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2. ongoing works…
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3. “Generalizing” operator growth hypothesis to open quantum systems - motivating “dissipative quantum chaos”.

Outline

7. Conclusions.

5. Open (Lindbladian) SYK in the large  limit.q

6. Motivate to understand some universal properties.
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4. Numerics: generalizing Lanczos algorithm to Bi-Lanczos algorithm in finite  SYK.N

1. “Universal operator growth hypothesis” - Lanczos coefficients and Krylov complexity.

2. Example: large  SYK (moment method).q

Disclaimer: 

In this talk, I’m not comparing between Krylov complexity 
and OTOC. I just want to motivate the operator growth in 
generic systems through Krylov complexity.



Input:   and H 𝒪
Lanczos algorithm
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The Lanczos coefficients suppose to capture the chaotic nature of the Hamiltonian.

For unitary evolution: ,  and . The evolution is ℒ† = ℒ ℒ𝒪 = [H, 𝒪] 𝒪(t) = eiHt 𝒪 e−iHt

We want to study the operator growth  𝒪(t) = eiℒ†t𝒪

Output:   and {bn} {𝒪n}

Universal operator growth hypothesis
bn ∼ α n .“For chaotic systems, the Lanczos coefficients grow linearly,  

and this is the maximum growth possible” Parker-Cao-Avdoshkin-Scaffidi-Altman (2018)

In other words, for chaotic systems, K-complexity grows exponentially CK(t) ∼ e2αt

The reverse statement is not always true

“The linear growth of Lanczos coefficients does not necessary imply chaos”. Dymarsky-Smolkin (2021)
Bhattacharjee-Cao-PN-Pathak (2022)

ℒ =

0 b1 0 ⋯ 0
b1 0 b2 ⋯ 0
0 b2 0 b3 ⋯
⋯ ⋯ b3 ⋯ ⋯
0 ⋯ ⋯ ⋯ bn

0 0 ⋯ bn 0

.



Lanczos coefficients from moments (generalized version)

C(t) :=
∞

∑
n=0

mn
(it)n

(n)!

Given the autocorrelation function  C(t) = ⟨𝒪(t)𝒪(0)⟩

Iteratively find the Lanczos coefficients as

M(n)
k = L(n−1)

k − L(n−1)
n−1

M(n−1)
n−1

M(n−1)
k

Viswanath-Muller (1994)
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Lanczos coefficients

Krylov basis wave functions

Krylov complexity

Moments

Auto-correlation function

L(n)
k =

M(n)
k+1

M(n)
n

−
M(n−1)

n−1

M(n−1)
k

k ≥ n ,

M(0)
k = (−1)kmk, L(0)

k = (−1)k+1mk+1

bn = M(n)
n , an = − L(n)

n

Bhattacharjee-Cao-PN-Pathak (2022)

Parker-Cao-Avdoshkin-Scaffidi-Altman (2018)



We expand the auto-correlation function

C(τ) = 1 +
2 ln(sech𝒥τ)

q
+ ⋯
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We start with an initial operator  𝒪(0) = 2 ψ1

Maldacena-Stanford (2016)

Example: Our interest is in large-  and in large-  limit of SYK. N q

H = iq/2 ∑
1≤i1<i2<⋯<iq≤N

ji1⋯iq ψi1ψi2⋯ψiqHamiltonian

Mean:

Variance: ⟨j2
i1⋯iq⟩ = 2q−1 (q − 1)!𝒥2

qNq−1

⟨ji1⋯iq⟩ = 0

bn = 𝒥
2
q

, n = 1

= 𝒥 n(n − 1) + O(1/q) , n > 1 .

Parker-Cao-Avdoshkin-Scaffidi-Altman (2018)

Sachdev-Ye (1993), Kitaev (2015)



Open quantum systems

Can we generalize the operator growth hypothesis in generic open system?

The evolution (Markovian dynamics) of system density matrix is governed by the Lindbladian

Lindbladian:

Lindblad (1976), Gorini-Kossakowski-Sudarshan (1976)

𝒪(t) = eiℒ†t𝒪 ℒ†𝒪 = [H, 𝒪] − i∑
k

[∓ L†
k 𝒪Lk −

1
2

{L†
k Lk, 𝒪}] .

In generic dissipative system, the Lindbladian in Krylov basis takes an “ideal” tridiagonal form

However, we need to define Krylov basis in context of open system (non-unitary 
evolution). The Lanczos algorithm works when the system is closed and the evolution is 
unitary. However, for non-unitary evolution the Lanczos algorithm fails!

ℒ†
o =

i |a1 | b1 0 ⋯ 0
c1 i |a2 | b2 ⋯ 0
0 c2 i |a3 | b3 ⋯
⋯ ⋯ c3 ⋯ ⋯
0 ⋯ ⋯ ⋯ bn

0 0 ⋯ cn i |an |

.

We will see that can be done and our motivation is to understand the asymptotic growth of such coefficients.
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A suitable algorithm is bi-Lanczos algorithm. This is a generalization of Lanczos algorithm suitable to deal with non-unitary 
evolution.

We create two separate operator space, one is constructed by acting of  while the other is constructed by ℒo ℒ†
o

They are individually not orthonormal but they are bi-orthonormal.

ℒ†
o =

i |a1 | b1 0 ⋯ 0
b1 i |a2 | b2 ⋯ 0
0 b2 i |a3 | b3 ⋯
⋯ ⋯ b3 ⋯ ⋯
0 ⋯ ⋯ ⋯ bn

0 0 ⋯ bn i |an |

.
We apply this to finite  SYK and find that  (purely real) while the diagonal elements 

are purely imaginary
N bn = cn

an = i |an |
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Example: Open SYK
Kulkarni-Numasawa-Ryu (2021)

H = iq/2 ∑
1≤i1<i2<⋯<iq≤N

ji1⋯iq ψi1ψi2⋯ψiqHamiltonian
Mean:

Variance: ⟨j2
i1⋯iq⟩ = 2q−1 (q − 1)!𝒥2

qNq−1

⟨ji1⋯iq⟩ = 0

Lindblad operators: Li = μ ψi , i = 1,2,⋯, N .

We expand the auto-correlation function C(τ) = 1 +
g(τ)

q
+ ⋯

g(τ) = log ( α2

𝒥2 cosh2(α |τ | + γ) ) μ̃ = μq , α = 𝒥 ( μ̃
2𝒥 )

2

+ 1 , γ = sinh−1( μ̃
2𝒥 ) .

We expand the auto-correlation function and computing moments are straightforward.
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Initial operator: ∝ ψ1

Sachdev-Ye (1993), Kitaev (2015)



We are interested in computing Lanczos coefficients

an = iμ̃n + O(1/q) n ≥ 0 ,

bn = 𝒥
2
q

, n = 1

= 𝒥 n(n − 1) + O(1/q) , n > 1 .

1.  linearly depend on the dissipative factor while the  are independent of it.


2.  are purely imaginary while  are real.


3.  For large- , both  and  are linear in 

a′ ns b′ ns

a′ ns b′ ns

n an bn n .
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μ̃ = μq .

Observations for large  SYKq

bn = 𝒥
2
q

, n = 1

= 𝒥 n(n − 1) + O(1/q) , n > 1 .

Comparison to closed system SYK

Bhattacharjee-Cao-PN-Pathak (2022)

Parker-Cao-Avdoshkin-Scaffidi-Altman (2018)

All are supported by numerics 
(bi-Lanczos algorithm)



We compute the Krylov complexity by recursively solving the equation ∂tφn(t) = ianφn(t) − bn+1φn+1(t) + bnφn−1(t) .

The analytical and numerical results suggest the asymptotic growth of the Lanczos coefficients

an ∼ iχμn bn ∼ αn

The most general version of

 “operator growth hypothesis”

We take the coefficients of the form b2
n = (1 − u2)n(n − 1 + η) , an = iu(2n + η) .

Reduces to the asymptotic growth for

α = 1 − u2 , χμ = 2u .
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Krylov complexity K(t) =
1
𝒵 ∑

n

n |φn(t) |2 =
η (1 − u2) tanh2(t)

1 + 2u tanh(t) − (1 − 2u2) tanh2(t)
.

Weak dissipation limit K(t) = η [sinh2(t) − 2u sinh3(t)cosh(t) + O(u2)] ,

Asymptotic analysis gives K(t) ∼ 1/u t* ∼ ln(1/u)
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Bhattacharjee-Cao-PN-Pathak (2022)



2. How “universal” is our result? Is the dissipative time scale and the saturation generic and robust for any dissipative chaotic 
systems?

Ex. Random jump operators

3. Holographic interpretation in terms of wormholes.

Works are in progress!

Analytically solvable in  limit keeping  finite (a special “double scaling limit”). N, M → ∞ R = M/N

Summary and future directions

H = iq/2 ∑
1≤i1<i2<⋯<iq≤N

ji1⋯iq ψi1ψi2⋯ψiq

La = ∑
1≤i≤ j≤N

Ka
ij ψiψj , a = 1,2,⋯, M .

Kulkarni-Numasawa-Ryu (2021)
Sa-Ribeiro-Prosen (2021)

⟨ |Ka
ij |2 ⟩ =

K2

N2
∀i, j, a⟨Ka

ij⟩ = 0
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4. Application to non-Hermitian systems?

1. We motivate to understand “dissipative quantum chaos”, particularly in SYK. A valid question is to understand how this 
dissipative time scale is related to the scrambling time.
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4. Application to non-Hermitian systems?

1. We motivate to understand “dissipative quantum chaos”, particularly in SYK. A valid question is to understand how this 
dissipative time scale is related to the scrambling time.

Thank you for your attention!


