
Krylov complexity  
in the IP matrix model

Mitsuhiro Nishida 
(Pohang University of Science and Technology)

[arXiv:2306.04805]

with Norihiro Iizuka (Osaka university)

1

[arXiv:2308.07567]



2

Matrix model for black hole
[T. Banks, W. Fischler, S.H. Shenker, L. Susskind, 1996], 
[N. Iizuka, D. Kabat, G. Lifschytz, D. A. Lowe, 2001], …

             D0-brane’s positions are      . 
A probe D0-brane’s position is                      .

XiiN
XN+1,N+1 = M

open string Xi,N+1

Xi,i+1

Matrix models are toy models  
for the gauge theory dual of black hole.
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Iizuka-Polchinski (IP) matrix model 
is a simple large    matrix model

[N. Iizuka, J. Polchinski, 2008]

H =
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2
Tr(⇧2) +

m2

2
Tr(X2) +M(a†a+ ā†ā) + g(a†Xa+ ā†XT ā)
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Our interest 
Quantum chaos and Krylov complexity 

in the IP model 
• Krylov complexity has been proposed  
   as a new measure for quantum chaos.

• Krylov complexity in large    SYK grows exponentially. 
   What about the IP model? 

[D. E. Parker, X. Cao, A. Avdoshkin, T. Scaffidi, E. Altman, 2018]

• It has been conjectured that Krylov complexity grows 
   exponentially in non-integrable systems with large DoF.

N
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Our result 

• As far as we know, this is the first example of 
exponential growth found in large    matrix models.

• In the IP model with nonzero mass     at nonzero    ,       
Krylov complexity grows exponentially                   .        

                   

T
K(t) ⇠ eO(

p
t)

m

N
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• This exponential growth implies that 
   the IP model is chaotic.
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Spectrum of the IP model can be solved 
by Schwinger-Dyson equation

=

+

a†i ai

Dressed Free 

aia†i

a†i ai
aja†j

Xij

Hint = ga†Xa

Large    , LargeN M

fixed t’ Hooft coupling � = g2N

�ijG(T, t� t0) := eiM(t�t0)
D
T ai(t) a

†
j(t

0)
E

T
2-pt function
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Continuous  
unbounded 

Three types of power spectrum
G̃(T,! �m)� 4

⌫2T

1

G̃(T,!)
+ e�m/T G̃(T,! +m) =

4i!

⌫2T

m=0.8,νT=1,y=1

-2 -1 1 2
ω

F(ω)

m 6= 0, T = 1

m=0.8,νT=1,y=0

-2 -1 0 1 2
ω

F(ω)

Discrete
m 6= 0, T = 0

Continuous  
bounded 

m = 0

SD 
eq

m T ⌫2T :=
2�

m(1� e�m/T )
: mass : temperature

[N. Iizuka, J. Polchinski, 2008]

m=0, νT=1
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Lanczos coefficients 
and Krylov complexity

an, bn

K(t)

O(t) = eiHtOe�iHt =
X

n=0

(it)n

n!
LnO LO := [H,O]

|O�1) := 0, |O0) := |O), L|On) =an|On) + bn|On�1) + bn+1|On+1)

O(t) =
X

n=0

in'n(t)On

Krylov complexity
[D. E. Parker, X. Cao, A. Avdoshkin, T. Scaffidi, E. Altman, 2018]

(Om|On) = �mn

K(t) :=
X

n

n|'n(t)|2

Krylov complexity is a measure for operator growth  
of the initial operator        . O(0)
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Lanczos coefficients 
and Krylov complexity

an, bn

K(t)

• Lanczos coefficient    of non-integrable systems in the 
thermodynamic limit would grow as fast as possible.

bn

• We analyze                associated to 
   2-pt function                                               . 

an, bn,K(t)

C(T, t) := eiM(t�t0)
D
ai(t) a

†
j(0)

E

T

• Krylov complexity       would grow exponentially.K(t)

• They depend on the initial operator and inner product 
   and can be computed from the power spectrum. 



Krylov complexity in the IP model

Continuous  
unbounded spectrum

m 6= 0, T = 1

Discrete 
spectrum

m 6= 0, T = 0

Continuous  
bounded spectrum 

m = 0
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Figure 7: Krylov complexity in the massless limit (5.6) with ⌫T = 1.
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Figure 8: Krylov entropy in the massless limit (5.8) with ⌫T = 1.

We plot K(t) (5.6) with ⌫T = 1 in Figure 7, and one can confirm the linear growth

of K(t) at late times.

The Krylov entropy S(t) is

S(t) =�
1X

n=0

|'n(t)|2 log |'n(t)|2

=�
1X

n=0
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T t
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⌘
2

log
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⌫2

T t
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(
p
2⌫T t)

⌘
2

◆
. (5.8)

Figure 8 shows the time evolution of the Krylov entropy S(t) in the massless limit

with ⌫T = 1. We note that the Krylov entropy S(t) with an = 0, bn = const grow

logarithmic way at late times with respect to t [43].
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Figure 9: Krylov complexity in the zero temperature limit with m = 0.8, ⌫ = 1.
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Figure 10: Krylov entropy in the zero temperature limit with m = 0.8, ⌫ = 1.

Although we obtain analytic results for 'n(t), in order to see the time evolution

of Krylov complexity K(t), these expressions are not as useful as one might expect.

Instead of using these expressions, we perform numerical calculations of K(t) by

using a method in [55]. Specifically, we numerically solve (5.9) with the following

initial condition

'
0

(0) = 1, 'n(0) = 0 (n > 0), (5.17)

and then compute K(t). Figure 9 shows the time evolution of K(t) in the zero

temperature limit with m = 0.8, ⌫ = 1. The Krylov complexity K(t) oscillates due

to nonzero an and does not grow at late times.

We also plot the Krylov entropy S(t) = �P1
n=0

|'n(t)|2 log |'n(t)|2 in the zero

temperature limit with m = 0.8, ⌫ = 1 in Figure 10. Since K(t) in the zero tem-

perature limit is bounded as seen in Figure 9, the growth of the operator does not

propagate well to 'n(t) where n is large. Therefore, S(t) is also bounded because

the entropy becomes large when 'n(t) follows a uniform distribution.
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Figure 11: Krylov complexity of the toy model (5.22) for the infinite temperature

limit with m = 0.8, ⌫T = 1. The linear growth of (log[1 +K(t)])2at late times means

that K(T ) grows exponentially with respect to
p
t at late times.
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Figure 12: Krylov entropy of the toy model (5.22) for the infinite temperature limit

with m = 0.8, ⌫T = 1.

and M � T . In this limit, the Krylov subspace for a creation operator a†i for the

fundamental is restricted to the sector where we have only one fundamental, a†iai = 1.

In the large N limit, one can solve the Schwinger-Dyson equation for the correlator

for the fundamental field, and obtain the spectral density for the fundamental field.

The resultant spectral density changes are drastically dependent on the parameters,

and this results in a rich behavior for the Lanczos coe�cients and Krylov complexity

and entropy. Our results can be summarized as follows;

1. In massless limit for the adjoint, m ! 0, the spectral density for the funda-

mental follows the Wigner semi-circle law for any temperature T . As a result,

the Lanczos coe�cients an = 0 and bn is a nonzero constant given by eq. (4.5).

Thus, the Krylov complexity grows linearly in time, eq. (5.7). In this case, the

Krylov entropy S(t) grows logarithmic way in time t at late times.

2. In the zero temperature limit T = 0 with nonzero mass m 6= 0 for the adjoint,
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Linear growth Oscillation Exponential growth
K(t) ⇠ ⌫T t K(t) ⇠ e

p
m⇡t

With nonzero mass     at nonzero    ,        
Krylov complexity grows exponentially.       

Tm

[N. Iizuka, M.N., 2023]
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with an, bn

Asymptotic behavior of the spectrum

F (!) ⇠ exp


�2|!|

m
log

✓
2|!|
⌫T

◆�
(|!| ! 1)

exponential decay with log correction

bn ⇠ m⇡n

4W (2m⇡n/⌫T )
⇠ m⇡n

4 log n
(n ! 1)

linear growth with log correction

because the spectrum is symmetric.an = 0

m 6= 0, T = 1
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with K(t)

K(t) ⇠ e
p
m⇡t exponential growth

an = 0,

bn =
m⇡n

4W (2m⇡n/⌫T )
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Summary
• The Iizuka-Polchinski (IP) model is a simple large    QM 
   matrix model for black hole.

N
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• In the IP model with nonzero mass     at nonzero    ,       
Krylov complexity grows exponentially                   .        

                   

T
K(t) ⇠ eO(

p
t)

m

N

• As far as we know, this is the first example of 
exponential growth found in large    matrix models.

• Krylov complexity has been proposed  
   as a new measure for quantum chaos.


