}\right\}\right\rangle\right\rangle$.

$$
\widehat{\mathcal{P}}_{t-J_{z}} \sim \sum_{j, \sigma \in\{\uparrow, \downarrow\}}(|\tilde{\sigma} \tilde{0}\rangle-|\tilde{0} \tilde{\sigma}\rangle)(\langle\tilde{\sigma} \tilde{0}|-\langle\tilde{0} \tilde{\sigma}|)_{j, j+1}
$$

- Exponentially many ground states, $\operatorname{dim}\left(\mathcal{C}_{t-J_{z}}\right)=2^{L+1}-1!^{17}$

$$
N^{\sigma_{1} \sigma_{2} \cdots \sigma_{k}}=\sum_{j_{1}<j_{2}<\cdots<j_{k}} N_{j_{1}}^{\sigma_{1}} N_{j_{2}}^{\sigma_{2}} \cdots N_{j_{k}}^{\sigma_{k}}, \quad \sigma_{j} \in\{\uparrow, \downarrow\}
$$

[^32]
Hilbert Space Fragmentation

- $t-J_{z}$ Hamiltonian: ${ }^{16}$ hopping with two species of particles,

$$
\hat{h}_{j, j+1}:\{|\uparrow 0\rangle \leftrightarrow|0 \uparrow\rangle,|\downarrow 0\rangle \leftrightarrow|0 \downarrow\rangle\}_{j, j+1}
$$

- Full pattern of spins $(\uparrow$ or \downarrow) preserved \Longrightarrow Exp. many blocks

$$
|0 \uparrow \downarrow 0 \downarrow \uparrow 0\rangle \leftrightarrow|0 \uparrow \uparrow 0 \downarrow \downarrow 0\rangle
$$

- Construct super-Hamiltonian corresponding to $\mathcal{A}_{t-J_{z}}=\left\langle\left\langle\left\{\widehat{h}_{j, j+1}\right\}\right\rangle\right\rangle$.

$$
\widehat{\mathcal{P}}_{t-J_{z}} \sim \sum_{j, \sigma \in\{\uparrow, \downarrow\}}(|\tilde{\sigma} \tilde{0}\rangle-|\tilde{0} \tilde{\sigma}\rangle)(\langle\tilde{\sigma} \tilde{0}|-\langle\tilde{0} \tilde{\sigma}|)_{j, j+1}
$$

- Exponentially many ground states, $\operatorname{dim}\left(\mathcal{C}_{t-J_{z}}\right)=2^{L+1}-1!^{17}$

$$
N^{\sigma_{1} \sigma_{2} \cdots \sigma_{k}}=\sum_{j_{1}<j_{2}<\cdots<j_{k}} N_{j_{1}}^{\sigma_{1}} N_{j_{2}}^{\sigma_{2}} \cdots N_{j_{k}}^{\sigma_{k}}, \quad \sigma_{j} \in\{\uparrow, \downarrow\}
$$

- $\left\{N^{\sigma_{1} \cdots \sigma_{k}}\right\}$ functionally independent of two obvious $U(1)$ symmetries
$N^{\uparrow}=\sum_{j} N_{j}^{\uparrow}$ and $N^{\downarrow}=\sum_{j} N_{j}^{\downarrow}$

[^33]
Quantum Many-Body Scars

- QMBS eigenstates: $H\left|\psi_{n}\right\rangle=E_{n}\left|\psi_{n}\right\rangle \Longleftrightarrow\left[H,\left|\psi_{n}\right\rangle\left\langle\psi_{n}\right|\right]=0$.

Quantum Many-Body Scars

- QMBS eigenstates: $H\left|\psi_{n}\right\rangle=E_{n}\left|\psi_{n}\right\rangle \Longleftrightarrow\left[H,\left|\psi_{n}\right\rangle\left\langle\psi_{n}\right|\right]=0$.
- $\mathcal{C}_{\text {scar }}=\left\langle\left\langle\mid \psi_{n}\right\rangle\left\langle\psi_{n} \mid\right\rangle\right\rangle$ is a valid symmetry algebra if there exists a corresponding locally-generated $\mathcal{A}_{\text {scar }}$.

Quantum Many-Body Scars

- QMBS eigenstates: $H\left|\psi_{n}\right\rangle=E_{n}\left|\psi_{n}\right\rangle \Longleftrightarrow\left[H,\left|\psi_{n}\right\rangle\left\langle\psi_{n}\right|\right]=0$.
- $\mathcal{C}_{\text {scar }}=\left\langle\left\langle\mid \psi_{n}\right\rangle\left\langle\psi_{n} \mid\right\rangle\right\rangle$ is a valid symmetry algebra if there exists a corresponding locally-generated $\mathcal{A}_{\text {scar }}$.
- Spin- $\frac{1}{2}$ ferromagnetic multiplet $\left\{\left|\Phi_{n, 0}\right\rangle=\left(S_{\text {tot }}^{-}\right)^{n}|F\rangle\right\},|F\rangle=|\uparrow \cdots \uparrow\rangle$

$$
\mathcal{A}_{\mathrm{scar}}:=\left\langle\left\langle\left\{R_{j, j+1} \sigma_{j+2}^{\alpha}, \sigma_{j-1}^{\alpha} R_{j, j+1}\right\}\right\rangle\right\rangle, \quad R_{j, j+1}=\frac{1}{4}-\vec{S}_{j} \cdot \vec{S}_{j+1} .
$$

Quantum Many-Body Scars

- QMBS eigenstates: $H\left|\psi_{n}\right\rangle=E_{n}\left|\psi_{n}\right\rangle \Longleftrightarrow\left[H,\left|\psi_{n}\right\rangle\left\langle\psi_{n}\right|\right]=0$.
- $\mathcal{C}_{\text {scar }}=\left\langle\left\langle\mid \psi_{n}\right\rangle\left\langle\psi_{n} \mid\right\rangle\right\rangle$ is a valid symmetry algebra if there exists a corresponding locally-generated $\mathcal{A}_{\text {scar }}$.
- Spin- $\frac{1}{2}$ ferromagnetic multiplet $\left\{\left|\Phi_{n, 0}\right\rangle=\left(S_{\text {tot }}^{-}\right)^{n}|F\rangle\right\},|F\rangle=|\uparrow \cdots \uparrow\rangle$

$$
\mathcal{A}_{\mathrm{scar}}:=\left\langle\left\langle\left\{R_{j, j+1} \sigma_{j+2}^{\alpha}, \sigma_{j-1}^{\alpha} R_{j, j+1}\right\}\right\rangle\right\rangle, \quad R_{j, j+1}=\frac{1}{4}-\vec{S}_{j} \cdot \vec{S}_{j+1} .
$$

- Super-Hamiltonian $\widehat{\mathcal{P}}_{\text {scar }}$ at low-energy is simply two decoupled ferromagnetic Heisenberg chains

$$
\widehat{\mathcal{P}}_{\text {scarl low-energy }} \sim C-\sum_{j}\left(\vec{S}_{j ; t} \cdot \vec{S}_{j+1 ; t}+\vec{S}_{j ; b} \cdot \vec{S}_{j+1 ; b}\right)
$$

Quantum Many-Body Scars

- QMBS eigenstates: $H\left|\psi_{n}\right\rangle=E_{n}\left|\psi_{n}\right\rangle \Longleftrightarrow\left[H,\left|\psi_{n}\right\rangle\left\langle\psi_{n}\right|\right]=0$.
- $\mathcal{C}_{\text {scar }}=\left\langle\left\langle\mid \psi_{n}\right\rangle\left\langle\psi_{n} \mid\right\rangle\right\rangle$ is a valid symmetry algebra if there exists a corresponding locally-generated $\mathcal{A}_{\text {scar }}$.
- Spin- $\frac{1}{2}$ ferromagnetic multiplet $\left\{\left|\Phi_{n, 0}\right\rangle=\left(S_{\text {tot }}^{-}\right)^{n}|F\rangle\right\},|F\rangle=|\uparrow \cdots \uparrow\rangle$

$$
\mathcal{A}_{\mathrm{scar}}:=\left\langle\left\langle\left\{R_{j, j+1} \sigma_{j+2}^{\alpha}, \sigma_{j-1}^{\alpha} R_{j, j+1}\right\}\right\rangle\right\rangle, \quad R_{j, j+1}=\frac{1}{4}-\vec{S}_{j} \cdot \vec{S}_{j+1} .
$$

- Super-Hamiltonian $\widehat{\mathcal{P}}_{\text {scar }}$ at low-energy is simply two decoupled ferromagnetic Heisenberg chains

$$
\widehat{\mathcal{P}}_{\text {scarllow-energy }} \sim C-\sum_{j}\left(\vec{S}_{j ; t} \cdot \vec{S}_{j+1 ; t}+\vec{S}_{j ; b} \cdot \vec{S}_{j+1 ; b}\right)
$$

- Ground states: $\left\{\left|\Phi_{n, 0}\right\rangle_{t} \otimes\left|\Phi_{m, 0}\right\rangle_{b}\right\} \Longrightarrow \mathcal{C}_{\text {scar }}=\left\langle\left\langle\left\{\left|\Phi_{n, 0}\right\rangle\left\langle\Phi_{m, 0}\right|\right\}\right\rangle\right\rangle$.

Quantum Many-Body Scars

- QMBS eigenstates: $H\left|\psi_{n}\right\rangle=E_{n}\left|\psi_{n}\right\rangle \Longleftrightarrow\left[H,\left|\psi_{n}\right\rangle\left\langle\psi_{n}\right|\right]=0$.
- $\mathcal{C}_{\text {scar }}=\left\langle\left\langle\mid \psi_{n}\right\rangle\left\langle\psi_{n} \mid\right\rangle\right\rangle$ is a valid symmetry algebra if there exists a corresponding locally-generated $\mathcal{A}_{\text {scar }}$.
- Spin- $\frac{1}{2}$ ferromagnetic multiplet $\left\{\left|\Phi_{n, 0}\right\rangle=\left(S_{\text {tot }}^{-}\right)^{n}|F\rangle\right\},|F\rangle=|\uparrow \cdots \uparrow\rangle$

$$
\mathcal{A}_{\mathrm{scar}}:=\left\langle\left\langle\left\{R_{j, j+1} \sigma_{j+2}^{\alpha}, \sigma_{j-1}^{\alpha} R_{j, j+1}\right\}\right\rangle\right\rangle, \quad R_{j, j+1}=\frac{1}{4}-\vec{S}_{j} \cdot \vec{S}_{j+1} .
$$

- Super-Hamiltonian $\widehat{\mathcal{P}}_{\text {scar }}$ at low-energy is simply two decoupled ferromagnetic Heisenberg chains

$$
\widehat{\mathcal{P}}_{\text {scarllow-energy }} \sim C-\sum_{j}\left(\vec{S}_{j ; t} \cdot \vec{S}_{j+1 ; t}+\vec{S}_{j ; b} \cdot \vec{S}_{j+1 ; b}\right)
$$

- Ground states: $\left\{\left|\Phi_{n, 0}\right\rangle_{t} \otimes\left|\Phi_{m, 0}\right\rangle_{b}\right\} \Longrightarrow \mathcal{C}_{\text {scar }}=\left\langle\left\langle\left\{\left|\Phi_{n, 0}\right\rangle\left\langle\Phi_{m, 0}\right|\right\}\right\rangle\right\rangle$.
- Projectors onto some special states can be viewed as symmetries! ${ }^{18}$

Unconventional Slow-Modes

${ }^{19}$ SM, O.I.Motrunich (2023)

${ }^{20}$ J.Feldmeier, W. Witczak-Krempa, M.Knap (2022)
${ }^{21}$ L.Gotta, SM, L.Mazza (2023)
${ }^{22}$ M.C.Bañuls, D.A.Huse, J.I.Cirac (2021)

Unconventional Slow-Modes

- $\widehat{\mathcal{P}}_{t-J_{z}}$ also maps onto ferromagnetic Heisenberg model!

[^34]
Unconventional Slow-Modes

- $\widehat{\mathcal{P}}_{t-J_{z}}$ also maps onto ferromagnetic Heisenberg model!
- Tedious semi-analytical analysis ${ }^{19}: \overline{C_{Z_{j}}(t)} \sim t^{-\gamma}, \gamma \in[0.25,0.3]$.

[^35]
Unconventional Slow-Modes

- $\widehat{\mathcal{P}}_{t-J_{z}}$ also maps onto ferromagnetic Heisenberg model!
- Tedious semi-analytical analysis ${ }^{19}: \overline{C_{Z_{j}}(t)} \sim t^{-\gamma}, \gamma \in[0.25,0.3]$.
- Tracer diffusion due to pattern conservation ${ }^{20}$

[^36]
Unconventional Slow-Modes

- $\widehat{\mathcal{P}}_{t-J_{z}}$ also maps onto ferromagnetic Heisenberg model!
- Tedious semi-analytical analysis ${ }^{19}: \overline{C_{Z_{j}}(t)} \sim t^{-\gamma}, \gamma \in[0.25,0.3]$.
- Tracer diffusion due to pattern conservation ${ }^{20}$
- Low-energy spectrum: Spin-waves $\left\{\left|\Phi_{m, k}\right\rangle=\left(S_{\text {tot }}^{-}\right)^{m} \sum_{j} e^{i k j} S_{j}^{-}|F\rangle\right\}$ Ground States: $\left|\Phi_{m, 0}\right\rangle_{t} \otimes\left|\Phi_{n, 0}\right\rangle_{b} \quad$ Excited States: $\left|\Phi_{m, k}\right\rangle_{t} \otimes\left|\Phi_{n, 0}\right\rangle_{b}$

[^37]
Unconventional Slow-Modes

- $\widehat{\mathcal{P}}_{t-J_{z}}$ also maps onto ferromagnetic Heisenberg model!
- Tedious semi-analytical analysis ${ }^{19}: \overline{C_{Z_{j}}(t)} \sim t^{-\gamma}, \gamma \in[0.25,0.3]$.
- Tracer diffusion due to pattern conservation ${ }^{20}$
- Low-energy spectrum: Spin-waves $\left\{\left|\Phi_{m, k}\right\rangle=\left(S_{\text {tot }}^{-}\right)^{m} \sum_{j} e^{i k j} S_{j}^{-}|F\rangle\right\}$ Ground States: $\left|\Phi_{m, 0}\right\rangle_{t} \otimes\left|\Phi_{n, 0}\right\rangle_{b} \quad$ Excited States: $\left|\Phi_{m, k}\right\rangle_{t} \otimes\left|\Phi_{n, 0}\right\rangle_{b}$
- Autocorrelation of $\widehat{A}=\left|\Phi_{n, k}\right\rangle\left\langle\Phi_{n, 0}\right|$ used to lower-bound fidelity

$$
\overline{\left|\left\langle\Phi_{n, k}(0) \mid \Phi_{n, k}(t)\right\rangle\right|^{2}} \geq|\overline{(\widehat{A}(0) \mid \widehat{A}(-t))}|^{2}=e^{-2 \kappa \sin ^{2}\left(\frac{k}{2}\right) t} \sim e^{-\frac{c t}{L^{2}}}
$$

[^38]
Unconventional Slow-Modes

- $\widehat{\mathcal{P}}_{t-J_{z}}$ also maps onto ferromagnetic Heisenberg model!
- Tedious semi-analytical analysis ${ }^{19}: \overline{C_{Z_{j}}(t)} \sim t^{-\gamma}, \gamma \in[0.25,0.3]$.
- Tracer diffusion due to pattern conservation ${ }^{20}$
- Low-energy spectrum: Spin-waves $\left\{\left|\Phi_{m, k}\right\rangle=\left(S_{\text {tot }}^{-}\right)^{m} \sum_{j} e^{i k j} S_{j}^{-}|F\rangle\right\}$ Ground States: $\left|\Phi_{m, 0}\right\rangle_{t} \otimes\left|\Phi_{n, 0}\right\rangle_{b} \quad$ Excited States: $\left|\Phi_{m, k}\right\rangle_{t} \otimes\left|\Phi_{n, 0}\right\rangle_{b}$
- Autocorrelation of $\widehat{A}=\left|\Phi_{n, k}\right\rangle\left\langle\Phi_{n, 0}\right|$ used to lower-bound fidelity

$$
\overline{\left|\left\langle\Phi_{n, k}(0) \mid \Phi_{n, k}(t)\right\rangle\right|^{2}} \geq|\overline{(\widehat{A}(0) \mid \widehat{A}(-t))}|^{2}=e^{-2 \kappa \sin ^{2}\left(\frac{k}{2}\right) t} \sim e^{-\frac{c t}{L^{2}}}
$$

- Asymptotic QMBS: ${ }^{21}$ Fidelity decay timescale diverges with L even though state orthogonal to QMBS - generically not possible! ${ }^{22}$

[^39]
Summary and Open Questions

- Local Building Blocks \Longleftrightarrow Symmetry \mathcal{A} : Local algebra \mathcal{C} : Commutant algebra
- Symmetries are ground states, slow-modes are low-energy excitations
- Locality restrictions on generators of \mathcal{A} instead of $\mathcal{C} \Longrightarrow$ Novel symmetries
- Non-invertible/categorical symmetries in this language? Dualities? ${ }^{23}$
- Symmetry $=$ Shadow of topological order $?^{24}$

- "Classification" of kinds of symmetries and slow-modes with locality?
- Approximate symmetries without exact symmetries? Stability to perturbations?

[^40]

All Operators on \mathscr{H}

Thank You!

Commutant Algebras: Block Structures (Informal)

- Symmetry Sectors: Basis in which all local terms $\left\{\widehat{h}_{j, j+1}\right\}$ simultaneously block diagonal!
- Entire families of Hamiltonians built from $\left\{\widehat{h}_{j, j+1}\right\}$ block-diagonal in same basis, including $H=\sum_{j} \widehat{h}_{j, j+1}$.
- $N_{\text {blocks }}=\sum_{\lambda} d_{\lambda}$ (hard, requires rep. theory) scales as $\operatorname{dim}(\mathcal{C})=$ Number of lin. ind. ops. in \mathcal{C} (easy, count solutions to $\left[\hat{h}_{j, j+1}, \widehat{O}\right]=0$)! ${ }^{25}$

$\boldsymbol{N}_{\text {blocks }} \sim \operatorname{dim}(\mathcal{C})$	Example
$\mathcal{O}(1)$	Discrete Global Symmetry
$\operatorname{poly}(L)$	Continuous Global Symmetry
$\exp (L)$	Fragmentation

- Symmetries and associated quantum number sectors uniquely determined from $\left\{\hat{h}_{j, j+1}\right\}$!

[^41]
Conventional Symmetries

Simple Examples: Abelian \mathcal{C}

- Abelian $\mathcal{C} \Longrightarrow d_{\lambda}=1, \quad N_{\text {blocks }}=\operatorname{dim}(\mathcal{C})$
- No symmetry: Generic $\left\{\hat{h}_{j, j+1}\right\}$

Solve for $\left[\hat{h}_{j, j+1}, \widehat{O}\right]=0$

$$
\mathcal{C}=\{\mathbb{1}\}, N_{\text {blocks }}=\operatorname{dim}(\mathcal{C})=1
$$

- Z_{2} Symmetry: $\left\{\hat{h}_{j, j+1}\right\}=\left\{X_{j} X_{j+1}, Z_{j}\right\}$.

Solve for $\left[X_{j} X_{j+1}, \widehat{O}\right]=0$ and $\left[Z_{j}, \widehat{O}\right]=0$

$$
\left.\mathcal{C}_{Z_{2}}=\operatorname{span}\left\{\mathbb{1}, \prod_{j} Z_{j}\right\}=\left\langle\prod_{j} Z_{j}\right\rangle\right\rangle, \quad N_{\text {blocks }}=\operatorname{dim}\left(\mathcal{C}_{Z_{2}}\right)=2
$$

- $U(1)$ Symmetry: $\left\{\hat{h}_{j, j+1}\right\}=\left\{X_{j} X_{j+1}+Y_{j} Y_{j+1}, Z_{j}\right\}$ Solve for $\left[X_{j} X_{j+1}+Y_{j} Y_{j+1}, \widehat{O}\right]=0$ and $\left[Z_{j}, \widehat{O}\right]=0$

$$
\begin{gathered}
\mathcal{C}_{U(1)}=\operatorname{span}\left\{\mathbb{1}, Z_{\text {tot }}, Z_{\text {tot }}^{2}, \cdots, Z_{\text {tot }}^{L}\right\}=\left\langle\left\langle Z_{\text {tot }}\right\rangle\right\rangle=\left\langle\left\langle\left\{\prod_{j} e^{i \alpha Z_{j}}\right\}\right\rangle\right\rangle, \\
Z_{\text {tot }}=\sum_{j} Z_{j}, \quad N_{\text {blocks }}=\operatorname{dim}\left(\mathcal{C}_{U(1)}\right)=L+1
\end{gathered}
$$

Simple Examples: Non-Abelian \mathcal{C}

- Non-Abelian $\mathcal{C} \Longrightarrow$ some $d_{\lambda}>1$
\Longrightarrow degeneracies
- $S U(2)$ Symmetry: $\left\{\hat{h}_{j, j+1}\right\}=\left\{\vec{S}_{j} \cdot \vec{S}_{j+1}\right\}$

$$
\begin{aligned}
\mathcal{C}_{S U(2)} & =\left\langle\left\langle S_{\mathrm{tot}}^{x}, S_{\mathrm{tot}}^{y}, S_{\mathrm{tot}}^{z}\right\rangle\right\rangle=\left\langle\left\langle\left\{\prod_{j} e^{i \alpha_{\mu} S_{j}^{\mu}}\right\}\right\rangle\right. \\
& =\operatorname{span}_{p, q, r}\left\{\left(S_{\mathrm{tot}}^{x}\right)^{p}\left(S_{\mathrm{tot}}^{y}\right)^{q}\left(S_{\mathrm{tot}}^{z}\right)^{r}\right\}
\end{aligned}
$$

- Block-diagonal form (Schur-Weyl duality):
$0 \leq \lambda \leq L / 2: S^{2}$ eigenvalues, $\quad d_{\lambda}=2 \lambda+1$: irreps of $\mathfrak{s u}(2)$
D_{λ} : irreps of $S_{L}, \quad N_{\text {blocks }} \sim \operatorname{dim}\left(\mathcal{C}_{S U(2)}\right) \sim \operatorname{poly}(L)$
- Another example: Stabilizer codes, e.g., toric code
- \mathcal{A} is the group algebra of the stabilizer group.
- \mathcal{C} consists of \mathcal{A} and the non-trivial logical operators.

Numerical Methods \& Systematic Searches

- Determining \mathcal{C} given \mathcal{A} : Hard in practice, need numerical methods. ${ }^{26}$
- Simultaneous block diagonalization of generators of \mathcal{A} - can extract operators in \mathcal{C}, their irreps, etc.
- \mathcal{C} frustration-free ground state space of a local superoperator "Hamiltonian" - efficient to solve (at least in one dimension).
- Systematic (numerical) scan through physically relevant families of Hamiltonians ${ }^{27}$
- Discovers unconventional $S U(2)_{q}$ quantum group symmetries, Strong Zero Modes ${ }^{28}$ in non-integrable models!

[^42]
[^0]: ${ }^{1}$ N.Seiberg, S.H.Shao (2021); C.Cordova, T.T.Dumitrescu, K.Intrilligator, S.-H.Shao (2022); J.McGreevy (2022); . . .
 ${ }^{2}$ Bernien et al. Nature (2017); Scherg et al. Nat. Comm. (2021); Mi et al. Science (2022); Morvan et al. Nature (2022),

[^1]: ${ }^{1}$ N.Seiberg, S.H.Shao (2021); C.Cordova, T.T.Dumitrescu, K.Intrilligator, S.-H.Shao (2022); J.McGreevy (2022);
 ${ }^{2}$ Bernien et al. Nature (2017); Scherg et al. Nat. Comm. (2021); Mi et al. Science (2022); Morvan et al. Nature (2022),

[^2]: ${ }^{1}$ N.Seiberg, S.H.Shao (2021); C.Cordova, T.T.Dumitrescu, K.Intrilligator, S.-H.Shao (2022); J.McGreevy (2022); . . .
 ${ }^{2}$ Bernien et al. Nature (2017); Scherg et al. Nat. Comm. (2021); Mi et al. Science (2022); Morvan et al. Nature (2022), . . .

[^3]: ${ }^{1}$ N.Seiberg, S.H.Shao (2021); C.Cordova, T.T.Dumitrescu, K.Intrilligator, S.-H.Shao (2022); J.McGreevy (2022); . . .
 ${ }^{2}$ Bernien et al. Nature (2017); Scherg et al. Nat. Comm. (2021); Mi et al. Science (2022); Morvan et al. Nature (2022), . . .

[^4]: ${ }^{3}$ J.M.Deutsch (1991), M.Srednicki (1994)
 ${ }^{4}$ SM, B.A.Bernevig, N.Regnault (2021)
 ${ }^{5}$ M.Serbyn, D.A.Abanin, Z.Papic (2020)

[^5]: ${ }^{3}$ J.M.Deutsch (1991), M.Srednicki (1994)
 ${ }^{4}$ SM, B.A.Bernevig, N.Regnault (2021)
 ${ }^{5}$ M.Serbyn, D.A.Abanin, Z.Papic (2020)

[^6]: ${ }^{3}$ J.M.Deutsch (1991), M.Srednicki (1994)
 ${ }^{4}$ SM, B.A.Bernevig, N.Regnault (2021)
 ${ }^{5}$ M.Serbyn, D.A.Abanin, Z.Papic (2020)

[^7]: ${ }^{3}$ J.M.Deutsch (1991), M.Srednicki (1994)
 ${ }^{4}$ SM, B.A.Bernevig, N.Regnault (2021)
 ${ }^{5}$ M.Serbyn, D.A.Abanin, Z.Papic (2020)

[^8]: ${ }^{3}$ J.M.Deutsch (1991), M.Srednicki (1994)
 ${ }^{4}$ SM, B.A.Bernevig, N.Regnault (2021)
 ${ }^{5}$ M.Serbyn, D.A.Abanin, Z.Papic (2020)

[^9]: ${ }^{6}$ SM, S.Rachel, B.A.Bernevig, N.Regnault (2017)
 ${ }^{7}$ P.Sala, T.Rakovszky, R.Verresen, M.Knap, F.Pollmann (2019); V.Khemani, M.Hermele, R.Nandkishore (2019)
 ${ }^{8}$ SM, A.Prem, R.Nandkishore, N.Regnault, B.A.Bernevig (2019)

[^10]: ${ }^{6}$ SM, S.Rachel, B.A.Bernevig, N.Regnault (2017)
 ${ }^{7}$ P.Sala, T.Rakovszky, R.Verresen, M.Knap, F.Pollmann (2019); V.Khemani, M.Hermele, R.Nandkishore (2019)
 ${ }^{8}$ SM, A.Prem, R.Nandkishore, N.Regnault, B.A.Bernevig (2019)

[^11]: ${ }^{6}$ SM, S.Rachel, B.A.Bernevig, N.Regnault (2017)
 ${ }^{7}$ P.Sala, T.Rakovszky, R.Verresen, M.Knap, F.Pollmann (2019); V.Khemani, M.Hermele, R.Nandkishore (2019)
 ${ }^{8}$ SM, A.Prem, R.Nandkishore, N.Regnault, B.A.Bernevig (2019)

[^12]: ${ }^{10}$ SM, O.I.Motrunich (2023)

[^13]: ${ }^{11}$ Spontaneous Symmetry Breaking: $Z_{2} \times Z_{2} \rightarrow Z_{2}$

[^14]: ${ }^{11}$ Spontaneous Symmetry Breaking: $Z_{2} \times Z_{2} \rightarrow Z_{2}$

[^15]: ${ }^{11}$ Spontaneous Symmetry Breaking: $Z_{2} \times Z_{2} \rightarrow Z_{2}$

[^16]: ${ }^{11}$ Spontaneous Symmetry Breaking: $Z_{2} \times Z_{2} \rightarrow Z_{2}$

[^17]: ${ }^{12}$ X.Chen, T.Zhou (2019); C.Sünderhauf et al. (2019); D.Bernard, T.Jin (2019)

[^18]: ${ }^{12}$ X.Chen, T.Zhou (2019); C.Sünderhauf et al. (2019); D.Bernard, T.Jin (2019)

[^19]: ${ }^{12}$ X. Chen, T.Zhou (2019); C.Sünderhauf et al. (2019); D.Bernard, T.Jin (2019)

[^20]: ${ }^{13}$ Value also known as Mazur bound, usually specified as time-average under a fixed Hamiltonian evolution

[^21]: ${ }^{13}$ Value also known as Mazur bound, usually specified as time-average under a fixed Hamiltonian evolution

[^22]: ${ }^{13}$ Value also known as Mazur bound, usually specified as time-average under a fixed Hamiltonian evolution

[^23]: ${ }^{13}$ Value also known as Mazur bound, usually specified as time-average under a fixed Hamiltonian evolution

[^24]: ${ }^{13}$ Value also known as Mazur bound, usually specified as time-average under a fixed Hamiltonian evolution

[^25]: ${ }^{14}$ O. Ogunnaike, J.Feldmeier, J.Y.Lee (2023)
 ${ }^{15}$ SM, A.Prem, D.A.Huse, A.Chan (2020)

[^26]: ${ }^{14}$ O.Ogunnaike, J.Feldmeier, J.Y.Lee (2023)
 ${ }^{15}$ SM, A.Prem, D.A.Huse, A.Chan (2020)

[^27]: ${ }^{14}$ O. Ogunnaike, J.Feldmeier, J.Y.Lee (2023)
 ${ }^{15}$ SM, A.Prem, D.A.Huse, A.Chan (2020)

[^28]: ${ }^{14}$ O.Ogunnaike, J.Feldmeier, J.Y.Lee (2023)
 ${ }^{15}$ SM, A.Prem, D.A.Huse, A.Chan (2020)

[^29]: ${ }^{16}$ T.Rakovszky, P.Sala, R.Verresen, M.Knap, F.Pollmann (2019)
 ${ }^{17}$ SM, O.I.Motrunich (2021)

[^30]: ${ }^{16}$ T.Rakovszky, P.Sala, R.Verresen, M.Knap, F.Pollmann (2019)
 ${ }^{17}$ SM, O.I.Motrunich (2021)

[^31]: ${ }^{16}$ T.Rakovszky, P.Sala, R.Verresen, M.Knap, F.Pollmann (2019)
 ${ }^{17}$ SM, O.I.Motrunich (2021)

[^32]: ${ }^{16}$ T.Rakovszky, P.Sala, R.Verresen, M.Knap, F.Pollmann (2019)
 ${ }^{17}$ SM, O.I.Motrunich (2021)

[^33]: ${ }^{16}$ T.Rakovszky, P.Sala, R.Verresen, M.Knap, F.Pollmann (2019)
 ${ }^{17}$ SM, O.I.Motrunich (2021)

[^34]: ${ }^{19}$ SM, O.I.Motrunich (2023)
 ${ }^{20}$ J.Feldmeier, W. Witczak-Krempa, M.Knap (2022)
 ${ }^{21}$ L.Gotta, SM, L.Mazza (2023)
 ${ }^{22}$ M.C.Bañuls, D.A.Huse, J.I.Cirac (2021)

[^35]: ${ }^{19}$ SM, O.I.Motrunich (2023)
 ${ }^{20}$ J.Feldmeier, W. Witczak-Krempa, M.Knap (2022)
 ${ }^{21}$ L. Gotta, SM, L.Mazza (2023)
 ${ }^{22}$ M.C.Bañuls, D.A.Huse, J.I.Cirac (2021)

[^36]: ${ }^{19}$ SM, O.I.Motrunich (2023)
 ${ }^{20}$ J.Feldmeier, W. Witczak-Krempa, M.Knap (2022)
 ${ }^{21}$ L. Gotta, SM, L.Mazza (2023)
 ${ }^{22}$ M.C.Bañuls, D.A.Huse, J.I.Cirac (2021)

[^37]: ${ }^{19}$ SM, O.I.Motrunich (2023)
 ${ }^{20}$ J.Feldmeier, W. Witczak-Krempa, M.Knap (2022)
 ${ }^{21}$ L. Gotta, SM, L.Mazza (2023)
 ${ }^{22}$ M.C.Bañuls, D.A.Huse, J.I.Cirac (2021)

[^38]: ${ }^{19}$ SM, O.I.Motrunich (2023)
 ${ }^{20}$ J.Feldmeier, W. Witczak-Krempa, M.Knap (2022)
 ${ }^{21}$ L.Gotta, SM, L.Mazza (2023)
 ${ }^{22}$ M.C.Bañuls, D.A.Huse, J.I.Cirac (2021)

[^39]: ${ }^{19}$ SM, O.I.Motrunich (2023)
 ${ }^{20}$ J.Feldmeier, W. Witczak-Krempa, M.Knap (2022)
 ${ }^{21}$ L.Gotta, SM, L.Mazza (2023)
 ${ }^{22}$ M.C.Bañuls, D.A.Huse, J.I.Cirac (2021)

[^40]: ${ }^{23}$ E.Cobanera, G.Ortiz, Z.Nussinov (2011); H.Moradi, Ö.M.Aksoy, J.H.Bardarson, A.Tiwari (2023)
 ${ }^{24}$ J.McGreevy (2022); A.Chatterjee, X.-G. Wen (2023); H.Moradi, S.F.Moosavian, A.Tiwari (2022)

[^41]: ${ }^{25}$ SM, O.I.Motrunich(2022)

[^42]: ${ }^{26}$ SM, O.I.Motrunich (2023)
 ${ }^{24}$ SM, O.I.Motrunich (in preparation)
 ${ }^{28}$ P.Fendley (2016); D.V.Else, P.Fendley, J.Kemp, C.Nayak (2017)

