Operator growth and "quantum chaos": lessons from SYK

Pratik Nandy
Yukawa Institute for Theoretical Physics (YITP)

[^0]QIMG 2023, Kyoto

Outline

1. "Universal operator growth hypothesis" - Lanczos coefficients and Krylov complexity.
2. Example: large q SYK (moment method).
3. "Generalizing" operator growth hypothesis to open quantum systems - motivating "dissipative quantum chaos".
4. Numerics: generalizing Lanczos algorithm to Bi-Lanczos algorithm in finite N SYK.
5. Open (Lindbladian) SYK in the large q limit. Disclaimer:

In this talk, I'm not comparing between Krylov complexity and OTOC. I just want to motivate the operator growth in generic systems through Krylov complexity.
7. Conclusions.

We want to study the operator growth $\mathcal{O}(t)=e^{i \mathscr{L}^{\dagger} t} \mathcal{O}$
"For chaotic systems, the Lanczos coefficients grow linearly, and this is the maximum growth possible"

$$
b_{n} \sim \alpha n
$$

$$
C_{K}(t) \sim e^{2 \alpha t}
$$

In other words, for chaotic systems, K-complexity grows exponentially

The reverse statement is not always true
"The linear growth of Lanczos coefficients does not necessary imply chaos".

For unitary evolution: $\mathscr{L}^{\dagger}=\mathscr{L}$, and $\mathscr{L} \mathcal{O}=[H, \mathcal{O}]$. The evolution is $\mathcal{O}(t)=e^{i H t} \mathcal{O} e^{-i H t}$ Input: H and $\mathcal{O} \longrightarrow$ Lanczos algorithm Output: $\left\{b_{n}\right\}$ and $\left\{\mathscr{O}_{n}\right\}$

The Lanczos coefficients suppose to capture the chaotic nature of the Hamiltonian.

$$
\mathscr{L}=\left(\begin{array}{ccccc}
0 & b_{1} & 0 & \cdots & 0 \\
b_{1} & 0 & b_{2} & \cdots & 0 \\
0 & b_{2} & 0 & b_{3} & \cdots \\
\cdots & \cdots & b_{3} & \cdots & \cdots \\
0 & \cdots & \cdots & \cdots & b_{n} \\
0 & 0 & \cdots & b_{n} & 0
\end{array}\right)
$$

Universal operator growth hypothesis
Parker-Cao-Avdoshkin-Scaffidi-Altman (2018)

Dymarsky-Smolkin (2021)
Bhattacharjee-Cao-PN-Pathak (2022)

Given the autocorrelation function $C(t)=\langle\mathscr{O}(t) \mathcal{O}(0)\rangle$

$$
C(t):=\sum_{n=0}^{\infty} m_{n} \frac{(i t)^{n}}{(n)!}
$$

Iteratively find the Lanczos coefficients as

$$
\begin{array}{cl}
M_{k}^{(0)}=(-1)^{k} m_{k}, & L_{k}^{(0)}=(-1)^{k+1} m_{k+1} \\
M_{k}^{(n)}=L_{k}^{(n-1)}-L_{n-1}^{(n-1)} \frac{M_{n-1}^{(n-1)}}{M_{k}^{(n-1)}} & L_{k}^{(n)}=\frac{M_{k+1}^{(n)}}{M_{n}^{(n)}}-\frac{M_{n-1}^{(n-1)}}{M_{k}^{(n-1)}} \quad k \geq n \\
b_{n}=\sqrt{M_{n}^{(n)}}, & a_{n}=-L_{n}^{(n)}
\end{array}
$$

Auto-correlation function

Lanczos coefficients

Krylov basis wave functions

Krylov complexity

Example: Our interest is in large- N and in large- q limit of SYK.
Mean:

$$
\left\langle j_{i_{1} \cdots i_{q}}\right\rangle=0
$$

Hamiltonian $\quad H=i^{q / 2} \sum_{1 \leq i_{1}<i_{2}<\cdots<i_{q} \leq N} j_{i_{1} \cdots i_{q}} \psi_{i_{1}} \psi_{i_{2}} \cdots \psi_{i_{q}}$
Variance: $\quad\left\langle j_{i_{1} \cdots i_{q}}^{2}\right\rangle=2^{q-1} \frac{(q-1)!\mathscr{J}^{2}}{q N^{q-1}}$

We start with an initial operator $\mathcal{O}(0)=\sqrt{2} \psi_{1}$

We expand the auto-correlation function
Maldacena-Stanford (2016)

$$
C(\tau)=1+\frac{2 \ln (\operatorname{sech} \mathscr{J} \tau)}{q}+\cdots
$$

$$
\begin{aligned}
b_{n} & =\mathscr{J} \sqrt{\frac{2}{q}}, & & n=1 \\
& =\mathscr{J} \sqrt{n(n-1)}+O(1 / q), & & n>1
\end{aligned}
$$

Open quantum systems

Can we generalize the operator growth hypothesis in generic open system?

The evolution (Markovian dynamics) of system density matrix is governed by the Lindbladian

$$
\mathscr{O}(t)=e^{i \mathscr{L}^{\dagger} t} \mathcal{O} \quad \text { Lindbladian: } \quad \mathscr{L}^{\dagger} \mathscr{O}=[H, \mathcal{O}]-i \sum_{k}\left[\mp L_{k}^{\dagger} \mathscr{O} L_{k}-\frac{1}{2}\left\{L_{k}^{\dagger} L_{k}, \mathcal{O}\right\}\right] .
$$

In generic dissipative system, the Lindbladian in Krylov basis takes an "ideal" tridiagonal form

$$
6
$$

However, we need to define Krylov basis in context of open system (non-unitary evolution). The Lanczos algorithm works when the system is closed and the evolution is unitary. However, for non-unitary evolution the Lanczos algorithm fails!

$$
\mathscr{L}_{o}^{\dagger}=\left(\begin{array}{ccccc}
i\left|a_{1}\right| & b_{1} & 0 & \cdots & 0 \\
c_{1} & i\left|a_{2}\right| & b_{2} & \cdots & 0 \\
0 & c_{2} & i\left|a_{3}\right| & b_{3} & \cdots \\
\cdots & \ldots & c_{3} & \cdots & \cdots \\
0 & \ldots & \cdots & \cdots & b_{n} \\
0 & 0 & \cdots & c_{n} & i\left|a_{n}\right|
\end{array}\right)
$$

We will see that can be done and our motivation is to understand the asymptotic growth of such coefficients.

A suitable algorithm is bi-Lanczos algorithm. This is a generalization of Lanczos algorithm suitable to deal with non-unitary evolution.

We create two separate operator space, one is constructed by acting of \mathscr{L}_{o} while the other is constructed by $\mathscr{L}_{o}^{\dagger}$

They are individually not orthonormal but they are bi-orthonormal.

We apply this to finite N SYK and find that $b_{n}=c_{n}$ (purely real) while the diagonal elements $a_{n}=i\left|a_{n}\right|$ are purely imaginary

$$
\mathscr{L}_{o}^{\dagger}=\left(\begin{array}{ccccc}
i\left|a_{1}\right| & b_{1} & 0 & \cdots & 0 \\
b_{1} & i\left|a_{2}\right| & b_{2} & \cdots & 0 \\
0 & b_{2} & i\left|a_{3}\right| & b_{3} & \cdots \\
\cdots & \cdots & b_{3} & \cdots & \cdots \\
0 & \cdots & \cdots & \cdots & b_{n} \\
0 & 0 & \cdots & b_{n} & i\left|a_{n}\right|
\end{array}\right)
$$

The slope of the diagonal elements is

$$
\left|a_{n}\right|=\mu(2 n-1)
$$

Example: Open SYK

Hamiltonian

$$
\text { Mean: } \quad\left\langle j_{i_{1} \cdots i_{q}}\right\rangle=0
$$

Lindblad operators:

$$
L_{i}=\sqrt{\mu} \psi_{i}, \quad i=1,2, \cdots, N
$$

$$
H=i^{q / 2} \sum_{1 \leq i_{1}<i_{2}<\cdots<i_{q} \leq N} j_{i_{1} \cdots i_{q}} \psi_{i_{1}} \psi_{i_{2}} \cdots \psi_{i_{q}}
$$

$$
\text { Variance: } \quad\left\langle j_{i_{1} \cdots i_{q}}^{2}\right\rangle=2^{q-1} \frac{(q-1)!\mathscr{J}^{2}}{q N^{q-1}}
$$

We expand the auto-correlation function

$$
C(\tau)=1+\frac{g(\tau)}{q}+\cdots
$$

$$
g(\tau)=\log \left(\frac{\alpha^{2}}{\mathscr{J}^{2} \cosh ^{2}(\alpha|\tau|+\gamma)}\right)
$$

$$
\tilde{\mu}=\mu q, \quad \alpha=\mathscr{J} \sqrt{\left(\frac{\tilde{\mu}}{2 \mathscr{J}}\right)^{2}+1}, \quad \gamma=\sinh ^{-1}\left(\frac{\tilde{\mu}}{2 \mathscr{J}}\right)
$$

We expand the auto-correlation function and computing moments are straightforward.

We are interested in computing Lanczos coefficients

$$
\begin{aligned}
a_{n} & =i \tilde{\mu} n+O(1 / q) \quad n \geq 0, & & \tilde{\mu}=\mu q \\
b_{n} & =\mathscr{J} \sqrt{\frac{2}{q}}, & & n=1 \\
& =\mathscr{J} \sqrt{n(n-1)}+O(1 / q), & & n>1
\end{aligned}
$$

Comparison to closed system SYK

$$
\begin{aligned}
b_{n} & =\mathscr{J} \sqrt{\frac{2}{q}}, & & n=1 \\
& =\mathscr{J} \sqrt{n(n-1)}+O(1 / q), & & n>1 .
\end{aligned}
$$

Parker-Cao-Avdoshkin-Scaffidi-Altman (2018)

Observations for large q SYK

1. $a_{n}^{\prime} s$ linearly depend on the dissipative factor while the $b_{n}^{\prime} s$ are independent of it.
2. $a_{n}^{\prime} s$ are purely imaginary while $b_{n}^{\prime} s$ are real.

All are supported by numerics (bi-Lanczos algorithm)
3. For large- n, both a_{n} and b_{n} are linear in n.

The analytical and numerical results suggest the asymptotic growth of the Lanczos coefficients

$$
a_{n} \sim i \chi \mu n \quad b_{n} \sim \alpha n
$$

We compute the Krylov complexity by recursively solving the equation

$$
\partial_{t} \varphi_{n}(t)=i a_{n} \varphi_{n}(t)-b_{n+1} \varphi_{n+1}(t)+b_{n} \varphi_{n-1}(t)
$$

We take the coefficients of the form

$$
b_{n}^{2}=\left(1-u^{2}\right) n(n-1+\eta), \quad a_{n}=i u(2 n+\eta)
$$

Reduces to the asymptotic growth for

$$
\alpha=1-u^{2}, \quad \chi \mu=2 u
$$

Krylov complexity

$$
K(t)=\frac{1}{\mathscr{Z}} \sum_{n} n\left|\varphi_{n}(t)\right|^{2}=\frac{\eta\left(1-u^{2}\right) \tanh ^{2}(t)}{1+2 u \tanh (t)-\left(1-2 u^{2}\right) \tanh ^{2}(t)} .
$$

Weak dissipation limit

$$
K(t)=\eta\left[\sinh ^{2}(t)-2 u \sinh ^{3}(t) \cosh (t)+O\left(u^{2}\right)\right]
$$

Asymptotic analysis gives

$$
K(t) \sim 1 / u
$$

$$
t_{*} \sim \ln (1 / u)
$$

Summary and future directions

1. We motivate to understand "dissipative quantum chaos", particularly in SYK. A valid question is to understand how this dissipative time scale is related to the scrambling time.
2. How "universal" is our result? Is the dissipative time scale and the saturation generic and robust for any dissipative chaotic systems?

Ex. Random jump operators
Kulkarni-Numasawa-Ryu (2021)
Sa-Ribeiro-Prosen (2021)

$$
L^{a}=\sum_{1 \leq i \leq j \leq N} K_{i j}^{a} \psi_{i} \psi_{j}, \quad a=1,2, \cdots, M .
$$

$$
\left.H=i^{q / 2} \sum_{1 \leq i_{1}<i_{2}<\cdots<i_{q} \leq N} j_{i_{1} \cdots i_{q}} \psi_{i_{1}} \psi_{i_{2}} \cdots \psi_{i_{q}} \quad\left\langle K_{i j}^{a}\right\rangle=\left.0 \quad\langle | K_{i j}^{a}\right|^{2}\right\rangle=\frac{K^{2}}{N^{2}} \quad \forall i, j, a
$$

Analytically solvable in $N, M \rightarrow \infty$ limit keeping $R=M / N$ finite (a special "double scaling limit").
3. Holographic interpretation in terms of wormholes.
4. Application to non-Hermitian systems?

Summary and future directions

1. We motivate to understand "dissipative quantum chaos", particularly in SYK. A valid question is to understand how this dissipative time scale is related to the scrambling time.
2. How "universal" is our result? Is the dissipative time scale and the saturation generic and robust for any dissipative chaotic systems?

Ex. Random jump operators
Kulkarni-Numasawa-Ryu (2021)
Sa-Ribeiro-Prosen (2021)

$$
L^{a}=\sum_{1 \leq i \leq j \leq N} K_{i j}^{a} \psi_{i} \psi_{j}, \quad a=1,2, \cdots, M
$$

$$
\left.H=i^{q / 2} \sum_{1 \leq i_{1}<i_{2}<\cdots<i_{q} \leq N} j_{i_{1} \cdots i_{q}} \psi_{i_{1}} \psi_{i_{2}} \cdots \psi_{i_{q}} \quad\left\langle K_{i j}^{a}\right\rangle=\left.0 \quad\langle | K_{i j}^{a}\right|^{2}\right\rangle=\frac{K^{2}}{N^{2}} \quad \forall i, j, a
$$

Works are in progress!

Analytically solvable in $N, M \rightarrow \infty$ limit keeping $R=M / N$ finite (a special "double scaling limit").
3. Holographic interpretation in terms of wormholes.
4. Application to non-Hermitian systems?

[^0]: 1. w/ B. Bhattacharjee (IISc/IBS), X. Cao (ENS), and T. Pathak (IISc), arXiv: $2 \underline{212.06180 \text { (JHEP) }}$
 2. ongoing works.
