
Applications of inhomogeneous 
deformations in 2d CFTs: from the 
revival of non-local correlation to 

curved spacetime
Masahiro Nozaki (KITS, UCAS & iTHEMS, RIKEN)

This talk is based on collaboration with 
Kanato Goto, Weibo Mao, Akihiro Miyata, Shinsei Ryu, Mao 

Tian Tan, Kotaro Tamaoka, and Masataka Watanabe 
Based on

arXiv:2112.14388, arXiv:2302.08009,
arXiv:23XX.XXXXX and arXiv:23XX.XXXXX 

QIMG2023 at YITP @ Oct. 6th.  



What we want to study: 
1. The non-equilibrium process opposite to the 

quantum thermalization and scrambling.

Short summary of my talk



What we want to study: 
1. The non-equilibrium process opposite to the 

quantum thermalization and scrambling.

In other words, the process can endow the state with 
quantum properties such as non-local correlation.

Short summary of my talk



What we want to study: 
1. The non-equilibrium process opposite to the 

quantum thermalization and scrambling.

In other words, the process can endow the state with 
quantum properties such as non-local correlation.
For example, the preparation for the vacuum state.

Short summary of my talk



What we want to study: 
1. The non-equilibrium process opposite to the 

quantum thermalization and scrambling.

In other words, the process can endow the state with 
quantum properties such as non-local correlation.

This is the main topic in this talk.

Short summary of my talk



What we want to study (if I have time):
2. Thermodynamics of QFT on the curved background.

Short summary of my talk



What we want to study (if I have time):
2. Thermodynamics of QFT on the curved background.

Short summary of my talk

Two-dimensional conformal field theories (2d CFTs)



What we want to study:
2. Thermodynamics of QFT on the curved background.

Phase transition induced by curvature of spacetime?

How about entanglement?

Short summary of my talk



Short summary of my talk
1.We explored the dynamical property of the system evolved with 
inhomogeneous Hamiltonians:

2 Preliminary

In this section, let us describe the systems, the inhomogenously-deformed Hamiltonians, and

the measures of entanglement considered in this paper.

2.1 Inhomogeneously-deformed Hamiltonians

Before describing the systems considered, let us define the inhomogeneously-deformed Hamil-

tonians considered in this paper. These Hamiltonians is defines as ones where the Hamilto-

nian density is modified by the envelop function of spatial location x:

HInho =

Z
L

0

dxf(x)h(x), (2.1)

where h(x) f(x), L denotes the Hamiltonian density, envelop function, and system size.

We impose the periodic boundary condition on these Hamiltonians. The envelop functions

considered in this paper are

fMöbius(x) = 1 � tanh 2✓ cos

✓
2⇡x

L

◆
, fSSD(x) = 2 sin2

⇣
⇡x

L

⌘
, fCSD(x) = 2 cos2

⇣
⇡x

L

⌘
, (2.2)

where in the SSD limit when ✓ ! 1, fMöbius(x) reduces to fSSD(x), while in the CSD limit

when ✓ ! �1, fMöbius(x) reduces to fCSD(x). For f(x) = fMöbius(x), f(x) = fSSD(x), and

f(x) = fCSD(x), the inhomogeneously-deformed Hamiltonians are called as Möbius, sine-

square (SS), and cosine-square (CS) deformed Hamiltonians. For x ⇡ 0, the Hamiltonian

density spatially modulated by fSSD(x) is smaller than the un-deformed one, while for x ⇡ L

2
,

it is larger than the un-deformed one. For x ⇡ L

2
, the Hamiltonian density modified by

fCSD(x) is smaller than the un-deformed one, while for x ⇡ 0, it is larger than the un-

deformed one. Therefore, the SSD and CSD may the dynamical properties of Hamiltonian

stronger at x ⇡ 0 or x ⇡ L

2
, respectively, while they may those properties weaker at x ⇡ L

2

or x ⇡ 0, respectively.

2.2 The systems evolved with the inhomogeneously-deformed Hamil-

tonians

Let us now describe the systems evolved with the inhomogeneously-deformed Hamiltonians.

System.1: Let us start from the thermofield double state with finite inverse temperature

�:

|TFDi = N e
� ✏(H1+H

2)
2

X

a

|ai
1
⌦ |ai

2
, (2.3)

where H
i=1,2 and |ai

i=1,2
denote the un-deformed 2d CFT Hamiltonian, and the eigenstate

of them, respectively. MT: The regulator ✏ is half of the inverse temperature, ✏ = �/2. Thus,

this thermofield double state is defined in the doubled Hilbert space, H = H1 ⌦ H2. The

6

SSD Hamiltonian:
Mobius Hamiltonian:

Mobius/SS deformation
The definition of Mobius and sine-square deformed Hamiltonians are

, 

where h(x) is Hamiltonian density of undeformed one:                    .

The envelop functions considered are
.

2 Preliminary

In this section, let us describe the systems, the inhomogenously-deformed Hamiltonians, and

the measures of entanglement considered in this paper.

2.1 Inhomogeneously-deformed Hamiltonians

Before describing the systems considered, let us define the inhomogeneously-deformed Hamil-

tonians considered in this paper. These Hamiltonians is defines as ones where the Hamilto-

nian density is modified by the envelop function of spatial location x:

HInho =

Z
L

0

dxf(x)h(x), (2.1)

where h(x) f(x), L denotes the Hamiltonian density, envelop function, and system size.

We impose the periodic boundary condition on these Hamiltonians. The envelop functions

considered in this paper are
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IA,B = 0 t1 − t1,0 = ∓ L

2π

[
1

tan
(
πX1
L

) − 1

tan
(
πX0
L

)
]

vR,L = ±1, t0,1 − t0,0 = ± [X1(t0,1, t1)−X0(t1)]

ρL,R(t1, t0 = t0,0), SB ≈ 2× cπL

12ϵ
, SB ≈ cπL

12ϵ
,

|Ψ(t)⟩ = Ne−iHt |Ψ⟩ . |Ψ⟩ = Ne−ϵH |Boundary state⟩ .
U(t) = e−iHt, SA = −trAρA log ρA, ρA = trAρ, A A.

SA ≈ c

3
log ϵ+

{
πct
6ϵ t < l

2 ,
πcl
12ϵ t > l

2 .
,

trA
(
e−iHt |Ψ⟩ ⟨Ψ| eiHt

)
≈ trAe

−ϵH , SA ≈ lA, SB ≈ lA, SA∪B ≈ (lA + lB), IA,B ≈ 0.

ρA∪B ≈ ρA ⊗ ρB

ρ =
e−2ϵH

tre−2ϵH
, |Ψ⟩ = 1√

tre−2ϵH

∑

a

e−ϵH |a⟩1 ⊗ |a⟩2 , trH1 (|Ψ⟩ ⟨Ψ|) = trH2 (|Ψ⟩ ⟨Ψ|) = ρ

e−iHInh.tρeiHInh.t, e−iH1
Inh.t |Ψ⟩ |Bell, k⟩ = 1√

2
(|↑⟩1 |↑⟩2 + |↓⟩1 |↓⟩2) ,

|TFD⟩ =
L∏

k=1

|Bell, k⟩ , L cosh 2θ.

IThermal
A,B ≈ 0 IVacuumA,B .

ρThermal
A∪B ≈ ρA ⊗ ρB ρA∪B ≈ ρVacuumA∪B ,

O(1) +O(1) ≈ SVacuum
A =

c

3
log

[
L

π
sin

[
π(Y1 − Y2)

L

]]
SThermal
A H1

SA SB SA∪B, IA,B ≈ 0

SA ≈ SVacuum
A , SB ≈ SVacuum

B , SA∪B ≈ SVacuum
A∪B , IA,B ≈ IVacuumA,B , H =

∫ L

0

dxh(x)

(0.3)
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fMöbius(x) = 1 � tanh 2✓ cos

✓
2⇡x

L

◆
, fSSD(x) = 2 sin2

⇣
⇡x

L

⌘
, fCSD(x) = 2 cos2

⇣
⇡x

L

⌘
, (2.2)
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where in the SSD limit when ✓ ! 1, fMöbius(x) reduces to fSSD(x), while in the CSD limit
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Circumstance of the system considered
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1.We explored the dynamical property of the system evolved with 
inhomogeneous Hamiltonians:
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f(x) = fCSD(x), the inhomogeneously-deformed Hamiltonians are called as Möbius, sine-
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f(x) = fCSD(x), the inhomogeneously-deformed Hamiltonians are called as Möbius, sine-
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where in the SSD limit when ✓ ! 1, fMöbius(x) reduces to fSSD(x), while in the CSD limit
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fMöbius(x) = 1 � tanh 2✓ cos

✓
2⇡x

L

◆
, fSSD(x) = 2 sin2

⇣
⇡x

L

⌘
, fCSD(x) = 2 cos2

⇣
⇡x

L

⌘
, (2.2)
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state or page state.

Non-local correlation 
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interesting properties.

Vacuum entanglement or 
correlation approximately 
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(also quantum revival.)



Short summary of my talk
2.We explored the dynamical property of the thermal state whose 
distribution is determined by the Mobius Hamiltonian:
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fMöbius(x) = 1 � tanh 2✓ cos

✓
2⇡x

L

◆
, fSSD(x) = 2 sin2

⇣
⇡x

L

⌘
, fCSD(x) = 2 cos2

⇣
⇡x

L

⌘
, (2.2)
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Short summary of my talk

2 Preliminary

In this section, let us describe the systems, the inhomogenously-deformed Hamiltonians, and

the measures of entanglement considered in this paper.

2.1 Inhomogeneously-deformed Hamiltonians

Before describing the systems considered, let us define the inhomogeneously-deformed Hamil-

tonians considered in this paper. These Hamiltonians is defines as ones where the Hamilto-

nian density is modified by the envelop function of spatial location x:

HInho =

Z
L

0

dxf(x)h(x), (2.1)

where h(x) f(x), L denotes the Hamiltonian density, envelop function, and system size.

We impose the periodic boundary condition on these Hamiltonians. The envelop functions

considered in this paper are

fMöbius(x) = 1 � tanh 2✓ cos

✓
2⇡x

L

◆
, fSSD(x) = 2 sin2

⇣
⇡x

L

⌘
, fCSD(x) = 2 cos2

⇣
⇡x

L

⌘
, (2.2)

where in the SSD limit when ✓ ! 1, fMöbius(x) reduces to fSSD(x), while in the CSD limit

when ✓ ! �1, fMöbius(x) reduces to fCSD(x). For f(x) = fMöbius(x), f(x) = fSSD(x), and

f(x) = fCSD(x), the inhomogeneously-deformed Hamiltonians are called as Möbius, sine-

square (SS), and cosine-square (CS) deformed Hamiltonians. For x ⇡ 0, the Hamiltonian

density spatially modulated by fSSD(x) is smaller than the un-deformed one, while for x ⇡ L

2
,

it is larger than the un-deformed one. For x ⇡ L

2
, the Hamiltonian density modified by

fCSD(x) is smaller than the un-deformed one, while for x ⇡ 0, it is larger than the un-

deformed one. Therefore, the SSD and CSD may the dynamical properties of Hamiltonian

stronger at x ⇡ 0 or x ⇡ L

2
, respectively, while they may those properties weaker at x ⇡ L

2

or x ⇡ 0, respectively.

2.2 The systems evolved with the inhomogeneously-deformed Hamil-

tonians

Let us now describe the systems evolved with the inhomogeneously-deformed Hamiltonians.

System.1: Let us start from the thermofield double state with finite inverse temperature

�:

|TFDi = N e
� ✏(H1+H

2)
2

X

a

|ai
1
⌦ |ai

2
, (2.3)

where H
i=1,2 and |ai

i=1,2
denote the un-deformed 2d CFT Hamiltonian, and the eigenstate

of them, respectively. MT: The regulator ✏ is half of the inverse temperature, ✏ = �/2. Thus,

this thermofield double state is defined in the doubled Hilbert space, H = H1 ⌦ H2. The
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2.We explored the dynamical property of the thermal state whose 
distribution is determined by the Mobius Hamiltonian:
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Before describing the systems considered, let us define the inhomogeneously-deformed Hamil-

tonians considered in this paper. These Hamiltonians is defines as ones where the Hamilto-

nian density is modified by the envelop function of spatial location x:

HInho =

Z
L
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dxf(x)h(x), (2.1)

where h(x) f(x), L denotes the Hamiltonian density, envelop function, and system size.

We impose the periodic boundary condition on these Hamiltonians. The envelop functions
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, (2.2)

where in the SSD limit when ✓ ! 1, fMöbius(x) reduces to fSSD(x), while in the CSD limit
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, the Hamiltonian density modified by

fCSD(x) is smaller than the un-deformed one, while for x ⇡ 0, it is larger than the un-

deformed one. Therefore, the SSD and CSD may the dynamical properties of Hamiltonian

stronger at x ⇡ 0 or x ⇡ L
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, respectively, while they may those properties weaker at x ⇡ L
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or x ⇡ 0, respectively.
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tonians

Let us now describe the systems evolved with the inhomogeneously-deformed Hamiltonians.

System.1: Let us start from the thermofield double state with finite inverse temperature
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|ai
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, (2.3)

where H
i=1,2 and |ai

i=1,2
denote the un-deformed 2d CFT Hamiltonian, and the eigenstate

of them, respectively. MT: The regulator ✏ is half of the inverse temperature, ✏ = �/2. Thus,

this thermofield double state is defined in the doubled Hilbert space, H = H1 ⌦ H2. The
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Note

All the theories considered in this talk are 
two-dimensional conformal field theories.



Introduction
Scrambling is one of the cutting-edge research topics.
This is closely relevant to quantum thermalization.



Scrambling is one of the cutting-edge research topics.
This is closely relevant to quantum thermalization.

Thermalization

A

A

A

Contents

pc

Ψ1
0, Ψ2

0,Ψ
3
0,

(0.1)

1

Contents

pc

Ψ1
0, Ψ2

0,Ψ
3
0,

(0.1)

1

Contents

pc

Ψ1
0, Ψ2

0,Ψ
3
0,

(0.1)

1

Contents

pc

Ψ1
0, Ψ2

0,Ψ
3
0,∣∣Ψi

0

〉
(0.1)

1

are initial states.

Introduction



Scrambling is one of the cutting-edge research topics.
This is closely relevant to quantum thermalization.Thermalization

A

A

A

Contents

pc

Ψ1
0, Ψ2

0,Ψ
3
0,

(0.1)

1

Contents

pc

Ψ1
0, Ψ2

0,Ψ
3
0,

(0.1)

1

Contents

pc

Ψ1
0, Ψ2

0,Ψ
3
0,

(0.1)

1

Contents

pc

Ψ1
0, Ψ2

0,Ψ
3
0,∣∣Ψi

0

〉
(0.1)

1

are initial states.

Local observables in A
depend on initial condition.

Introduction



Scrambling is one of the cutting-edge research topics.
This is closely relevant to quantum thermalization.

Thermalization

A

A

A

Contents

pc

Ψ1
0, Ψ2

0,Ψ
3
0,

(0.1)

1

Contents

pc

Ψ1
0, Ψ2

0,Ψ
3
0,

(0.1)

1

Contents

pc

Ψ1
0, Ψ2

0,Ψ
3
0,

(0.1)

1

Contents

pc

Ψ1
0, Ψ2

0,Ψ
3
0,∣∣Ψi

0

〉
U(t),

∣∣Ψi(t)
〉
= U(t)

∣∣Ψi
0

〉
(0.1)

1

A

A

A

Contents

pc

Ψ1
0, Ψ2

0,Ψ
3
0,

(0.1)

1

Contents

pc

Ψ1
0, Ψ2

0,Ψ
3
0,

(0.1)

1

Contents

pc

Ψ1
0, Ψ2

0,Ψ
3
0,

(0.1)

1

Contents

pc

Ψ1
0, Ψ2

0,Ψ
3
0,∣∣Ψi

0

〉
U(t),

∣∣Ψi(t)
〉
= U(t)

∣∣Ψi
0

〉
(0.1)

1

Thermalization

A

A

A

Contents

pc

Ψ1
0, Ψ2

0,Ψ
3
0,

(0.1)

1

Contents

pc

Ψ1
0, Ψ2

0,Ψ
3
0,

(0.1)

1

Contents

pc

Ψ1
0, Ψ2

0,Ψ
3
0,

(0.1)

1

Contents

pc

Ψ1
0, Ψ2

0,Ψ
3
0,∣∣Ψi

0

〉
U(t),

∣∣Ψi(t)
〉
= U(t)

∣∣Ψi
0

〉
(0.1)

1

A

A

A

Contents

pc

Ψ1
0, Ψ2

0,Ψ
3
0,

(0.1)

1

Contents

pc

Ψ1
0, Ψ2

0,Ψ
3
0,

(0.1)

1

Contents

pc

Ψ1
0, Ψ2

0,Ψ
3
0,

(0.1)

1

Contents

pc

Ψ1
0, Ψ2

0,Ψ
3
0,∣∣Ψi

0

〉
U(t),

∣∣Ψi(t)
〉
= U(t)

∣∣Ψi
0

〉
(0.1)

1

Introduction



Scrambling is one of the cutting-edge research topics.
This is closely relevant to quantum thermalization.

Thermalization

A

A

A

Contents

pc

Ψ1
0, Ψ2

0,Ψ
3
0,

(0.1)

1

Contents

pc

Ψ1
0, Ψ2

0,Ψ
3
0,

(0.1)

1

Contents

pc

Ψ1
0, Ψ2

0,Ψ
3
0,

(0.1)

1

A

Contents

pc

Ψ1
0, Ψ2

0,Ψ
3
0,∣∣Ψi

0

〉
U(t),

∣∣Ψi(t)
〉
= U(t)

∣∣Ψi
0

〉
, lim

t→∞
U(t),

∣∣Ψi(t)
〉
= lim

t→∞
U(t)

∣∣Ψi
0

〉
, ρth

(0.1)

1

Contents

pc

Ψ1
0, Ψ2

0,Ψ
3
0,∣∣Ψi

0

〉
U(t),

∣∣Ψi(t)
〉
= U(t)

∣∣Ψi
0

〉
, lim

t→∞
U(t),

∣∣Ψi
late

〉
= lim

t→∞
U(t)

∣∣Ψi
0

〉
, ρth

(0.1)

1

Contents

pc

Ψ1
0, Ψ2

0,Ψ
3
0,∣∣Ψi

0

〉
U(t),

∣∣Ψi(t)
〉
= U(t)

∣∣Ψi
0

〉
, lim

t→∞
U(t),

∣∣Ψi
late

〉
= lim

t→∞
U(t)

∣∣Ψi
0

〉
, ρth

trB
[∣∣Ψi

late

〉 〈
Ψi

late

∣∣] ≃ trBe
−βH

(0.1)

1

Contents

pc

Ψ1
0, Ψ2

0,Ψ
3
0,∣∣Ψi

0

〉
U(t),

∣∣Ψi(t)
〉
= U(t)

∣∣Ψi
0

〉
, lim

t→∞
U(t),

∣∣Ψi
late

〉
= lim

t→∞
U(t)

∣∣Ψi
0

〉
, ρth

trB
[∣∣Ψi

late

〉 〈
Ψi

late

∣∣] ≃ trBe
−βH

(0.1)

1

Thermalization

A

A

A

Contents

pc

Ψ1
0, Ψ2

0,Ψ
3
0,

(0.1)

1

Contents

pc

Ψ1
0, Ψ2

0,Ψ
3
0,

(0.1)

1

Contents

pc

Ψ1
0, Ψ2

0,Ψ
3
0,

(0.1)

1

A

Contents

pc

Ψ1
0, Ψ2

0,Ψ
3
0,∣∣Ψi

0

〉
U(t),

∣∣Ψi(t)
〉
= U(t)

∣∣Ψi
0

〉
, lim

t→∞
U(t),

∣∣Ψi(t)
〉
= lim

t→∞
U(t)

∣∣Ψi
0

〉
, ρth

(0.1)

1

Contents

pc

Ψ1
0, Ψ2

0,Ψ
3
0,∣∣Ψi

0

〉
U(t),

∣∣Ψi(t)
〉
= U(t)

∣∣Ψi
0

〉
, lim

t→∞
U(t),

∣∣Ψi
late

〉
= lim

t→∞
U(t)

∣∣Ψi
0

〉
, ρth

(0.1)

1

Contents

pc

Ψ1
0, Ψ2

0,Ψ
3
0,∣∣Ψi

0

〉
U(t),

∣∣Ψi(t)
〉
= U(t)

∣∣Ψi
0

〉
, lim

t→∞
U(t),

∣∣Ψi
late

〉
= lim

t→∞
U(t)

∣∣Ψi
0

〉
, ρth

trB
[∣∣Ψi

late

〉 〈
Ψi

late

∣∣] ≃ trBe
−βH

(0.1)

1

Contents

pc

Ψ1
0, Ψ2

0,Ψ
3
0,∣∣Ψi

0

〉
U(t),

∣∣Ψi(t)
〉
= U(t)

∣∣Ψi
0

〉
, lim

t→∞
U(t),

∣∣Ψi
late

〉
= lim

t→∞
U(t)

∣∣Ψi
0

〉
, ρth

trB
[∣∣Ψi

late

〉 〈
Ψi

late

∣∣] ≃ trBe
−βH

(0.1)

1

Contents

pc

Ψ1
0, Ψ2

0,Ψ
3
0,∣∣Ψi

0

〉
U(t),

∣∣Ψi(t)
〉
= U(t)

∣∣Ψi
0

〉
, lim

t→∞
U(t),

∣∣Ψi
late

〉
= lim

t→∞
U(t)

∣∣Ψi
0

〉
, ρth

trB
[∣∣Ψi

late

〉 〈
Ψi

late

∣∣] ≃ trBe
−βH

|initial state⟩ ≃
1
ϵ∑

α

Cα |α⟩

trA
[∣∣Ψi

late

〉 〈
Ψi

late

∣∣] ≈ trAe
−βH

(0.1)

1

Introduction



Scrambling is one of the cutting-edge research topics.
This is closely relevant to quantum thermalization.

Thermalization

A

A

A

Contents

pc

Ψ1
0, Ψ2

0,Ψ
3
0,

(0.1)

1

Contents

pc

Ψ1
0, Ψ2

0,Ψ
3
0,

(0.1)

1

Contents

pc

Ψ1
0, Ψ2

0,Ψ
3
0,

(0.1)

1

A

Contents

pc

Ψ1
0, Ψ2

0,Ψ
3
0,∣∣Ψi

0

〉
U(t),

∣∣Ψi(t)
〉
= U(t)

∣∣Ψi
0

〉
, lim

t→∞
U(t),

∣∣Ψi(t)
〉
= lim

t→∞
U(t)

∣∣Ψi
0

〉
, ρth

(0.1)

1

Contents

pc

Ψ1
0, Ψ2

0,Ψ
3
0,∣∣Ψi

0

〉
U(t),

∣∣Ψi(t)
〉
= U(t)

∣∣Ψi
0

〉
, lim

t→∞
U(t),

∣∣Ψi
late

〉
= lim

t→∞
U(t)

∣∣Ψi
0

〉
, ρth

(0.1)

1

Contents

pc

Ψ1
0, Ψ2

0,Ψ
3
0,∣∣Ψi

0

〉
U(t),

∣∣Ψi(t)
〉
= U(t)

∣∣Ψi
0

〉
, lim

t→∞
U(t),

∣∣Ψi
late

〉
= lim

t→∞
U(t)

∣∣Ψi
0

〉
, ρth

trB
[∣∣Ψi

late

〉 〈
Ψi

late

∣∣] ≃ trBe
−βH

(0.1)

1

Contents

pc

Ψ1
0, Ψ2

0,Ψ
3
0,∣∣Ψi

0

〉
U(t),

∣∣Ψi(t)
〉
= U(t)

∣∣Ψi
0

〉
, lim

t→∞
U(t),

∣∣Ψi
late

〉
= lim

t→∞
U(t)

∣∣Ψi
0

〉
, ρth

trB
[∣∣Ψi

late

〉 〈
Ψi

late

∣∣] ≃ trBe
−βH

(0.1)

1

Thermalization

A

A

A

Contents

pc

Ψ1
0, Ψ2

0,Ψ
3
0,

(0.1)

1

Contents

pc

Ψ1
0, Ψ2

0,Ψ
3
0,

(0.1)

1

Contents

pc

Ψ1
0, Ψ2

0,Ψ
3
0,

(0.1)

1

A

Contents

pc

Ψ1
0, Ψ2

0,Ψ
3
0,∣∣Ψi

0

〉
U(t),

∣∣Ψi(t)
〉
= U(t)

∣∣Ψi
0

〉
, lim

t→∞
U(t),

∣∣Ψi(t)
〉
= lim

t→∞
U(t)

∣∣Ψi
0

〉
, ρth

(0.1)

1

Contents

pc

Ψ1
0, Ψ2

0,Ψ
3
0,∣∣Ψi

0

〉
U(t),

∣∣Ψi(t)
〉
= U(t)

∣∣Ψi
0

〉
, lim

t→∞
U(t),

∣∣Ψi
late

〉
= lim

t→∞
U(t)

∣∣Ψi
0

〉
, ρth

(0.1)

1

Contents

pc

Ψ1
0, Ψ2

0,Ψ
3
0,∣∣Ψi

0

〉
U(t),

∣∣Ψi(t)
〉
= U(t)

∣∣Ψi
0

〉
, lim

t→∞
U(t),

∣∣Ψi
late

〉
= lim

t→∞
U(t)

∣∣Ψi
0

〉
, ρth

trB
[∣∣Ψi

late

〉 〈
Ψi

late

∣∣] ≃ trBe
−βH

(0.1)

1

Contents

pc

Ψ1
0, Ψ2

0,Ψ
3
0,∣∣Ψi

0

〉
U(t),

∣∣Ψi(t)
〉
= U(t)

∣∣Ψi
0

〉
, lim

t→∞
U(t),

∣∣Ψi
late

〉
= lim

t→∞
U(t)

∣∣Ψi
0

〉
, ρth

trB
[∣∣Ψi

late

〉 〈
Ψi

late

∣∣] ≃ trBe
−βH

(0.1)

1

Contents

pc

Ψ1
0, Ψ2

0,Ψ
3
0,∣∣Ψi

0

〉
U(t),

∣∣Ψi(t)
〉
= U(t)

∣∣Ψi
0

〉
, lim

t→∞
U(t),

∣∣Ψi
late

〉
= lim

t→∞
U(t)

∣∣Ψi
0

〉
, ρth

trB
[∣∣Ψi

late

〉 〈
Ψi

late

∣∣] ≃ trBe
−βH

|initial state⟩ ≃
1
ϵ∑

α

Cα |α⟩

trA
[∣∣Ψi

late

〉 〈
Ψi

late

∣∣] ≈ trAe
−βH

(0.1)

1

This late-time reduced density matrix 
associated to A is independent of initial state.

Introduction



Scrambling is one of the cutting-edge research topics.
This is closely relevant to quantum thermalization.

Thermalization

A

A

A

Contents

pc

Ψ1
0, Ψ2

0,Ψ
3
0,

(0.1)

1

Contents

pc

Ψ1
0, Ψ2

0,Ψ
3
0,

(0.1)

1

Contents

pc

Ψ1
0, Ψ2

0,Ψ
3
0,

(0.1)

1

A

Contents

pc

Ψ1
0, Ψ2

0,Ψ
3
0,∣∣Ψi

0

〉
U(t),

∣∣Ψi(t)
〉
= U(t)

∣∣Ψi
0

〉
, lim

t→∞
U(t),

∣∣Ψi(t)
〉
= lim

t→∞
U(t)

∣∣Ψi
0

〉
, ρth

(0.1)

1

Contents

pc

Ψ1
0, Ψ2

0,Ψ
3
0,∣∣Ψi

0

〉
U(t),

∣∣Ψi(t)
〉
= U(t)

∣∣Ψi
0

〉
, lim

t→∞
U(t),

∣∣Ψi
late

〉
= lim

t→∞
U(t)

∣∣Ψi
0

〉
, ρth

(0.1)

1

Contents

pc

Ψ1
0, Ψ2

0,Ψ
3
0,∣∣Ψi

0

〉
U(t),

∣∣Ψi(t)
〉
= U(t)

∣∣Ψi
0

〉
, lim

t→∞
U(t),

∣∣Ψi
late

〉
= lim

t→∞
U(t)

∣∣Ψi
0

〉
, ρth

trB
[∣∣Ψi

late

〉 〈
Ψi

late

∣∣] ≃ trBe
−βH

(0.1)

1

Contents

pc

Ψ1
0, Ψ2

0,Ψ
3
0,∣∣Ψi

0

〉
U(t),

∣∣Ψi(t)
〉
= U(t)

∣∣Ψi
0

〉
, lim

t→∞
U(t),

∣∣Ψi
late

〉
= lim

t→∞
U(t)

∣∣Ψi
0

〉
, ρth

trB
[∣∣Ψi

late

〉 〈
Ψi

late

∣∣] ≃ trBe
−βH

(0.1)

1

Thermalization

A

A

A

Contents

pc

Ψ1
0, Ψ2

0,Ψ
3
0,

(0.1)

1

Contents

pc

Ψ1
0, Ψ2

0,Ψ
3
0,

(0.1)

1

Contents

pc

Ψ1
0, Ψ2

0,Ψ
3
0,

(0.1)

1

A

Contents

pc

Ψ1
0, Ψ2

0,Ψ
3
0,∣∣Ψi

0

〉
U(t),

∣∣Ψi(t)
〉
= U(t)

∣∣Ψi
0

〉
, lim

t→∞
U(t),

∣∣Ψi(t)
〉
= lim

t→∞
U(t)

∣∣Ψi
0

〉
, ρth

(0.1)

1

Contents

pc

Ψ1
0, Ψ2

0,Ψ
3
0,∣∣Ψi

0

〉
U(t),

∣∣Ψi(t)
〉
= U(t)

∣∣Ψi
0

〉
, lim

t→∞
U(t),

∣∣Ψi
late

〉
= lim

t→∞
U(t)

∣∣Ψi
0

〉
, ρth

(0.1)

1

Contents

pc

Ψ1
0, Ψ2

0,Ψ
3
0,∣∣Ψi

0

〉
U(t),

∣∣Ψi(t)
〉
= U(t)

∣∣Ψi
0

〉
, lim

t→∞
U(t),

∣∣Ψi
late

〉
= lim

t→∞
U(t)

∣∣Ψi
0

〉
, ρth

trB
[∣∣Ψi

late

〉 〈
Ψi

late

∣∣] ≃ trBe
−βH

(0.1)

1

Contents

pc

Ψ1
0, Ψ2

0,Ψ
3
0,∣∣Ψi

0

〉
U(t),

∣∣Ψi(t)
〉
= U(t)

∣∣Ψi
0

〉
, lim

t→∞
U(t),

∣∣Ψi
late

〉
= lim

t→∞
U(t)

∣∣Ψi
0

〉
, ρth

trB
[∣∣Ψi

late

〉 〈
Ψi

late

∣∣] ≃ trBe
−βH

(0.1)

1

Contents

pc

Ψ1
0, Ψ2

0,Ψ
3
0,∣∣Ψi

0

〉
U(t),

∣∣Ψi(t)
〉
= U(t)

∣∣Ψi
0

〉
, lim

t→∞
U(t),

∣∣Ψi
late

〉
= lim

t→∞
U(t)

∣∣Ψi
0

〉
, ρth

trB
[∣∣Ψi

late

〉 〈
Ψi

late

∣∣] ≃ trBe
−βH

|initial state⟩ ≃
1
ϵ∑

α

Cα |α⟩

trA
[∣∣Ψi

late

〉 〈
Ψi

late

∣∣] ≈ trAe
−βH

(0.1)

1

This late-time reduced density matrix 
associated to A is independent of initial state.

Information on the initial states is locally 
hidden (effectively lost). 
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This late-time reduced density matrix 
associated to A is independent of initial state.

Information on the initial states is locally 
hidden (effectively lost). 

This is the process of 
(information) scrambling.
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Scrambling is one of the cutting-edge research topics.
This is closely relevant to quantum thermalization.
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This late-time reduced density matrix 
associated to A is independent of initial state.

Information on the initial states is locally 
hidden (effectively lost). 

Quantum thermalization (the thermalization of the subsystems ) occurs 
because the reduced density matrices are approximated by the thermal 
state with the effective temperature. 
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Scrambling is one of the cutting-edge research topics.
This is closely relevant to quantum thermalization.
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This late-time reduced density matrix 
associated to A is independent of initial state.

Information on the initial states is locally 
hidden (lost). 

It is believed that if the Hamiltonian has a 
strong scrambling ability, information 
scrambling (quantum thermalization) occurs.
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Scrambling is one of the cutting-edge research topics.
This is closely relevant to quantum thermalization.
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This late-time reduced density matrix 
associated to A is independent of initial state.

Information on the initial states is locally 
hidden (lost). 

It is believed that 2d holographic CFT, CFT 
having gravity dual has such strong 
scrambling ability.
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Non-local correlation
Let us consider the behavior of non-local correlation during the quantum 
thermalization,
The behavior of the reduced density:

IA,B = 0 t1 − t1,0 = ∓ L

2π

[
1

tan
(
πX1
L

) − 1

tan
(
πX0
L

)
]

vR,L = ±1, t0,1 − t0,0 = ± [X1(t0,1, t1)−X0(t1)]

ρL,R(t1, t0 = t0,0), SB ≈ 2× cπL

12ϵ
, SB ≈ cπL

12ϵ
,

|Ψ(t)⟩ = Ne−iHt |Ψ⟩ . |Ψ⟩ = Ne−ϵH |Boundary state⟩ .
U(t) = e−iHt, SA = −trAρA log ρA, ρA = trAρ, A A.

SA ≈ c

3
log ϵ+

{
πct
6ϵ t < l

2 ,
πcl
12ϵ t > l

2 .
,

trA
(
e−iHt |Ψ⟩ ⟨Ψ| eiHt

)
≈ trAe

−ϵH

(0.3)
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Divide the Hilbert space into A, B, and the complement to A and B,  
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Non-local correlation
Let us consider the behavior of non-local correlation during the quantum 
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,where                 : an effective inverse temperature     
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Non-local correlation
Let us consider the behavior of non-local correlation during the quantum 
thermalization,
The behavior of the reduced density:
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Non-local correlation
Let us consider the behavior of non-local correlation during the quantum 
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Quantum thermalization occurs.
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Möbius(x, θ)dt

2 + dx2

R(x, θ) =
8π2 tanh 2θ cos

(
2πx
L

)

L2
(
tanh 2θ cos

(
2πx
L

)
− 1
) ,

L

2
> lA + lB > 0

1 ≫ ϵ

(0.3)

3

IA,B = 0 t1 − t1,0 = ∓ L

2π

[
1

tan
(
πX1
L

) − 1

tan
(
πX0
L

)
]

vR,L = ±1, t0,1 − t0,0 = ± [X1(t0,1, t1)−X0(t1)]

ρL,R(t1, t0 = t0,0), SB ≈ 2× cπL

12ϵ
, SB ≈ cπL

12ϵ
,

|Ψ(t)⟩ = Ne−iHt |Ψ⟩ . |Ψ⟩ = Ne−ϵH |Boundary state⟩ .
U(t) = e−iHt, SA = −trAρA log ρA, ρA = trAρ, A A.

SA ≈ c

3
log ϵ+

{
πct
6ϵ t < l

2 ,
πcl
12ϵ t > l

2 .
,

trA
(
e−iHt |Ψ⟩ ⟨Ψ| eiHt

)
≈ trAe

−ϵH , SA ≈ lA, SB ≈ lB, SA∪B ≈ (lA + lB), IA,B ≈ 0.

ρA∪B ≈ ρA ⊗ ρB

ρ =
e−2ϵH

tre−2ϵH
, |Ψ⟩ = 1√

tre−2ϵH

∑

a

e−ϵH |a⟩1 ⊗ |a⟩2 , trH1 (|Ψ⟩ ⟨Ψ|) = trH2 (|Ψ⟩ ⟨Ψ|) = ρ

e−iHInh.tρeiHInh.t, e−iH1
Inh.t |Ψ⟩ |Bell, k⟩ = 1√

2
(|↑⟩1 |↑⟩2 + |↓⟩1 |↓⟩2) ,

|TFD⟩ =
L∏

k=1

|Bell, k⟩ , L cosh 2θ.

IThermal
A,B ≈ 0 IVacuumA,B .

ρThermal
A∪B ≈ ρA ⊗ ρB ρA∪B ≈ ρVacuumA∪B ,

O(1) +O(1) ≈ SVacuum
A =

c

3
log

[
L

π
sin

[
π(Y1 − Y2)

L

]]
SThermal
A H1

SA SB SA∪B, IA,B ≈ 0

SA ≈ SVacuum
A , SB ≈ SVacuum

B , SA∪B ≈ SVacuum
A∪B , IA,B ≈ IVacuumA,B , H =

∫ L

0

dxh(x), ⟨·| |·⟩

Sα ̸= lα, IA,B ̸= 0

ρA∪B = ρA ⊗ ρBρA∪B ̸= ρA ⊗ ρB
πe2θ

(
e4θ − 1

)
q sin

(
πq(X1−X2)

L

)
sin
(

πq(2t−X1−X2)
L

)

L
(
e4θ sin2

(
πq(t−X1)

L

)
+ cos2

(
πq(t−X1)

L

))(
e4θ sin2

(
πq(t−X2)

L

)
+ cos2

(
πq(t−X2)

L

))

ds2 = −f 2
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Relation to our papers
Thus, quantum properties (here, non-local correlation)
may be completely destroyed during quantum 
thermalization.
New research topic is to explore the non-equilibrium 
processes or quantum quench where  the state has 
quantum properties even in the late times.

This may lead to the non-equilibrium phenomena 
beyond statical mechanics. 

This may be applicable for the quantum computation.

for example, Many-body-localization (MBL)
Quantum-many-body-scars  



Why we consider this new topic?
1. These phenomena may be beyond the statical mechanics.

2. These phenomena lead to implementation of
quantum computer (quantum computation=non-equilibrium process)

3. In AdS/CFT, this may lead to new finding about black 
holes
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Why we consider this new topic?
1. These phenomena may be beyond the statical mechanics.

2. These phenomena lead to implementation of
quantum computer (quantum computation=non-equilibrium process)

3. In AdS/CFT, this may lead to new finding about black hole                                
Inhomogeneous time evolution 
of thermal state ?



Thermal state on the curved background
(on-going)
•New thermodynamical properties related to curvature.

• Insight on the quantum matters 
near the black hole horizon.



Contents 
• Introduction
• Motivation
• Summary
• Results on this project

- Preliminary
- About summary 2 (Mao Tianʼs talk)
- About summary 4 (on-going)
• Discussion & Future directions



Note
The parameter region considered in this talk is

The system in |�(t1 � 1)i does not evolve to a typical state under the evolution by

the uniform Hamiltonian.

1.3 One interpretation of scrambling in 2d Holographic CFT

Let us now turn to the possible interpretation for the evolution of entanglement and non-

local correlation. Call the two-dimensional conformal field theory having the gravity dual

as 2d holographic CFT. After we evolve the system with some Hamiltonian, the thermofield

double state in the small ✏ limit may be approximated by the state consisting of product of

Bell pairs,

|TFDi ⇡ ⇧x̃ |Bell; x̃i
L

|Bell; x̃i
R

, (1.7)

where x̃ is defined as x

✏
, and |Bell; x̃i

L,R
denote the Bell pairs consisting of quasi-particles

at x of H1 and H2, respectively. Under the unitary time-evolution, |Bell; x̃i
L

and |Bell; x̃i
R
,

correspond to the left- and right-moving particles, respectively. The entanglement entropy for

trHi=L,R;x |Bell; x̃i hBell; x̃| is O(c). Here Hi=L,R;x̃ denotes the trace-out of the local Hilbert

space at x̃ of Hi=L,R. Starting from this state, we evolve it with H
1

SSD
⌦ 12 and H

1

0
⌦

12 associated with 2d holographic CFT. Under the evolution by these Hamiltonians, the

entanglement entropy for a single interval follows the propagation of quasi-particle. For

H
1

0
⌦ 12, quasi-particles on H1 propagates leftward and rightward at the speed of light.

Therefore, the distribution of quasi-particles is stationary and uniform. Let us consider a

single Bell pair consisting of q1 and q2, the quasi-particles on H1 and H2, respectively. Due

to the scrambling e↵ect of H
1

0
for 2d holographic CFT, q1, a single quasi-particle on H1 is

delocalized, and then is non-locally hidden in the group of quasi-particles that expands to

whole H1. To retrieve the single Bell pair consisting of q1 and q2, we have to be able to

access whole H1. Under the evolution by H
1

SSD
⌦ 12, quasi-particles propagate to x = X

1

f
,

and accumulate there. In this case, to retrieve the single Bell pair, we only need to be able

to access the region near X
f

1
on H1.

1.4 Note that

Here, we describe the parameter region considered in this paper. Let V̂ denote the subsystem

consisting of the spatial intervals, and then let L̂, l̂V , â, ✏̂, and t̂ denote a system size, a

subsystem size, a lattice spacing, a regularization parameter that guarantees the norm of

states considered in in this paper is one, and the times associated to some Hamiltonian

considered. Here, ⇤̂s denote the dimensionfull parameters, and ⇤ is the dimensionless ones

defined as ⇤̂
â
. In the following, we will use only dimensionless parameters. The parameter

region considered is

L � lV , t � ✏ � 1. (1.8)

We call this region as the coarse-grained limit. From now on, we consider the entanglement

dynamics in this coarse-grained limit.

5

where these parameters are dimensionless and their unit 
is the lattice spacing. 

,
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Note

All the theories considered in this talk are 
two-dimensional conformal field theories.



Motivation on these papers
Setup for the time dependent case: 
Theories considered are 2d CFTs on spatial circle.
Start from

,                                                      ,

and 

IA,B = 0 t1 − t1,0 = ∓ L

2π

[
1

tan
(
πX1
L

) − 1

tan
(
πX0
L

)
]

vR,L = ±1, t0,1 − t0,0 = ± [X1(t0,1, t1)−X0(t1)]

ρL,R(t1, t0 = t0,0), SB ≈ 2× cπL

12ϵ
, SB ≈ cπL

12ϵ
,

|Ψ(t)⟩ = Ne−iHt |Ψ⟩ . |Ψ⟩ = Ne−ϵH |Boundary state⟩ .
U(t) = e−iHt, SA = −trAρA log ρA, ρA = trAρ, A A.

SA ≈ c

3
log ϵ+

{
πct
6ϵ t < l

2 ,
πcl
12ϵ t > l

2 .
,

trA
(
e−iHt |Ψ⟩ ⟨Ψ| eiHt

)
≈ trAe

−ϵH , SA ≈ lA, SB ≈ lA, SA∪B ≈ (lA + lB), IA,B ≈ 0.

ρA∪B ≈ ρA ⊗ ρB

ρ =
e−2ϵH

tre−2ϵH
, |Ψ⟩ = 1√

tre−2ϵH

∑

a

e−ϵH |a⟩1 ⊗ |a⟩2

(0.3)
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(Circumstance =    )
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)
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f =

L

2
,
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12
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2
]
+ lim

n→1

1

1− n
log
〈
σn

(
wNew

Y1
, wNew

Y1

)
σn

(
wNew

Y2
, wNew

Y2
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)]
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〉
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(
e−it1HSSD + 12

)
|TFD⟩ . IA,B ≈ 0

lV=A,B, PC,V=A,B SA∪B, ρA∪B Parameters ≫ ϵ

O (c) Hi=1,2, |Bell⟩ = 1
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−iHMöbius/SSDt1 =

∣∣∣∣
dwNew

X

dwx

∣∣∣∣
2hn

σn

(
wNew

X , wNew
X

)

(wX , wX) = (iX,−iX).

XNew
X =

wNew
X − wNew

X

2i
, X = X1

f = 0, X = X2
f =

L

2
,

SB = − c

12
log

[
∏

i=1,2

∣∣∣∣
dwNew

Yi

dwYi

∣∣∣∣
2
]
+ lim

n→1

1

1− n
log
〈
σn

(
wNew

Y1
, wNew

Y1

)
σn

(
wNew

Y2
, wNew

Y2

)〉
2ϵ

O(1) ≪ O(1/ϵ)

H1
SSD + 12 ≈ cπ

6ϵ

[
L−

(
XNew

Y1
−XNew

Y2

)]

IA,B = SA + SB − SA∪B

= lim
n→1

1

1− n
log
〈
σn

(
wNew

Y1
, wNew

Y1

)
σn

(
wNew

Y2
, wNew

Y2

)〉
2ϵ
+ lim

n→1

1

1− n
log ⟨σn (wX1 , wX1) σn (wX2 , wX2)⟩2ϵ

− lim
n→1

1

1− n
log
〈
σn

(
wNew

Y1
, wNew

Y1

)
σn

(
wNew

Y2
, wNew

Y2

)
σn (wX1 , wX1) σn (wX2 , wX2)

〉

|φ(t1)⟩ =
(
e−it1HSSD + 12

)
|TFD⟩ . IA,B ≈ 0

lV=A,B, PC,V=A,B SA∪B, ρA∪B Parameters ≫ ϵ

O (c) Hi=1,2, |Bell⟩ = 1

2

∑

i=↑,↓

|i⟩1 ⊗ |i⟩2 H1 vL,R = ±2 sin2

(
πX

L

)
x̃ |Bell; x̃⟩ = 1

√
q

q∏

i=1

|i; x̃⟩1 |i; x̃⟩2 ,

Hi=1,2 SB ≈ cπL

12ϵ
, qi1,L qi2,L

t0 ≫ O(L).
L

2
> lA, lB, lA + lB > 0

− trAρA log ρA, SB ≈ cπL

6ϵ
SB → Stot,H1,SB/c

x = Xf
1 , X

New
Yi=1,2

=
wNew

Yi=1,2
− wNew

Yi=1,2

2i
IA,B = SA + SB − SA∪B, IA,B ≈ 0, B1 ∪B2

e0×H = 1 =
∑

i1=↑,↓

· · ·
∑

iL=↑,↓

|i1, · · · , iL⟩ ⟨i1, · · · , iL| , |TFD⟩ =
L∏

k=1

(
1√
2

∑

ik=↑,↓

|ik⟩1 |ik⟩2

)

t− t0 = ∓

⎡

⎣ L

2π tan
(

π(X1)
L

) − L

2π tan
(

π(X0)
L

)

⎤

⎦

∂ρL,R
∂t1

= ±∂ (ρL,RvL,R)

∂x
O(1/ϵ) O(1)vgroup =

dwdispersion relation

dk

≈
t≫1

c

3
log

⎡

⎣ L3

4π3t2

sin
[
π(Y1−Y2)

L

]

sin
[
π(Y1)
L

]
sin
[
π(Y2)
L

]

⎤

⎦ c

3
log

⎡

⎣
(2πt)2 sin

[
π(Y1)
L

]
sin
[
π(Y2)
L

]

L2

⎤

⎦

SB ≈ c

3
log

[
L

π
sin

(
π(Y1 − Y2)

L

)]
IA,B

SA ∝ 8 + SB ∝ 7− SA∪B ∝ 7IA,B ∝ 2× 4, IA,B = 0

(0.2)

2

IA,B = 0 t1 − t1,0 = ∓ L

2π

[
1

tan
(
πX1
L

) − 1

tan
(
πX0
L

)
]

vR,L = ±1, t0,1 − t0,0 = ± [X1(t0,1, t1)−X0(t1)]

ρL,R(t1, t0 = t0,0), SB ≈ 2× cπL

12ϵ
, SB ≈ cπL

12ϵ
,

|Ψ(t)⟩ = Ne−iHt |Ψ⟩ . |Ψ⟩ = Ne−ϵH |Boundary state⟩ .
U(t) = e−iHt, SA = −trAρA log ρA, ρA = trAρ, A A.
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Möbius(x, θ)dt

2 + dx2

R(x, θ) =
8π2 tanh 2θ cos

(
2πx
L

)

L2
(
tanh 2θ cos

(
2πx
L

)
− 1
) ,

L

2
> lA + lB > 0

1 ≫ ϵ
∫ L

0

dx
√
− det g(T (x) + T (x)), R(θ, x) = −2∂2

xf(θ, x)

f(θ, x)
=

8π2q2 tanh (2θ) cos
(
2πqx
L

)

L2
(
tanh (2θ) cos

(
2πqx
L

)
− 1
) , L/β < 1, θ = 0

θ = 0, S ≈ O(1)

S ≈
{
O(1) L cosh 2θ/β < 1

Le2θ L cosh 2θ/β > 1
,

SA ≈ c

3
log

[
L

4π
sin

(
4πlA
L

)]
SB ≈ c · Ccof.Le2θ

β
,

|Ψ⟩ = e−ϵH |Bdy⟩√
⟨Bdy| e−2ϵH |Bdy⟩

.

(0.3)

3

Thermal state



Motivation on these papers
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They donʻt have non-local correlation.
Therefore, we can check whether or not 
Inhomogeneous evolution endow these
states with non-local correlations. 
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This has strong non-local correlation between 
Hilbert space one and two. We may be able to 
explore other property of this dynamics. 
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Short entangled state where 
entanglement entropy does not depend on the 
subsystem size.  
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deformed Hamiltonian and Mobius Hamiltonian.



Motivation on these papers
Setup for the time dependent case: 
Theories considered are 2d CFTs on spatial circle.
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Hamiltonian and Mobius Hamiltonian.
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• In this setup, entanglement entropy, two point function 
and so on can be analytically computable.

• It is possible to study non-equilibrium process in the 
larger system than that numerically-computable!!

•We can study the dynamical property, independent 
of the finite-size effect, of the system. 

Motivation on these papers

This is the reason we consider 2d CFTs.
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Why we consider the inhomogeneous time evolution
• The CFT Hamiltonians on the curved background.

Quasiparicles (excitations generated during the time 
evolution) may move with the velocity determined by, 
and distributes inhomogeneously.  
Entanglement entropy (EE) and local temperature 
may depend on the location of the subsystems.
Mutual information may become non-zero.

Non-local correlation may emerge.
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The relation between the thermofield double state and Bell state.

Thermofield double state in high temperature limit is expected to 
be a product of Bell states.                                  

The system in |�(t1 � 1)i does not evolve to a typical state under the evolution by

the uniform Hamiltonian.

1.3 One interpretation of scrambling in 2d Holographic CFT

Let us now turn to the possible interpretation for the evolution of entanglement and non-

local correlation. Call the two-dimensional conformal field theory having the gravity dual

as 2d holographic CFT. After we evolve the system with some Hamiltonian, the thermofield

double state in the small ✏ limit may be approximated by the state consisting of product of

Bell pairs,

|TFDi ⇡ ⇧x̃ |Bell; x̃i
L

|Bell; x̃i
R

, (1.7)

where x̃ is defined as x

✏
, and |Bell; x̃i

L,R
denote the Bell pairs consisting of quasi-particles

at x of H1 and H2, respectively. Under the unitary time-evolution, |Bell; x̃i
L

and |Bell; x̃i
R
,

correspond to the left- and right-moving particles, respectively. The entanglement entropy for

trHi=L,R;x |Bell; x̃i hBell; x̃| is O(c). Here Hi=L,R;x̃ denotes the trace-out of the local Hilbert

space at x̃ of Hi=L,R. Starting from this state, we evolve it with H
1

SSD
⌦ 12 and H

1

0
⌦

12 associated with 2d holographic CFT. Under the evolution by these Hamiltonians, the

entanglement entropy for a single interval follows the propagation of quasi-particle. For

H
1

0
⌦ 12, quasi-particles on H1 propagates leftward and rightward at the speed of light.

Therefore, the distribution of quasi-particles is stationary and uniform. Let us consider a

single Bell pair consisting of q1 and q2, the quasi-particles on H1 and H2, respectively. Due

to the scrambling e↵ect of H
1

0
for 2d holographic CFT, q1, a single quasi-particle on H1 is

delocalized, and then is non-locally hidden in the group of quasi-particles that expands to

whole H1. To retrieve the single Bell pair consisting of q1 and q2, we have to be able to

access whole H1. Under the evolution by H
1

SSD
⌦ 12, quasi-particles propagate to x = X

1

f
,

and accumulate there. In this case, to retrieve the single Bell pair, we only need to be able

to access the region near X
f

1
on H1.

1.4 Note that

Here, we describe the parameter region considered in this paper. Let V̂ denote the subsystem

consisting of the spatial intervals, and then let L̂, l̂V , â, ✏̂, and t̂ denote a system size, a

subsystem size, a lattice spacing, a regularization parameter that guarantees the norm of

states considered in in this paper is one, and the times associated to some Hamiltonian

considered. Here, ⇤̂s denote the dimensionfull parameters, and ⇤ is the dimensionless ones

defined as ⇤̂
â
. In the following, we will use only dimensionless parameters. The parameter

region considered is

L � lV , t � ✏ � 1. (1.8)

We call this region as the coarse-grained limit. From now on, we consider the entanglement

dynamics in this coarse-grained limit.
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For example, for the infinite-temperature TFD in the spin system 

In the infinite-temperature limit,
the thermal state is given 
by the identity.
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Thermofield double state in high temperature limit is expected to 
be a product of Bell states.                                  

The system in |�(t1 � 1)i does not evolve to a typical state under the evolution by

the uniform Hamiltonian.

1.3 One interpretation of scrambling in 2d Holographic CFT

Let us now turn to the possible interpretation for the evolution of entanglement and non-

local correlation. Call the two-dimensional conformal field theory having the gravity dual
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double state in the small ✏ limit may be approximated by the state consisting of product of
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1.4 Note that

Here, we describe the parameter region considered in this paper. Let V̂ denote the subsystem
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â
. In the following, we will use only dimensionless parameters. The parameter

region considered is
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The relation between the thermofield double state and Bell state.

Thermofield double state in high temperature limit is expected to 
be a product of Bell states.                                  

The system in |�(t1 � 1)i does not evolve to a typical state under the evolution by

the uniform Hamiltonian.

1.3 One interpretation of scrambling in 2d Holographic CFT

Let us now turn to the possible interpretation for the evolution of entanglement and non-

local correlation. Call the two-dimensional conformal field theory having the gravity dual

as 2d holographic CFT. After we evolve the system with some Hamiltonian, the thermofield

double state in the small ✏ limit may be approximated by the state consisting of product of

Bell pairs,

|TFDi ⇡ ⇧x̃ |Bell; x̃i
L

|Bell; x̃i
R

, (1.7)

where x̃ is defined as x

✏
, and |Bell; x̃i

L,R
denote the Bell pairs consisting of quasi-particles

at x of H1 and H2, respectively. Under the unitary time-evolution, |Bell; x̃i
L

and |Bell; x̃i
R
,

correspond to the left- and right-moving particles, respectively. The entanglement entropy for

trHi=L,R;x |Bell; x̃i hBell; x̃| is O(c). Here Hi=L,R;x̃ denotes the trace-out of the local Hilbert

space at x̃ of Hi=L,R. Starting from this state, we evolve it with H
1

SSD
⌦ 12 and H

1

0
⌦

12 associated with 2d holographic CFT. Under the evolution by these Hamiltonians, the

entanglement entropy for a single interval follows the propagation of quasi-particle. For

H
1

0
⌦ 12, quasi-particles on H1 propagates leftward and rightward at the speed of light.

Therefore, the distribution of quasi-particles is stationary and uniform. Let us consider a

single Bell pair consisting of q1 and q2, the quasi-particles on H1 and H2, respectively. Due

to the scrambling e↵ect of H
1

0
for 2d holographic CFT, q1, a single quasi-particle on H1 is

delocalized, and then is non-locally hidden in the group of quasi-particles that expands to

whole H1. To retrieve the single Bell pair consisting of q1 and q2, we have to be able to

access whole H1. Under the evolution by H
1

SSD
⌦ 12, quasi-particles propagate to x = X

1

f
,

and accumulate there. In this case, to retrieve the single Bell pair, we only need to be able

to access the region near X
f

1
on H1.

1.4 Note that

Here, we describe the parameter region considered in this paper. Let V̂ denote the subsystem

consisting of the spatial intervals, and then let L̂, l̂V , â, ✏̂, and t̂ denote a system size, a

subsystem size, a lattice spacing, a regularization parameter that guarantees the norm of

states considered in in this paper is one, and the times associated to some Hamiltonian

considered. Here, ⇤̂s denote the dimensionfull parameters, and ⇤ is the dimensionless ones

defined as ⇤̂
â
. In the following, we will use only dimensionless parameters. The parameter

region considered is

L � lV , t � ✏ � 1. (1.8)

We call this region as the coarse-grained limit. From now on, we consider the entanglement

dynamics in this coarse-grained limit.
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eiHMöbius/SSDt1σn(wX , wX)e
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The relation between the thermofield double state and Bell state.

Thermofield double state in high temperature limit is expected to 
be a product of Bell states.                                  

Motivation on this paper

The system in |�(t1 � 1)i does not evolve to a typical state under the evolution by

the uniform Hamiltonian.

1.3 One interpretation of scrambling in 2d Holographic CFT

Let us now turn to the possible interpretation for the evolution of entanglement and non-

local correlation. Call the two-dimensional conformal field theory having the gravity dual

as 2d holographic CFT. After we evolve the system with some Hamiltonian, the thermofield

double state in the small ✏ limit may be approximated by the state consisting of product of

Bell pairs,

|TFDi ⇡ ⇧x̃ |Bell; x̃i
L

|Bell; x̃i
R

, (1.7)

where x̃ is defined as x

✏
, and |Bell; x̃i

L,R
denote the Bell pairs consisting of quasi-particles

at x of H1 and H2, respectively. Under the unitary time-evolution, |Bell; x̃i
L

and |Bell; x̃i
R
,

correspond to the left- and right-moving particles, respectively. The entanglement entropy for

trHi=L,R;x |Bell; x̃i hBell; x̃| is O(c). Here Hi=L,R;x̃ denotes the trace-out of the local Hilbert

space at x̃ of Hi=L,R. Starting from this state, we evolve it with H
1

SSD
⌦ 12 and H

1

0
⌦

12 associated with 2d holographic CFT. Under the evolution by these Hamiltonians, the

entanglement entropy for a single interval follows the propagation of quasi-particle. For

H
1

0
⌦ 12, quasi-particles on H1 propagates leftward and rightward at the speed of light.

Therefore, the distribution of quasi-particles is stationary and uniform. Let us consider a

single Bell pair consisting of q1 and q2, the quasi-particles on H1 and H2, respectively. Due

to the scrambling e↵ect of H
1

0
for 2d holographic CFT, q1, a single quasi-particle on H1 is

delocalized, and then is non-locally hidden in the group of quasi-particles that expands to

whole H1. To retrieve the single Bell pair consisting of q1 and q2, we have to be able to

access whole H1. Under the evolution by H
1

SSD
⌦ 12, quasi-particles propagate to x = X

1

f
,

and accumulate there. In this case, to retrieve the single Bell pair, we only need to be able

to access the region near X
f

1
on H1.

1.4 Note that

Here, we describe the parameter region considered in this paper. Let V̂ denote the subsystem

consisting of the spatial intervals, and then let L̂, l̂V , â, ✏̂, and t̂ denote a system size, a

subsystem size, a lattice spacing, a regularization parameter that guarantees the norm of

states considered in in this paper is one, and the times associated to some Hamiltonian

considered. Here, ⇤̂s denote the dimensionfull parameters, and ⇤ is the dimensionless ones

defined as ⇤̂
â
. In the following, we will use only dimensionless parameters. The parameter

region considered is

L � lV , t � ✏ � 1. (1.8)

We call this region as the coarse-grained limit. From now on, we consider the entanglement

dynamics in this coarse-grained limit.
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The relation between the thermofield double state and Bell state.

Thermofield double state in high temperature limit is expected to 
be a product of Bell states.                                  

Motivation on this paper

The system in |�(t1 � 1)i does not evolve to a typical state under the evolution by

the uniform Hamiltonian.

1.3 One interpretation of scrambling in 2d Holographic CFT

Let us now turn to the possible interpretation for the evolution of entanglement and non-

local correlation. Call the two-dimensional conformal field theory having the gravity dual

as 2d holographic CFT. After we evolve the system with some Hamiltonian, the thermofield

double state in the small ✏ limit may be approximated by the state consisting of product of
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L
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, (1.7)

where x̃ is defined as x
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at x of H1 and H2, respectively. Under the unitary time-evolution, |Bell; x̃i
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and |Bell; x̃i
R
,

correspond to the left- and right-moving particles, respectively. The entanglement entropy for

trHi=L,R;x |Bell; x̃i hBell; x̃| is O(c). Here Hi=L,R;x̃ denotes the trace-out of the local Hilbert

space at x̃ of Hi=L,R. Starting from this state, we evolve it with H
1

SSD
⌦ 12 and H

1

0
⌦

12 associated with 2d holographic CFT. Under the evolution by these Hamiltonians, the

entanglement entropy for a single interval follows the propagation of quasi-particle. For

H
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⌦ 12, quasi-particles on H1 propagates leftward and rightward at the speed of light.

Therefore, the distribution of quasi-particles is stationary and uniform. Let us consider a

single Bell pair consisting of q1 and q2, the quasi-particles on H1 and H2, respectively. Due
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1
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f
,

and accumulate there. In this case, to retrieve the single Bell pair, we only need to be able

to access the region near X
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on H1.

1.4 Note that

Here, we describe the parameter region considered in this paper. Let V̂ denote the subsystem

consisting of the spatial intervals, and then let L̂, l̂V , â, ✏̂, and t̂ denote a system size, a

subsystem size, a lattice spacing, a regularization parameter that guarantees the norm of

states considered in in this paper is one, and the times associated to some Hamiltonian

considered. Here, ⇤̂s denote the dimensionfull parameters, and ⇤ is the dimensionless ones

defined as ⇤̂
â
. In the following, we will use only dimensionless parameters. The parameter

region considered is

L � lV , t � ✏ � 1. (1.8)

We call this region as the coarse-grained limit. From now on, we consider the entanglement

dynamics in this coarse-grained limit.
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During the inhomogeneous time evolution, the quasiparticles on 
the first Hilbert space may propagate with the velocity determined 
by the geometry.

For |Ψ(t)⟩ = e−itH1
inh |TFD⟩ . (0.4)
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Velocity:  1

Mobius/SS deformation
The definition of Mobius and sine-square deformed Hamiltonians are

, 

where h(x) is Hamiltonian density of undeformed one:                    .

The envelop functions considered are
.

2 Preliminary

In this section, let us describe the systems, the inhomogenously-deformed Hamiltonians, and

the measures of entanglement considered in this paper.

2.1 Inhomogeneously-deformed Hamiltonians

Before describing the systems considered, let us define the inhomogeneously-deformed Hamil-

tonians considered in this paper. These Hamiltonians is defines as ones where the Hamilto-

nian density is modified by the envelop function of spatial location x:

HInho =

Z
L

0

dxf(x)h(x), (2.1)

where h(x) f(x), L denotes the Hamiltonian density, envelop function, and system size.

We impose the periodic boundary condition on these Hamiltonians. The envelop functions

considered in this paper are

fMöbius(x) = 1 � tanh 2✓ cos

✓
2⇡x

L

◆
, fSSD(x) = 2 sin2

⇣
⇡x

L

⌘
, fCSD(x) = 2 cos2

⇣
⇡x

L

⌘
, (2.2)

where in the SSD limit when ✓ ! 1, fMöbius(x) reduces to fSSD(x), while in the CSD limit

when ✓ ! �1, fMöbius(x) reduces to fCSD(x). For f(x) = fMöbius(x), f(x) = fSSD(x), and

f(x) = fCSD(x), the inhomogeneously-deformed Hamiltonians are called as Möbius, sine-

square (SS), and cosine-square (CS) deformed Hamiltonians. For x ⇡ 0, the Hamiltonian

density spatially modulated by fSSD(x) is smaller than the un-deformed one, while for x ⇡ L

2
,

it is larger than the un-deformed one. For x ⇡ L

2
, the Hamiltonian density modified by

fCSD(x) is smaller than the un-deformed one, while for x ⇡ 0, it is larger than the un-

deformed one. Therefore, the SSD and CSD may the dynamical properties of Hamiltonian

stronger at x ⇡ 0 or x ⇡ L

2
, respectively, while they may those properties weaker at x ⇡ L

2

or x ⇡ 0, respectively.

2.2 The systems evolved with the inhomogeneously-deformed Hamil-

tonians

Let us now describe the systems evolved with the inhomogeneously-deformed Hamiltonians.

System.1: Let us start from the thermofield double state with finite inverse temperature

�:

|TFDi = N e
� ✏(H1+H

2)
2

X

a

|ai
1
⌦ |ai

2
, (2.3)

where H
i=1,2 and |ai

i=1,2
denote the un-deformed 2d CFT Hamiltonian, and the eigenstate

of them, respectively. MT: The regulator ✏ is half of the inverse temperature, ✏ = �/2. Thus,

this thermofield double state is defined in the doubled Hilbert space, H = H1 ⌦ H2. The
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where in the SSD limit when ✓ ! 1, fMöbius(x) reduces to fSSD(x), while in the CSD limit
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f(x) = fCSD(x), the inhomogeneously-deformed Hamiltonians are called as Möbius, sine-
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During the inhomogeneous time evolution, the distribution of 
quasiparticle on the first Hilbert space may inhomogeneously
change with time.

We assume that the number of quasiparticles in the subsystem 
determines EE.       EE may depend on the position.
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During the inhomogeneous time evolution, the distribution of 
quasi-particle on the first Hilbert space may inhomogeneously
change with time.

EE may depend on the position.

quasi-particles

Quantum property (non-local 
correlation) may locally recover 
or emerges.

For example



During the inhomogeneous time evolution, the distribution of 
quasi-particle on the first Hilbert space may inhomogeneously
change with time.

EE may depend on the position.

quasi-particles

Temperature may depend on the 
position.
Quantum property may locally 
recover.

Motivation : SSD/Mobius quenches may make the 
system have the temperature gradient(inhomogeneity 
of quasi-particle). 
Quantum nature may emerge.

For example
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Motivation on the thermodynamics 
In the time dependent case, the entanglement entropy 
depends on the location of the subsystem.

Even for the thermal state, the entanglement entropy depends 
on the location of the subsystem.

The local temperature may depend on the location.

Some interesting local phenomena (for example, entanglement 
phase transition) occur. 



Summary 1: Preparation of nearly vacuum state by checking with EE
3

FIG. 2. The time evolution of von Neumann entropy after the Möbius (second column) and SSD (third column) quench for
the subsystems centered around x = X1

f (second row), x = X2
f (third row). The total system size is L = 100000 and the

subsystem size is 2X = 6000 while the regulator has been set to ✏ = 10. The continuous curves correspond to the holographic
entanglement entropy while the dotted lines are the entanglement entropy prediction from the quasiparticle picture.

II. TIME-DEPENDENCE OF VON NEUMANN
ENTROPY AND BLACK HOLE-LIKE

EXCITATION

The quantum dynamics can be studied by two dif-
ferent pictures – the Schrödinger and Heisenberg pic-
tures. Adopting the Schrödinger picture, let us begin
by computing the time-dependent density matrix explic-
itly. In CFT, the regular and Möbius Hamiltonians form
an sl(2, R) algebra. (Some details are presented in Ap-
pendix A.) By making use of this algebraic structure,
when ✓ < +1, the time-dependence of the density ma-
trix can be computed explicitly as ⇢(t) = Z

�1
e
�2✏H0(t),

where

H0(t) +
2⇡

L

c

12

=
⇥
cosh2(2✓) � sinh2(2✓) cos(⌦t)

⇤✓
H0 +

2⇡

L

c

12

◆

� cosh(2✓) sinh(2✓)[1 � cos(⌦t)]
1

2
(H+ + H�)

+ sinh(2✓) sin(⌦t)
i

2
(H+ � H�). (6)

From here, we immediately observe that the system ex-
hibits eternal oscillation. The periodicity of the oscilla-
tion is

2⇡

⌦
= L cosh 2✓. (7)

The oscillatory behavior after the Möbius quench can
be understood from the discrete energy spectrum of the
Möbius Hamiltonian with the level spacing given by ⇠
⌦ [29, 30]. One may then wish to take the SSD limit
✓ ! 1, but it turns out this is a bit subtle: At the
fixed point x ⇠ X

1

f
, the limits t ! 1 and ✓ ! 1 do

not commute. We will come back to the Schrödinger
picture analysis later when we analyze the holographic
dual description. For now, we switch to the Heisenberg
picture, which turns out to be more convenient to study
the dynamics for generic ✓.

Instead of following the time-dependence of the density
matrix ⇢(t), we can follow the time-dependence of corre-
lation functions Tr [O1(X1)O2(X2) · · · ⇢(t)] adopting the
Heisenberg picture. In our problem, the time-evolution
in the Heisenberg picture can be tracked by using a con-
formal map (maps). This allows us to study the time-
dependence of various observables, including von Neu-
mann entropy (mutual information) (The details of com-
putation are reported in Supplementary Material B. ).
This formalism applies to CFT of any kind. For pre-
sentational simplicity, in the following, we will focus on
a CFT with a gravity dual (holographic CFT). We also
studied free fermion CFT where the Rényi entropy can
be computed via bosonization [51]. We will comment on
the theory-dependence (i.e., holographic v.s. free fermion
CFTs) when necessary.

Let us first look at the von Neumann entropy for sub-
regions. Since there is no translation symmetry in our
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FIG. 2. The time evolution of von Neumann entropy after the Möbius (second column) and SSD (third column) quench for
the subsystems centered around x = X1

f (second row), x = X2
f (third row). The total system size is L = 100000 and the

subsystem size is 2X = 6000 while the regulator has been set to ✏ = 10. The continuous curves correspond to the holographic
entanglement entropy while the dotted lines are the entanglement entropy prediction from the quasiparticle picture.
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EXCITATION

The quantum dynamics can be studied by two dif-
ferent pictures – the Schrödinger and Heisenberg pic-
tures. Adopting the Schrödinger picture, let us begin
by computing the time-dependent density matrix explic-
itly. In CFT, the regular and Möbius Hamiltonians form
an sl(2, R) algebra. (Some details are presented in Ap-
pendix A.) By making use of this algebraic structure,
when ✓ < +1, the time-dependence of the density ma-
trix can be computed explicitly as ⇢(t) = Z
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From here, we immediately observe that the system ex-
hibits eternal oscillation. The periodicity of the oscilla-
tion is
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= L cosh 2✓. (7)

The oscillatory behavior after the Möbius quench can
be understood from the discrete energy spectrum of the
Möbius Hamiltonian with the level spacing given by ⇠
⌦ [29, 30]. One may then wish to take the SSD limit
✓ ! 1, but it turns out this is a bit subtle: At the
fixed point x ⇠ X

1

f
, the limits t ! 1 and ✓ ! 1 do

not commute. We will come back to the Schrödinger
picture analysis later when we analyze the holographic
dual description. For now, we switch to the Heisenberg
picture, which turns out to be more convenient to study
the dynamics for generic ✓.

Instead of following the time-dependence of the density
matrix ⇢(t), we can follow the time-dependence of corre-
lation functions Tr [O1(X1)O2(X2) · · · ⇢(t)] adopting the
Heisenberg picture. In our problem, the time-evolution
in the Heisenberg picture can be tracked by using a con-
formal map (maps). This allows us to study the time-
dependence of various observables, including von Neu-
mann entropy (mutual information) (The details of com-
putation are reported in Supplementary Material B. ).
This formalism applies to CFT of any kind. For pre-
sentational simplicity, in the following, we will focus on
a CFT with a gravity dual (holographic CFT). We also
studied free fermion CFT where the Rényi entropy can
be computed via bosonization [51]. We will comment on
the theory-dependence (i.e., holographic v.s. free fermion
CFTs) when necessary.

Let us first look at the von Neumann entropy for sub-
regions. Since there is no translation symmetry in our
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FIG. 2. The time evolution of von Neumann entropy after the Möbius (second column) and SSD (third column) quench for
the subsystems centered around x = X1

f (second row), x = X2
f (third row). The total system size is L = 100000 and the

subsystem size is 2X = 6000 while the regulator has been set to ✏ = 10. The continuous curves correspond to the holographic
entanglement entropy while the dotted lines are the entanglement entropy prediction from the quasiparticle picture.
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EXCITATION

The quantum dynamics can be studied by two dif-
ferent pictures – the Schrödinger and Heisenberg pic-
tures. Adopting the Schrödinger picture, let us begin
by computing the time-dependent density matrix explic-
itly. In CFT, the regular and Möbius Hamiltonians form
an sl(2, R) algebra. (Some details are presented in Ap-
pendix A.) By making use of this algebraic structure,
when ✓ < +1, the time-dependence of the density ma-
trix can be computed explicitly as ⇢(t) = Z
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From here, we immediately observe that the system ex-
hibits eternal oscillation. The periodicity of the oscilla-
tion is
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⌦
= L cosh 2✓. (7)

The oscillatory behavior after the Möbius quench can
be understood from the discrete energy spectrum of the
Möbius Hamiltonian with the level spacing given by ⇠
⌦ [29, 30]. One may then wish to take the SSD limit
✓ ! 1, but it turns out this is a bit subtle: At the
fixed point x ⇠ X

1

f
, the limits t ! 1 and ✓ ! 1 do

not commute. We will come back to the Schrödinger
picture analysis later when we analyze the holographic
dual description. For now, we switch to the Heisenberg
picture, which turns out to be more convenient to study
the dynamics for generic ✓.

Instead of following the time-dependence of the density
matrix ⇢(t), we can follow the time-dependence of corre-
lation functions Tr [O1(X1)O2(X2) · · · ⇢(t)] adopting the
Heisenberg picture. In our problem, the time-evolution
in the Heisenberg picture can be tracked by using a con-
formal map (maps). This allows us to study the time-
dependence of various observables, including von Neu-
mann entropy (mutual information) (The details of com-
putation are reported in Supplementary Material B. ).
This formalism applies to CFT of any kind. For pre-
sentational simplicity, in the following, we will focus on
a CFT with a gravity dual (holographic CFT). We also
studied free fermion CFT where the Rényi entropy can
be computed via bosonization [51]. We will comment on
the theory-dependence (i.e., holographic v.s. free fermion
CFTs) when necessary.

Let us first look at the von Neumann entropy for sub-
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FIG. 2. The time evolution of von Neumann entropy after the Möbius (second column) and SSD (third column) quench for
the subsystems centered around x = X1

f (second row), x = X2
f (third row). The total system size is L = 100000 and the

subsystem size is 2X = 6000 while the regulator has been set to ✏ = 10. The continuous curves correspond to the holographic
entanglement entropy while the dotted lines are the entanglement entropy prediction from the quasiparticle picture.
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EXCITATION

The quantum dynamics can be studied by two dif-
ferent pictures – the Schrödinger and Heisenberg pic-
tures. Adopting the Schrödinger picture, let us begin
by computing the time-dependent density matrix explic-
itly. In CFT, the regular and Möbius Hamiltonians form
an sl(2, R) algebra. (Some details are presented in Ap-
pendix A.) By making use of this algebraic structure,
when ✓ < +1, the time-dependence of the density ma-
trix can be computed explicitly as ⇢(t) = Z
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From here, we immediately observe that the system ex-
hibits eternal oscillation. The periodicity of the oscilla-
tion is

2⇡

⌦
= L cosh 2✓. (7)

The oscillatory behavior after the Möbius quench can
be understood from the discrete energy spectrum of the
Möbius Hamiltonian with the level spacing given by ⇠
⌦ [29, 30]. One may then wish to take the SSD limit
✓ ! 1, but it turns out this is a bit subtle: At the
fixed point x ⇠ X

1

f
, the limits t ! 1 and ✓ ! 1 do

not commute. We will come back to the Schrödinger
picture analysis later when we analyze the holographic
dual description. For now, we switch to the Heisenberg
picture, which turns out to be more convenient to study
the dynamics for generic ✓.

Instead of following the time-dependence of the density
matrix ⇢(t), we can follow the time-dependence of corre-
lation functions Tr [O1(X1)O2(X2) · · · ⇢(t)] adopting the
Heisenberg picture. In our problem, the time-evolution
in the Heisenberg picture can be tracked by using a con-
formal map (maps). This allows us to study the time-
dependence of various observables, including von Neu-
mann entropy (mutual information) (The details of com-
putation are reported in Supplementary Material B. ).
This formalism applies to CFT of any kind. For pre-
sentational simplicity, in the following, we will focus on
a CFT with a gravity dual (holographic CFT). We also
studied free fermion CFT where the Rényi entropy can
be computed via bosonization [51]. We will comment on
the theory-dependence (i.e., holographic v.s. free fermion
CFTs) when necessary.

Let us first look at the von Neumann entropy for sub-
regions. Since there is no translation symmetry in our

Evolution from the thermal state: 

IA,B = 0 t1 − t1,0 = ∓ L

2π

[
1

tan
(
πX1
L

) − 1

tan
(
πX0
L

)
]

vR,L = ±1, t0,1 − t0,0 = ± [X1(t0,1, t1)−X0(t1)]

ρL,R(t1, t0 = t0,0), SB ≈ 2× cπL

12ϵ
, SB ≈ cπL

12ϵ
,

|Ψ(t)⟩ = Ne−iHt |Ψ⟩ . |Ψ⟩ = Ne−ϵH |Boundary state⟩ .
U(t) = e−iHt, SA = −trAρA log ρA, ρA = trAρ, A A.

SA ≈ c

3
log ϵ+

{
πct
6ϵ t < l

2 ,
πcl
12ϵ t > l

2 .
,

trA
(
e−iHt |Ψ⟩ ⟨Ψ| eiHt

)
≈ trAe

−ϵH , SA ≈ lA, SB ≈ lA, SA∪B ≈ (lA + lB), IA,B ≈ 0.

ρA∪B ≈ ρA ⊗ ρB

ρ =
e−2ϵH

tre−2ϵH
, |Ψ⟩ = 1√

tre−2ϵH

∑

a

e−ϵH |a⟩1 ⊗ |a⟩2

(0.3)

3

Summary 1: Preparation of nearly vacuum state by checking with EE

Quasi-particles move 
out from subsystem. 
Therefore, EE 
decreases with time. 



3

FIG. 2. The time evolution of von Neumann entropy after the Möbius (second column) and SSD (third column) quench for
the subsystems centered around x = X1

f (second row), x = X2
f (third row). The total system size is L = 100000 and the

subsystem size is 2X = 6000 while the regulator has been set to ✏ = 10. The continuous curves correspond to the holographic
entanglement entropy while the dotted lines are the entanglement entropy prediction from the quasiparticle picture.

II. TIME-DEPENDENCE OF VON NEUMANN
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EXCITATION

The quantum dynamics can be studied by two dif-
ferent pictures – the Schrödinger and Heisenberg pic-
tures. Adopting the Schrödinger picture, let us begin
by computing the time-dependent density matrix explic-
itly. In CFT, the regular and Möbius Hamiltonians form
an sl(2, R) algebra. (Some details are presented in Ap-
pendix A.) By making use of this algebraic structure,
when ✓ < +1, the time-dependence of the density ma-
trix can be computed explicitly as ⇢(t) = Z
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From here, we immediately observe that the system ex-
hibits eternal oscillation. The periodicity of the oscilla-
tion is

2⇡

⌦
= L cosh 2✓. (7)

The oscillatory behavior after the Möbius quench can
be understood from the discrete energy spectrum of the
Möbius Hamiltonian with the level spacing given by ⇠
⌦ [29, 30]. One may then wish to take the SSD limit
✓ ! 1, but it turns out this is a bit subtle: At the
fixed point x ⇠ X

1

f
, the limits t ! 1 and ✓ ! 1 do

not commute. We will come back to the Schrödinger
picture analysis later when we analyze the holographic
dual description. For now, we switch to the Heisenberg
picture, which turns out to be more convenient to study
the dynamics for generic ✓.

Instead of following the time-dependence of the density
matrix ⇢(t), we can follow the time-dependence of corre-
lation functions Tr [O1(X1)O2(X2) · · · ⇢(t)] adopting the
Heisenberg picture. In our problem, the time-evolution
in the Heisenberg picture can be tracked by using a con-
formal map (maps). This allows us to study the time-
dependence of various observables, including von Neu-
mann entropy (mutual information) (The details of com-
putation are reported in Supplementary Material B. ).
This formalism applies to CFT of any kind. For pre-
sentational simplicity, in the following, we will focus on
a CFT with a gravity dual (holographic CFT). We also
studied free fermion CFT where the Rényi entropy can
be computed via bosonization [51]. We will comment on
the theory-dependence (i.e., holographic v.s. free fermion
CFTs) when necessary.

Let us first look at the von Neumann entropy for sub-
regions. Since there is no translation symmetry in our
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FIG. 2. The time evolution of von Neumann entropy after the Möbius (second column) and SSD (third column) quench for
the subsystems centered around x = X1

f (second row), x = X2
f (third row). The total system size is L = 100000 and the

subsystem size is 2X = 6000 while the regulator has been set to ✏ = 10. The continuous curves correspond to the holographic
entanglement entropy while the dotted lines are the entanglement entropy prediction from the quasiparticle picture.
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EXCITATION

The quantum dynamics can be studied by two dif-
ferent pictures – the Schrödinger and Heisenberg pic-
tures. Adopting the Schrödinger picture, let us begin
by computing the time-dependent density matrix explic-
itly. In CFT, the regular and Möbius Hamiltonians form
an sl(2, R) algebra. (Some details are presented in Ap-
pendix A.) By making use of this algebraic structure,
when ✓ < +1, the time-dependence of the density ma-
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From here, we immediately observe that the system ex-
hibits eternal oscillation. The periodicity of the oscilla-
tion is
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The oscillatory behavior after the Möbius quench can
be understood from the discrete energy spectrum of the
Möbius Hamiltonian with the level spacing given by ⇠
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1
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not commute. We will come back to the Schrödinger
picture analysis later when we analyze the holographic
dual description. For now, we switch to the Heisenberg
picture, which turns out to be more convenient to study
the dynamics for generic ✓.

Instead of following the time-dependence of the density
matrix ⇢(t), we can follow the time-dependence of corre-
lation functions Tr [O1(X1)O2(X2) · · · ⇢(t)] adopting the
Heisenberg picture. In our problem, the time-evolution
in the Heisenberg picture can be tracked by using a con-
formal map (maps). This allows us to study the time-
dependence of various observables, including von Neu-
mann entropy (mutual information) (The details of com-
putation are reported in Supplementary Material B. ).
This formalism applies to CFT of any kind. For pre-
sentational simplicity, in the following, we will focus on
a CFT with a gravity dual (holographic CFT). We also
studied free fermion CFT where the Rényi entropy can
be computed via bosonization [51]. We will comment on
the theory-dependence (i.e., holographic v.s. free fermion
CFTs) when necessary.
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FIG. 2. The time evolution of von Neumann entropy after the Möbius (second column) and SSD (third column) quench for
the subsystems centered around x = X1

f (second row), x = X2
f (third row). The total system size is L = 100000 and the

subsystem size is 2X = 6000 while the regulator has been set to ✏ = 10. The continuous curves correspond to the holographic
entanglement entropy while the dotted lines are the entanglement entropy prediction from the quasiparticle picture.

II. TIME-DEPENDENCE OF VON NEUMANN
ENTROPY AND BLACK HOLE-LIKE

EXCITATION

The quantum dynamics can be studied by two dif-
ferent pictures – the Schrödinger and Heisenberg pic-
tures. Adopting the Schrödinger picture, let us begin
by computing the time-dependent density matrix explic-
itly. In CFT, the regular and Möbius Hamiltonians form
an sl(2, R) algebra. (Some details are presented in Ap-
pendix A.) By making use of this algebraic structure,
when ✓ < +1, the time-dependence of the density ma-
trix can be computed explicitly as ⇢(t) = Z
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e
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where
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From here, we immediately observe that the system ex-
hibits eternal oscillation. The periodicity of the oscilla-
tion is

2⇡

⌦
= L cosh 2✓. (7)

The oscillatory behavior after the Möbius quench can
be understood from the discrete energy spectrum of the
Möbius Hamiltonian with the level spacing given by ⇠
⌦ [29, 30]. One may then wish to take the SSD limit
✓ ! 1, but it turns out this is a bit subtle: At the
fixed point x ⇠ X

1

f
, the limits t ! 1 and ✓ ! 1 do

not commute. We will come back to the Schrödinger
picture analysis later when we analyze the holographic
dual description. For now, we switch to the Heisenberg
picture, which turns out to be more convenient to study
the dynamics for generic ✓.

Instead of following the time-dependence of the density
matrix ⇢(t), we can follow the time-dependence of corre-
lation functions Tr [O1(X1)O2(X2) · · · ⇢(t)] adopting the
Heisenberg picture. In our problem, the time-evolution
in the Heisenberg picture can be tracked by using a con-
formal map (maps). This allows us to study the time-
dependence of various observables, including von Neu-
mann entropy (mutual information) (The details of com-
putation are reported in Supplementary Material B. ).
This formalism applies to CFT of any kind. For pre-
sentational simplicity, in the following, we will focus on
a CFT with a gravity dual (holographic CFT). We also
studied free fermion CFT where the Rényi entropy can
be computed via bosonization [51]. We will comment on
the theory-dependence (i.e., holographic v.s. free fermion
CFTs) when necessary.

Let us first look at the von Neumann entropy for sub-
regions. Since there is no translation symmetry in our
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subsystem size is 2X = 6000 while the regulator has been set to ✏ = 10. The continuous curves correspond to the holographic
entanglement entropy while the dotted lines are the entanglement entropy prediction from the quasiparticle picture.
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Summary 1: Preparation of nearly vacuum state by checking with EE
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FIG. 2. The time evolution of von Neumann entropy after the Möbius (second column) and SSD (third column) quench for
the subsystems centered around x = X1

f (second row), x = X2
f (third row). The total system size is L = 100000 and the

subsystem size is 2X = 6000 while the regulator has been set to ✏ = 10. The continuous curves correspond to the holographic
entanglement entropy while the dotted lines are the entanglement entropy prediction from the quasiparticle picture.

II. TIME-DEPENDENCE OF VON NEUMANN
ENTROPY AND BLACK HOLE-LIKE

EXCITATION

The quantum dynamics can be studied by two dif-
ferent pictures – the Schrödinger and Heisenberg pic-
tures. Adopting the Schrödinger picture, let us begin
by computing the time-dependent density matrix explic-
itly. In CFT, the regular and Möbius Hamiltonians form
an sl(2, R) algebra. (Some details are presented in Ap-
pendix A.) By making use of this algebraic structure,
when ✓ < +1, the time-dependence of the density ma-
trix can be computed explicitly as ⇢(t) = Z

�1
e
�2✏H0(t),

where
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From here, we immediately observe that the system ex-
hibits eternal oscillation. The periodicity of the oscilla-
tion is

2⇡

⌦
= L cosh 2✓. (7)

The oscillatory behavior after the Möbius quench can
be understood from the discrete energy spectrum of the
Möbius Hamiltonian with the level spacing given by ⇠
⌦ [29, 30]. One may then wish to take the SSD limit
✓ ! 1, but it turns out this is a bit subtle: At the
fixed point x ⇠ X

1

f
, the limits t ! 1 and ✓ ! 1 do

not commute. We will come back to the Schrödinger
picture analysis later when we analyze the holographic
dual description. For now, we switch to the Heisenberg
picture, which turns out to be more convenient to study
the dynamics for generic ✓.

Instead of following the time-dependence of the density
matrix ⇢(t), we can follow the time-dependence of corre-
lation functions Tr [O1(X1)O2(X2) · · · ⇢(t)] adopting the
Heisenberg picture. In our problem, the time-evolution
in the Heisenberg picture can be tracked by using a con-
formal map (maps). This allows us to study the time-
dependence of various observables, including von Neu-
mann entropy (mutual information) (The details of com-
putation are reported in Supplementary Material B. ).
This formalism applies to CFT of any kind. For pre-
sentational simplicity, in the following, we will focus on
a CFT with a gravity dual (holographic CFT). We also
studied free fermion CFT where the Rényi entropy can
be computed via bosonization [51]. We will comment on
the theory-dependence (i.e., holographic v.s. free fermion
CFTs) when necessary.

Let us first look at the von Neumann entropy for sub-
regions. Since there is no translation symmetry in our
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FIG. 2. The time evolution of von Neumann entropy after the Möbius (second column) and SSD (third column) quench for
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f (third row). The total system size is L = 100000 and the

subsystem size is 2X = 6000 while the regulator has been set to ✏ = 10. The continuous curves correspond to the holographic
entanglement entropy while the dotted lines are the entanglement entropy prediction from the quasiparticle picture.

II. TIME-DEPENDENCE OF VON NEUMANN
ENTROPY AND BLACK HOLE-LIKE

EXCITATION

The quantum dynamics can be studied by two dif-
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FIG. 2. The time evolution of von Neumann entropy after the Möbius (second column) and SSD (third column) quench for
the subsystems centered around x = X1

f (second row), x = X2
f (third row). The total system size is L = 100000 and the

subsystem size is 2X = 6000 while the regulator has been set to ✏ = 10. The continuous curves correspond to the holographic
entanglement entropy while the dotted lines are the entanglement entropy prediction from the quasiparticle picture.

II. TIME-DEPENDENCE OF VON NEUMANN
ENTROPY AND BLACK HOLE-LIKE

EXCITATION

The quantum dynamics can be studied by two dif-
ferent pictures – the Schrödinger and Heisenberg pic-
tures. Adopting the Schrödinger picture, let us begin
by computing the time-dependent density matrix explic-
itly. In CFT, the regular and Möbius Hamiltonians form
an sl(2, R) algebra. (Some details are presented in Ap-
pendix A.) By making use of this algebraic structure,
when ✓ < +1, the time-dependence of the density ma-
trix can be computed explicitly as ⇢(t) = Z

�1
e
�2✏H0(t),

where
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From here, we immediately observe that the system ex-
hibits eternal oscillation. The periodicity of the oscilla-
tion is

2⇡

⌦
= L cosh 2✓. (7)

The oscillatory behavior after the Möbius quench can
be understood from the discrete energy spectrum of the
Möbius Hamiltonian with the level spacing given by ⇠
⌦ [29, 30]. One may then wish to take the SSD limit
✓ ! 1, but it turns out this is a bit subtle: At the
fixed point x ⇠ X

1

f
, the limits t ! 1 and ✓ ! 1 do

not commute. We will come back to the Schrödinger
picture analysis later when we analyze the holographic
dual description. For now, we switch to the Heisenberg
picture, which turns out to be more convenient to study
the dynamics for generic ✓.

Instead of following the time-dependence of the density
matrix ⇢(t), we can follow the time-dependence of corre-
lation functions Tr [O1(X1)O2(X2) · · · ⇢(t)] adopting the
Heisenberg picture. In our problem, the time-evolution
in the Heisenberg picture can be tracked by using a con-
formal map (maps). This allows us to study the time-
dependence of various observables, including von Neu-
mann entropy (mutual information) (The details of com-
putation are reported in Supplementary Material B. ).
This formalism applies to CFT of any kind. For pre-
sentational simplicity, in the following, we will focus on
a CFT with a gravity dual (holographic CFT). We also
studied free fermion CFT where the Rényi entropy can
be computed via bosonization [51]. We will comment on
the theory-dependence (i.e., holographic v.s. free fermion
CFTs) when necessary.

Let us first look at the von Neumann entropy for sub-
regions. Since there is no translation symmetry in our
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Summary 1: Preparation of nearly vacuum state by checking with EE
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FIG. 2. The time evolution of von Neumann entropy after the Möbius (second column) and SSD (third column) quench for
the subsystems centered around x = X1

f (second row), x = X2
f (third row). The total system size is L = 100000 and the

subsystem size is 2X = 6000 while the regulator has been set to ✏ = 10. The continuous curves correspond to the holographic
entanglement entropy while the dotted lines are the entanglement entropy prediction from the quasiparticle picture.

II. TIME-DEPENDENCE OF VON NEUMANN
ENTROPY AND BLACK HOLE-LIKE

EXCITATION

The quantum dynamics can be studied by two dif-
ferent pictures – the Schrödinger and Heisenberg pic-
tures. Adopting the Schrödinger picture, let us begin
by computing the time-dependent density matrix explic-
itly. In CFT, the regular and Möbius Hamiltonians form
an sl(2, R) algebra. (Some details are presented in Ap-
pendix A.) By making use of this algebraic structure,
when ✓ < +1, the time-dependence of the density ma-
trix can be computed explicitly as ⇢(t) = Z
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where
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From here, we immediately observe that the system ex-
hibits eternal oscillation. The periodicity of the oscilla-
tion is

2⇡

⌦
= L cosh 2✓. (7)

The oscillatory behavior after the Möbius quench can
be understood from the discrete energy spectrum of the
Möbius Hamiltonian with the level spacing given by ⇠
⌦ [29, 30]. One may then wish to take the SSD limit
✓ ! 1, but it turns out this is a bit subtle: At the
fixed point x ⇠ X

1

f
, the limits t ! 1 and ✓ ! 1 do

not commute. We will come back to the Schrödinger
picture analysis later when we analyze the holographic
dual description. For now, we switch to the Heisenberg
picture, which turns out to be more convenient to study
the dynamics for generic ✓.

Instead of following the time-dependence of the density
matrix ⇢(t), we can follow the time-dependence of corre-
lation functions Tr [O1(X1)O2(X2) · · · ⇢(t)] adopting the
Heisenberg picture. In our problem, the time-evolution
in the Heisenberg picture can be tracked by using a con-
formal map (maps). This allows us to study the time-
dependence of various observables, including von Neu-
mann entropy (mutual information) (The details of com-
putation are reported in Supplementary Material B. ).
This formalism applies to CFT of any kind. For pre-
sentational simplicity, in the following, we will focus on
a CFT with a gravity dual (holographic CFT). We also
studied free fermion CFT where the Rényi entropy can
be computed via bosonization [51]. We will comment on
the theory-dependence (i.e., holographic v.s. free fermion
CFTs) when necessary.

Let us first look at the von Neumann entropy for sub-
regions. Since there is no translation symmetry in our
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We start from               and                          , and then 
evolve the system with SSD Hamiltonian.

The time dependence of mutual information (MI) show 
the mutual information approaches to the vacuum one 
for any subsystems.

Summary 1: Preparation of nearly vacuum state by checking with MI
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FIG. 6. Contours corresponding to |h�(r, x)| SSD
Oh,h̄

(t)i| = 1

for several values of t depicted in the global coordinate. Here,
we set L = 2⇡ and h = 2. By properly shifting the center of
each excitation using the AdS isometry, the contours nicely
match those for the black hole horizon Fig. 5 .

is localized at the bulk point (⇣, xP ) in the AdS, where
⇣ is the bulk direction in the Poincaré coordinate.

Notice that when O
h,h̄

is inserted at the origin ⌧P =
xP = 0 in the boundary Poincaré coordinate, the overlap
is just given by the usual bulk-to-boundary propagator
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Before the SSD quench, the primary operator O
h,h̄

sits at
the origin of the Euclidean global coordinate z = z̄ = 0,
which corresponds to zP = z̄P = L in the Poincaré coor-
dinate. Since the SSD Hamiltonian simply generates the
Poincaré time flow, the SSD quenched state | SSD

Oh,h̄
(t)i

can be obtained by inserting the primary operator at
zP = L � it, z̄P = L � it. In the Lorentzian regime ob-
tained by ⌧P ! ⌧P �itP , the complex coordinate becomes
zP = ⌧P �i(tP �xP ), z̄P = ⌧P �i(tP +xP ). Therefore, we
can regard the operator as being inserted at a complex
time tp = t + iL in the Poincaré coordinate. A simple
modification to the bulk-to-boundary propagator yields
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for the SSD quenched state | SSD

Oh,h̄
(t)i. We plot the con-

tours corresponding to |h�(⇣, xP )| SSD

Oh,h̄
(t)i| = 1 for sev-

eral values of t in Fig. 6. As we expected, the bulk exci-
tation approaches the fixed point as time evolves. More-
over, by properly shifting the center of the excitations
using the AdS isometry, the contours nicely match those
for the black hole horizon Fig. 5.

FIG. 7. The time evolution of the (Rényi) mutual information
for the free fermion CFT for two di↵erent configurations of
the intervals A and B. The black lines indicate the ground
state value of the mutual information.

V. MUTUAL INFORMATION AND FINER
STRUCTURE OF THE LATE TIME DENSITY

MATRIX

We now study the mutual information for two intervals
(A and B), I(A, B) := SA + SB � SA[B , which can pro-
vide more information on the density matrix. Unlike the
von Neumann entropy for a single interval, the mutual in-
formation depends on the details of the CFT beyond the
central charge [61, 62]. We recall that in mutual informa-
tion leading order contributions in SA, SB , SA[B cancel
with each other. Hence, the subleading (sub-extensive)
terms in the von Neumann entropy contribute to mutual
information. Here, we consider two kindes of CFTs, the
free fermion CFT with c = 1 and holographic CFT in the
large c limit. These represent two classes of dynamics –
the integrable dynamics that can be described by the
quasiparticle picture [18], and the quantum information
scrambling dynamics that can e↵ectively be described by
the membrane picture [63–69]. Some calculation details
can be found in Appendix G.

Plotted in Fig. 7 is the time evolution of the mutual
information in the free fermion CFT for two represen-
tative configurations of the intervals. For both config-
urations, we found the mutual information between the
two intervals approaches to the ground state value at late
times. For the case when both intervals do not include
the fixed point x = X

f

1
, this behavior confirms the late

time approximation (5). On the other hand, even when
one of the subsystems includes the fixed point x = X

f

1

while the other does not, the mutual information is still
given by the ground state value (Fig. 7). This behavior is
not explained by the leading order late time approxima-
tion (5). Thus, beyond the leading order in 1/✏, the late
time density matrix deviates from (5). Put di↵erently,
the above consideration shows that our state acquires
(quantum) correlations by the SSD evolution: At high
enough temperatures, the initial state ⇢(0) has very lit-
tle quantum correlations, ⇢A[B ⇡ ⇢A ⌦ ⇢B , while at late
enough times, the non-zero mutual information suggests
that ⇢A[B 6= ⇢A ⌦ ⇢B , i.e., a separable reduced density
matrix can become entangled.

The mutual information can also be computed for holo-
graphic CFT (using the Heisenberg picture mentioned
above). We confirmed that the late time mutual infor-
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We start from                and.                          ,and then 
evolve the system with SSD Hamiltonian.

The time dependence of mutual information (MI) show 
the mutual information approaches to the vacuum one 
for any subsystems.
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FIG. 6. Contours corresponding to |h�(r, x)| SSD
Oh,h̄

(t)i| = 1

for several values of t depicted in the global coordinate. Here,
we set L = 2⇡ and h = 2. By properly shifting the center of
each excitation using the AdS isometry, the contours nicely
match those for the black hole horizon Fig. 5 .

is localized at the bulk point (⇣, xP ) in the AdS, where
⇣ is the bulk direction in the Poincaré coordinate.

Notice that when O
h,h̄

is inserted at the origin ⌧P =
xP = 0 in the boundary Poincaré coordinate, the overlap
is just given by the usual bulk-to-boundary propagator
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Before the SSD quench, the primary operator O
h,h̄

sits at
the origin of the Euclidean global coordinate z = z̄ = 0,
which corresponds to zP = z̄P = L in the Poincaré coor-
dinate. Since the SSD Hamiltonian simply generates the
Poincaré time flow, the SSD quenched state | SSD

Oh,h̄
(t)i

can be obtained by inserting the primary operator at
zP = L � it, z̄P = L � it. In the Lorentzian regime ob-
tained by ⌧P ! ⌧P �itP , the complex coordinate becomes
zP = ⌧P �i(tP �xP ), z̄P = ⌧P �i(tP +xP ). Therefore, we
can regard the operator as being inserted at a complex
time tp = t + iL in the Poincaré coordinate. A simple
modification to the bulk-to-boundary propagator yields

h�(⇣, xP )| SSD

Oh,h̄
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for the SSD quenched state | SSD

Oh,h̄
(t)i. We plot the con-

tours corresponding to |h�(⇣, xP )| SSD

Oh,h̄
(t)i| = 1 for sev-

eral values of t in Fig. 6. As we expected, the bulk exci-
tation approaches the fixed point as time evolves. More-
over, by properly shifting the center of the excitations
using the AdS isometry, the contours nicely match those
for the black hole horizon Fig. 5.

FIG. 7. The time evolution of the (Rényi) mutual information
for the free fermion CFT for two di↵erent configurations of
the intervals A and B. The black lines indicate the ground
state value of the mutual information.

V. MUTUAL INFORMATION AND FINER
STRUCTURE OF THE LATE TIME DENSITY

MATRIX

We now study the mutual information for two intervals
(A and B), I(A, B) := SA + SB � SA[B , which can pro-
vide more information on the density matrix. Unlike the
von Neumann entropy for a single interval, the mutual in-
formation depends on the details of the CFT beyond the
central charge [61, 62]. We recall that in mutual informa-
tion leading order contributions in SA, SB , SA[B cancel
with each other. Hence, the subleading (sub-extensive)
terms in the von Neumann entropy contribute to mutual
information. Here, we consider two kindes of CFTs, the
free fermion CFT with c = 1 and holographic CFT in the
large c limit. These represent two classes of dynamics –
the integrable dynamics that can be described by the
quasiparticle picture [18], and the quantum information
scrambling dynamics that can e↵ectively be described by
the membrane picture [63–69]. Some calculation details
can be found in Appendix G.

Plotted in Fig. 7 is the time evolution of the mutual
information in the free fermion CFT for two represen-
tative configurations of the intervals. For both config-
urations, we found the mutual information between the
two intervals approaches to the ground state value at late
times. For the case when both intervals do not include
the fixed point x = X

f

1
, this behavior confirms the late

time approximation (5). On the other hand, even when
one of the subsystems includes the fixed point x = X

f

1

while the other does not, the mutual information is still
given by the ground state value (Fig. 7). This behavior is
not explained by the leading order late time approxima-
tion (5). Thus, beyond the leading order in 1/✏, the late
time density matrix deviates from (5). Put di↵erently,
the above consideration shows that our state acquires
(quantum) correlations by the SSD evolution: At high
enough temperatures, the initial state ⇢(0) has very lit-
tle quantum correlations, ⇢A[B ⇡ ⇢A ⌦ ⇢B , while at late
enough times, the non-zero mutual information suggests
that ⇢A[B 6= ⇢A ⌦ ⇢B , i.e., a separable reduced density
matrix can become entangled.

The mutual information can also be computed for holo-
graphic CFT (using the Heisenberg picture mentioned
above). We confirmed that the late time mutual infor-
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Summary 2: Revival of mutual information from the typical 
state

The setup considered: 
The system in the pure state is unitarily evolved to the 
typical state with the strong scrambling Hamiltonian (2d 
holographic Hamiltonian.). 
The entanglement entropy for this state follows the Pageʼs curve: 
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Summary 2: Revival of mutual information from the typical 
stateThe setup considered: 

The system in the pure state is unitarily evolved to  the 
typical state with the strong scrambling non-equilibrium 
process. 
The entanglement entropy for this state follows the Pageʼs curve: 
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eiHMöbius/SSDt1σn(X)e−iHMöbius/SSDt1 =
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Summary 2: Revival of mutual information from the typical 
stateThe setup considered: 
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typical state with the strong scrambling non-equilibrium 
process. 
The entanglement entropy for this state follows the Pageʼs curve: 
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Summary 2: Revival of mutual information from the typical 
state
There are no non-local correlations of the typical state 
for  the small subsystems                     .     
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We try to recover the non-local correlation from the 
thermofield double state by the SSD time evolution. 



Information retrieval by using inhomogeneous quenches
We evolve the system with the 2d uniform holographic Hamiltonian,             

In the large    -regime, the system may be approximated by a typical state.

square of N 2 guarantees that hTFD|TFDi = 1. Then, we unitarily evolve with Möbius/SS

deformed Hamiltonian. The time evolution operator acting on this thermofield double state

is defined as

UMöbius/SSD = e
�it1H

1
Möbius/SSD ⌦ 12, (2.4)

where H
1

Möbius/SSD
and 12 denote the Möbius/SS deformed Hamiltonian acting on H1, and

identity operator on H2, respectively.

System.2: We start from an excited state which is defined as

| (t0)i =
⇣
e

�iH
1
0 t0 ⌦ 12

⌘
|TFDi , (2.5)

and then evolve it with the SSD Hamiltonian acting on only H1. Under this evolution, the
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⌘
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and then evolve it with the un-deformed Hamiltonian acting on only H1. Under this evolu-

tion, the system is in the state given by
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|�(t1)i . (2.8)

2.3 Entanglement entropies in the twist operator formalism
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where the Euclidean normalization constant N �2
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In the large    -regime, the system may be approximated by a typical state.

square of N 2 guarantees that hTFD|TFDi = 1. Then, we unitarily evolve with Möbius/SS

deformed Hamiltonian. The time evolution operator acting on this thermofield double state

is defined as

UMöbius/SSD = e
�it1H

1
Möbius/SSD ⌦ 12, (2.4)

where H
1

Möbius/SSD
and 12 denote the Möbius/SS deformed Hamiltonian acting on H1, and

identity operator on H2, respectively.

System.2: We start from an excited state which is defined as

| (t0)i =
⇣
e

�iH
1
0 t0 ⌦ 12

⌘
|TFDi , (2.5)

and then evolve it with the SSD Hamiltonian acting on only H1. Under this evolution, the

system is in the state given by
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⇣
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�iH
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|TFDi , (2.7)

and then evolve it with the un-deformed Hamiltonian acting on only H1. Under this evolu-

tion, the system is in the state given by

|�(t1, t0)i =
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e

�iH
1
0 t0 ⌦ 12
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|�(t1)i . (2.8)

2.3 Entanglement entropies in the twist operator formalism

To employ the path-integral formalism suited to analytic computation, let us define Euclidean
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E

X

a,b

e
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⌦ |a⇤i hb⇤|

2

⌘
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where the Euclidean normalization constant N �2

E
= tre�2✏H guarantees that tr⇢E,↵ = 1.

These density operators may be the analytic-continued ones in imaginary time corresponding

to the ones defined in Section 2.2. The Euclidean evolution operators are defined as

U
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=
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>>>><
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1

E,↵
=
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1
SCD⌧2 ↵ = 3

. (2.10)
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where the two- and four-point functions on the torus depend on the detail of 2d CFTs, and

we call them as the non-universal pieces 2. These locations, w
New

x,✏,↵
and w

New

x,✏,↵
, depends on the

imaginary times ⌧i=0,1,2. After we analytically continue ⌧i=0,1,2 to iti=0,1,2, only the imaginary

parts of w
New

x,✏,↵
and w

New

x,✏,↵
depend on these real times. In other words, under the evolution by

U
1

E,↵
e

�✏H , the twist and anti-twist operators spatially moves as in Appendix A.1. Under the

evolution by HMöbius/SSD/CSC, the primary operators at x = X
f

1
= 0 and x = X

f

2
= L

2
does

not spatially move. We call X
f

1
and X

f

2
as fixed points.

2.3.1 Non-universal pieces in 2d holographic CFT

Let us look closely at the non-universal piece of the entanglement entropy for the single and

double intervals in 2d holographic CFT. To compare the results on 2d holographic CFTs

with the ones in 2d free fermion, we calculated the non-universal pieces in this free fermion,

The details of results and calculation is reported in Appendix C.1.

Single interval

Here, we present the non-universal piece of the entanglement entropy for the single interval

in the coarse-grained region. In this region, the gravity dual of the system on the torus is

BTZ black hole [3]. Therefore, in the von Neumann limit when n ! 1, the non-universal

piece is given by the geodesic length in BTZ black hole [4, 5]. Let V denote the subsystem,

and also v1 and v2 denote the endpoints of V . Here, v1 > v2. The non-universal piece of

entanglement entropy for the reduced density matrix associated with V is holographically

2Mao tian, can you check if this is correct? Especially, I would ask you to check if the
temporary location of operators.

9

The operators evolved by HMöbius periodically moves between x = X
f

1
and x = X

f

2
with

period T1 = L cosh 2✓. In the SSD limit when ✓ ! 1, these operators move with time to

x = X
f

2
. The speed of motion of these operators depends on the locations of them and ✓. The

system size grows and shrinks with time according to the motion of the evolved operators,

so that the geodesic length associated to this subsystem increases and decreases with time.

Let us looks closely at the time-dependence of the non-universal pieces of SB and SA[B.

For simplicity, let us suppose that B includes x = X
f

1
, its center is this fixed, and A does

not include this fixed point. For the non-universal piece of SA[B, the early time-dependence

of it may be given by the lengths of geodesics connecting the endpoints of A and B, Scon,

while the late-time dependence may be given by the ones connecting the endpoints on the

same Euclidean time-slices, Sdis. Therefore, for large t1 regime, the non-universal pieces of

SB and SA[B may be determined by the lengths of the geodesics connecting the endpoints

of the subsystems on the same Euclidean time-slices as in Fig. ??. Let us suppose that the

operator corresponding to the right endpoint of B move with time between x = X
Nearest and

x = X
Furtherest where 0 < X

Furtherest
< X

Nearest
<

L

2
, while the one corresponding to the

left endpoint of B move between x = L � X
Furtherest and x = L � X

Nearest. If ✓ becomes

larger, then X
Nearest gets closer to X

f

2
. For the small ✓, Sdis is given by the geodesic lengths

that are proportional to the the sizes of A and B, so that SA[B cancels SA and SB. As

a consequence, for the small ✓ but the large t1, IA,B is zero. For the large ✓, Sdis is given

by the geodesic lengths that are proportional to the the sizes of Ã and B̃. Here, Ã and

B̃ are complements of H2 and H1 to A and B, respectively. In this time-regime, SA[B is

proportional to L � (X1 � X2) + (XNew

Y1,✏,↵=1
� X

New

Y2,✏,↵=1
), while SA and SB are proportional

to X1 � X2 and L � (XNew
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� X

New
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), respectively, so that IA,B is proportional to

2
⇥
(X1 � X2) � (XNew

Y1,✏,↵=1
� X
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Y2,✏,↵=1
)
⇤
. For HSSD, in the time-region where the black-hole-

like excitation, the excitation having the thermal entropy of H1, emerges at x = X
f

1
, IA,B

reduces to the value which is proportional to X1 � X2. One possible for the late-time IA,B

that IA,B may measure the Bell pairs initially shared by A and H1
5.

5Probably, this sentence is put on other sections.
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where h(x) f(x), L denotes the Hamiltonian density, envelop function, and system size.

We impose the periodic boundary condition on these Hamiltonians. The envelop functions

considered in this paper are

fMöbius(x) = 1 � tanh 2✓ cos

✓
2⇡x

L

◆
, fSSD(x) = 2 sin2

⇣
⇡x

L

⌘
, fCSD(x) = 2 cos2

⇣
⇡x

L

⌘
, (2.2)

where in the SSD limit when ✓ ! 1, fMöbius(x) reduces to fSSD(x), while in the CSD limit
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f(x) = fCSD(x), the inhomogeneously-deformed Hamiltonians are called as Möbius, sine-

square (SS), and cosine-square (CS) deformed Hamiltonians. For x ⇡ 0, the Hamiltonian

density spatially modulated by fSSD(x) is smaller than the un-deformed one, while for x ⇡ L

2
,

it is larger than the un-deformed one. For x ⇡ L

2
, the Hamiltonian density modified by

fCSD(x) is smaller than the un-deformed one, while for x ⇡ 0, it is larger than the un-

deformed one. Therefore, the SSD and CSD may the dynamical properties of Hamiltonian

stronger at x ⇡ 0 or x ⇡ L

2
, respectively, while they may those properties weaker at x ⇡ L

2

or x ⇡ 0, respectively.

2.2 The systems evolved with the inhomogeneously-deformed Hamil-

tonians
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where H
i=1,2 and |ai
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denote the un-deformed 2d CFT Hamiltonian, and the eigenstate

of them, respectively. Thus, this thermofield double state is defined in the doubled Hilbert

space, H = H1 ⌦H2. The square of N 2 guarantees that hTFD|TFDi = 1. Then, we unitarily

evolve with Möbius/SS deformed Hamiltonian. The time evolution operator acting on this

thermofield double state is defined as

UMöbius/SSD = e
�it1H

1
Möbius/SSD ⌦ 12, (2.4)

where H
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Möbius/SSD
and 12 denote the Möbius/SS deformed Hamiltonian acting on H1, and

identity operator on H2, respectively.

System.2: We start from an excited state which is defined as

| (t0)i =
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and then evolve it with the SSD Hamiltonian acting on only H1. Under this evolution, the

system is in the state given by
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[b] The geometry corresponding to H2

Figure 1: A cartoon about the operator evolution in the Heisenberg picture. The green lines

illustrate the subsystems, A and B. The blue lines correspond to the non-universal pieces of

SA and SB. The non-universal piece of SA[B is given by the minimal geodesic length of the

ones that correspond to the purple dashed and orange dotted lines. The red arrow illustrates

the growth of X
Nearest with the increase of ✓.

3.1.1 The ✓- and Position-dependence of IA,B under evolution by HMöbius/SSD

Let us now present the time-dependence of IA,B under evolution induced by HMöbius/SSD. We

depict IA,B for various ✓ as function of t1 in Fig. 2. The center of B is x = X
f

1
. The solid

lines illustrate the time-dependence of IA,B for A, the center of which is x = X
f

1
, while the

dashed line illustrates that for A, the center of which is x = L

4
. Let t1,Nearest denote the time

5Probably, this sentence is put on other sections.
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2
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of them, respectively. Thus, this thermofield double state is defined in the doubled Hilbert
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where H
1
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and 12 denote the Möbius/SS deformed Hamiltonian acting on H1, and

identity operator on H2, respectively.

System.2: We start from an excited state which is defined as
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system is in the state given by
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where the two- and four-point functions on the torus depend on the detail of 2d CFTs, and

we call them as the non-universal pieces 2. These locations, w
New

x,✏,↵
and w

New

x,✏,↵
, depends on the

imaginary times ⌧i=0,1,2. After we analytically continue ⌧i=0,1,2 to iti=0,1,2, only the imaginary

parts of w
New

x,✏,↵
and w

New

x,✏,↵
depend on these real times. In other words, under the evolution by

U
1

E,↵
e

�✏H , the twist and anti-twist operators spatially moves as in Appendix A.1. Under the

evolution by HMöbius/SSD/CSC, the primary operators at x = X
f

1
= 0 and x = X

f

2
= L

2
does

not spatially move. We call X
f

1
and X

f

2
as fixed points.

2.3.1 Non-universal pieces in 2d holographic CFT

Let us look closely at the non-universal piece of the entanglement entropy for the single and

double intervals in 2d holographic CFT. To compare the results on 2d holographic CFTs

with the ones in 2d free fermion, we calculated the non-universal pieces in this free fermion,

The details of results and calculation is reported in Appendix C.1.

Single interval

Here, we present the non-universal piece of the entanglement entropy for the single interval

in the coarse-grained region. In this region, the gravity dual of the system on the torus is

BTZ black hole [3]. Therefore, in the von Neumann limit when n ! 1, the non-universal

piece is given by the geodesic length in BTZ black hole [4, 5]. Let V denote the subsystem,

and also v1 and v2 denote the endpoints of V . Here, v1 > v2. The non-universal piece of

entanglement entropy for the reduced density matrix associated with V is holographically

2Mao tian, can you check if this is correct? Especially, I would ask you to check if the
temporary location of operators.
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The operators evolved by HMöbius periodically moves between x = X
f

1
and x = X

f

2
with

period T1 = L cosh 2✓. In the SSD limit when ✓ ! 1, these operators move with time to

x = X
f

2
. The speed of motion of these operators depends on the locations of them and ✓. The

system size grows and shrinks with time according to the motion of the evolved operators,

so that the geodesic length associated to this subsystem increases and decreases with time.

Let us looks closely at the time-dependence of the non-universal pieces of SB and SA[B.

For simplicity, let us suppose that B includes x = X
f

1
, its center is this fixed, and A does

not include this fixed point. For the non-universal piece of SA[B, the early time-dependence

of it may be given by the lengths of geodesics connecting the endpoints of A and B, Scon,

while the late-time dependence may be given by the ones connecting the endpoints on the

same Euclidean time-slices, Sdis. Therefore, for large t1 regime, the non-universal pieces of

SB and SA[B may be determined by the lengths of the geodesics connecting the endpoints

of the subsystems on the same Euclidean time-slices as in Fig. ??. Let us suppose that the

operator corresponding to the right endpoint of B move with time between x = X
Nearest and

x = X
Furtherest where 0 < X

Furtherest
< X

Nearest
<

L

2
, while the one corresponding to the

left endpoint of B move between x = L � X
Furtherest and x = L � X

Nearest. If ✓ becomes

larger, then X
Nearest gets closer to X

f

2
. For the small ✓, Sdis is given by the geodesic lengths

that are proportional to the the sizes of A and B, so that SA[B cancels SA and SB. As

a consequence, for the small ✓ but the large t1, IA,B is zero. For the large ✓, Sdis is given

by the geodesic lengths that are proportional to the the sizes of Ã and B̃. Here, Ã and

B̃ are complements of H2 and H1 to A and B, respectively. In this time-regime, SA[B is

proportional to L � (X1 � X2) + (XNew

Y1,✏,↵=1
� X

New

Y2,✏,↵=1
), while SA and SB are proportional

to X1 � X2 and L � (XNew

Y1,✏,↵=1
� X
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), respectively, so that IA,B is proportional to

2
⇥
(X1 � X2) � (XNew

Y1,✏,↵=1
� X

New

Y2,✏,↵=1
)
⇤
. For HSSD, in the time-region where the black-hole-

like excitation, the excitation having the thermal entropy of H1, emerges at x = X
f

1
, IA,B

reduces to the value which is proportional to X1 � X2. One possible for the late-time IA,B

that IA,B may measure the Bell pairs initially shared by A and H1
5.

5Probably, this sentence is put on other sections.

12

where h(x) f(x), L denotes the Hamiltonian density, envelop function, and system size.

We impose the periodic boundary condition on these Hamiltonians. The envelop functions

considered in this paper are

fMöbius(x) = 1 � tanh 2✓ cos

✓
2⇡x

L

◆
, fSSD(x) = 2 sin2

⇣
⇡x

L

⌘
, fCSD(x) = 2 cos2

⇣
⇡x

L

⌘
, (2.2)

where in the SSD limit when ✓ ! 1, fMöbius(x) reduces to fSSD(x), while in the CSD limit

when ✓ ! �1, fMöbius(x) reduces to fCSD(x). For f(x) = fMöbius(x), f(x) = fSSD(x), and

f(x) = fCSD(x), the inhomogeneously-deformed Hamiltonians are called as Möbius, sine-

square (SS), and cosine-square (CS) deformed Hamiltonians. For x ⇡ 0, the Hamiltonian

density spatially modulated by fSSD(x) is smaller than the un-deformed one, while for x ⇡ L

2
,

it is larger than the un-deformed one. For x ⇡ L

2
, the Hamiltonian density modified by

fCSD(x) is smaller than the un-deformed one, while for x ⇡ 0, it is larger than the un-

deformed one. Therefore, the SSD and CSD may the dynamical properties of Hamiltonian

stronger at x ⇡ 0 or x ⇡ L

2
, respectively, while they may those properties weaker at x ⇡ L

2

or x ⇡ 0, respectively.

2.2 The systems evolved with the inhomogeneously-deformed Hamil-

tonians

Let us now describe the systems evolved with the inhomogeneously-deformed Hamiltonians.

System.1: Let us start from the thermofield double state of the finite inverse temperature

�:

|TFDi = N e
� ✏(H1+H

2)
2

X

a

|ai
1
⌦ |ai

2
, (2.3)

where H
i=1,2 and |ai

i=1,2
denote the un-deformed 2d CFT Hamiltonian, and the eigenstate

of them, respectively. Thus, this thermofield double state is defined in the doubled Hilbert

space, H = H1 ⌦H2. The square of N 2 guarantees that hTFD|TFDi = 1. Then, we unitarily

evolve with Möbius/SS deformed Hamiltonian. The time evolution operator acting on this

thermofield double state is defined as

UMöbius/SSD = e
�it1H

1
Möbius/SSD ⌦ 12, (2.4)

where H
1

Möbius/SSD
and 12 denote the Möbius/SS deformed Hamiltonian acting on H1, and

identity operator on H2, respectively.

System.2: We start from an excited state which is defined as

| (t0)i =
⇣
e

�iH
1
0 t0 ⌦ 12

⌘
|TFDi , (2.5)

and then evolve it with the SSD Hamiltonian acting on only H1. Under this evolution, the

system is in the state given by

| (t1, t0)i =
⇣
e

�iH
1
SSDt1 ⌦ 12

⌘
| (t0)i . (2.6)
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evolve with Möbius/SS deformed Hamiltonian. The time evolution operator acting on this

thermofield double state is defined as
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and 12 denote the Möbius/SS deformed Hamiltonian acting on H1, and
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System.2: We start from an excited state which is defined as
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and then evolve it with the SSD Hamiltonian acting on only H1. Under this evolution, the
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[b] The geometry corresponding to H2

Figure 1: A cartoon about the operator evolution in the Heisenberg picture. The green lines

illustrate the subsystems, A and B. The blue lines correspond to the non-universal pieces of

SA and SB. The non-universal piece of SA[B is given by the minimal geodesic length of the

ones that correspond to the purple dashed and orange dotted lines. The red arrow illustrates

the growth of X
Nearest with the increase of ✓.

3.1.1 The ✓- and Position-dependence of IA,B under evolution by HMöbius/SSD

Let us now present the time-dependence of IA,B under evolution induced by HMöbius/SSD. We

depict IA,B for various ✓ as function of t1 in Fig. 2. The center of B is x = X
f

1
. The solid

lines illustrate the time-dependence of IA,B for A, the center of which is x = X
f

1
, while the

dashed line illustrates that for A, the center of which is x = L

4
. Let t1,Nearest denote the time

5Probably, this sentence is put on other sections.
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We evolve the system with the 2d uniform holographic Hamiltonian,             

In the large    -regime, the system may be approximated by a typical state.

square of N 2 guarantees that hTFD|TFDi = 1. Then, we unitarily evolve with Möbius/SS

deformed Hamiltonian. The time evolution operator acting on this thermofield double state

is defined as

UMöbius/SSD = e
�it1H

1
Möbius/SSD ⌦ 12, (2.4)

where H
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Möbius/SSD
and 12 denote the Möbius/SS deformed Hamiltonian acting on H1, and

identity operator on H2, respectively.

System.2: We start from an excited state which is defined as

| (t0)i =
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e

�iH
1
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|TFDi , (2.5)

and then evolve it with the SSD Hamiltonian acting on only H1. Under this evolution, the

system is in the state given by

| (t1, t0)i =
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e
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1
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System.3: Let us start from an excited state defined as

|�(t1)i =
⇣
e

�iH
1
SSDt1 ⌦ 12

⌘
|TFDi , (2.7)

and then evolve it with the un-deformed Hamiltonian acting on only H1. Under this evolu-

tion, the system is in the state given by

|�(t1, t0)i =
⇣
e

�iH
1
0 t0 ⌦ 12

⌘
|�(t1)i . (2.8)

2.3 Entanglement entropies in the twist operator formalism

To employ the path-integral formalism suited to analytic computation, let us define Euclidean

density operators as
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where the Euclidean normalization constant N �2

E
= tre�2✏H guarantees that tr⇢E,↵ = 1.

These density operators may be the analytic-continued ones in imaginary time corresponding

to the ones defined in Section 2.2. The Euclidean evolution operators are defined as
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Divide the system into the subsystem V and V , the complement to it, and then define the

reduce Euclidean density operators for V as ⇢E,↵;V = trV⇢E,↵. Let A, B, and A [ B denote
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f

1
, IA,B reduces

to

IA,B ⇡ 2c⇡lA

6✏
, (3.3)

where lA = X1 � X2. One possible for the late-time IA,B that IA,B may measure the Bell

pairs initially shared by A and H1
5.
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where h(x) f(x), L denotes the Hamiltonian density, envelop function, and system size.

We impose the periodic boundary condition on these Hamiltonians. The envelop functions

considered in this paper are

fMöbius(x) = 1 � tanh 2✓ cos
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L
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, fCSD(x) = 2 cos2
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⌘
, (2.2)

where in the SSD limit when ✓ ! 1, fMöbius(x) reduces to fSSD(x), while in the CSD limit

when ✓ ! �1, fMöbius(x) reduces to fCSD(x). For f(x) = fMöbius(x), f(x) = fSSD(x), and

f(x) = fCSD(x), the inhomogeneously-deformed Hamiltonians are called as Möbius, sine-

square (SS), and cosine-square (CS) deformed Hamiltonians. For x ⇡ 0, the Hamiltonian

density spatially modulated by fSSD(x) is smaller than the un-deformed one, while for x ⇡ L

2
,

it is larger than the un-deformed one. For x ⇡ L

2
, the Hamiltonian density modified by

fCSD(x) is smaller than the un-deformed one, while for x ⇡ 0, it is larger than the un-

deformed one. Therefore, the SSD and CSD may the dynamical properties of Hamiltonian

stronger at x ⇡ 0 or x ⇡ L

2
, respectively, while they may those properties weaker at x ⇡ L

2

or x ⇡ 0, respectively.

2.2 The systems evolved with the inhomogeneously-deformed Hamil-

tonians

Let us now describe the systems evolved with the inhomogeneously-deformed Hamiltonians.

System.1: Let us start from the thermofield double state of the finite inverse temperature

�:

|TFDi = N e
� ✏(H1+H

2)
2

X

a

|ai
1
⌦ |ai

2
, (2.3)

where H
i=1,2 and |ai

i=1,2
denote the un-deformed 2d CFT Hamiltonian, and the eigenstate

of them, respectively. Thus, this thermofield double state is defined in the doubled Hilbert

space, H = H1 ⌦H2. The square of N 2 guarantees that hTFD|TFDi = 1. Then, we unitarily

evolve with Möbius/SS deformed Hamiltonian. The time evolution operator acting on this

thermofield double state is defined as

UMöbius/SSD = e
�it1H

1
Möbius/SSD ⌦ 12, (2.4)

where H
1

Möbius/SSD
and 12 denote the Möbius/SS deformed Hamiltonian acting on H1, and

identity operator on H2, respectively.

System.2: We start from an excited state which is defined as

| (t0)i =
⇣
e

�iH
1
0 t0 ⌦ 12

⌘
|TFDi , (2.5)

and then evolve it with the SSD Hamiltonian acting on only H1. Under this evolution, the

system is in the state given by

| (t1, t0)i =
⇣
e

�iH
1
SSDt1 ⌦ 12

⌘
| (t0)i . (2.6)
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where the two- and four-point functions on the torus depend on the detail of 2d CFTs, and

we call them as the non-universal pieces 2. These locations, w
New

x,✏,↵
and w

New

x,✏,↵
, depends on the

imaginary times ⌧i=0,1,2. After we analytically continue ⌧i=0,1,2 to iti=0,1,2, only the imaginary

parts of w
New

x,✏,↵
and w

New

x,✏,↵
depend on these real times. In other words, under the evolution by

U
1

E,↵
e

�✏H , the twist and anti-twist operators spatially moves as in Appendix A.1. Under the

evolution by HMöbius/SSD/CSC, the primary operators at x = X
f

1
= 0 and x = X

f

2
= L

2
does

not spatially move. We call X
f

1
and X

f

2
as fixed points.

2.3.1 Non-universal pieces in 2d holographic CFT

Let us look closely at the non-universal piece of the entanglement entropy for the single and

double intervals in 2d holographic CFT. To compare the results on 2d holographic CFTs

with the ones in 2d free fermion, we calculated the non-universal pieces in this free fermion,

The details of results and calculation is reported in Appendix C.1.

Single interval

Here, we present the non-universal piece of the entanglement entropy for the single interval

in the coarse-grained region. In this region, the gravity dual of the system on the torus is

BTZ black hole [3]. Therefore, in the von Neumann limit when n ! 1, the non-universal

piece is given by the geodesic length in BTZ black hole [4, 5]. Let V denote the subsystem,

and also v1 and v2 denote the endpoints of V . Here, v1 > v2. The non-universal piece of

entanglement entropy for the reduced density matrix associated with V is holographically

2Mao tian, can you check if this is correct? Especially, I would ask you to check if the
temporary location of operators.
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The operators evolved by HMöbius periodically moves between x = X
f

1
and x = X

f

2
with

period T1 = L cosh 2✓. In the SSD limit when ✓ ! 1, these operators move with time to

x = X
f

2
. The speed of motion of these operators depends on the locations of them and ✓. The

system size grows and shrinks with time according to the motion of the evolved operators,

so that the geodesic length associated to this subsystem increases and decreases with time.

Let us looks closely at the time-dependence of the non-universal pieces of SB and SA[B.

For simplicity, let us suppose that B includes x = X
f

1
, its center is this fixed, and A does

not include this fixed point. For the non-universal piece of SA[B, the early time-dependence

of it may be given by the lengths of geodesics connecting the endpoints of A and B, Scon,

while the late-time dependence may be given by the ones connecting the endpoints on the

same Euclidean time-slices, Sdis. Therefore, for large t1 regime, the non-universal pieces of

SB and SA[B may be determined by the lengths of the geodesics connecting the endpoints

of the subsystems on the same Euclidean time-slices as in Fig. ??. Let us suppose that the

operator corresponding to the right endpoint of B move with time between x = X
Nearest and

x = X
Furtherest where 0 < X

Furtherest
< X

Nearest
<

L

2
, while the one corresponding to the

left endpoint of B move between x = L � X
Furtherest and x = L � X

Nearest. If ✓ becomes

larger, then X
Nearest gets closer to X

f

2
. For the small ✓, Sdis is given by the geodesic lengths

that are proportional to the the sizes of A and B, so that SA[B cancels SA and SB. As

a consequence, for the small ✓ but the large t1, IA,B is zero. For the large ✓, Sdis is given

by the geodesic lengths that are proportional to the the sizes of Ã and B̃. Here, Ã and

B̃ are complements of H2 and H1 to A and B, respectively. In this time-regime, SA[B is

proportional to L � (X1 � X2) + (XNew

Y1,✏,↵=1
� X

New

Y2,✏,↵=1
), while SA and SB are proportional

to X1 � X2 and L � (XNew

Y1,✏,↵=1
� X

New

Y2,✏,↵=1
), respectively, so that IA,B is proportional to

2
⇥
(X1 � X2) � (XNew

Y1,✏,↵=1
� X

New

Y2,✏,↵=1
)
⇤
. For HSSD, in the time-region where the black-hole-

like excitation, the excitation having the thermal entropy of H1, emerges at x = X
f

1
, IA,B

reduces to the value which is proportional to X1 � X2. One possible for the late-time IA,B

that IA,B may measure the Bell pairs initially shared by A and H1
5.
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where h(x) f(x), L denotes the Hamiltonian density, envelop function, and system size.

We impose the periodic boundary condition on these Hamiltonians. The envelop functions

considered in this paper are

fMöbius(x) = 1 � tanh 2✓ cos

✓
2⇡x

L

◆
, fSSD(x) = 2 sin2

⇣
⇡x

L

⌘
, fCSD(x) = 2 cos2

⇣
⇡x

L

⌘
, (2.2)

where in the SSD limit when ✓ ! 1, fMöbius(x) reduces to fSSD(x), while in the CSD limit

when ✓ ! �1, fMöbius(x) reduces to fCSD(x). For f(x) = fMöbius(x), f(x) = fSSD(x), and

f(x) = fCSD(x), the inhomogeneously-deformed Hamiltonians are called as Möbius, sine-

square (SS), and cosine-square (CS) deformed Hamiltonians. For x ⇡ 0, the Hamiltonian

density spatially modulated by fSSD(x) is smaller than the un-deformed one, while for x ⇡ L

2
,

it is larger than the un-deformed one. For x ⇡ L

2
, the Hamiltonian density modified by

fCSD(x) is smaller than the un-deformed one, while for x ⇡ 0, it is larger than the un-

deformed one. Therefore, the SSD and CSD may the dynamical properties of Hamiltonian

stronger at x ⇡ 0 or x ⇡ L

2
, respectively, while they may those properties weaker at x ⇡ L

2

or x ⇡ 0, respectively.

2.2 The systems evolved with the inhomogeneously-deformed Hamil-

tonians

Let us now describe the systems evolved with the inhomogeneously-deformed Hamiltonians.

System.1: Let us start from the thermofield double state of the finite inverse temperature

�:

|TFDi = N e
� ✏(H1+H

2)
2

X

a

|ai
1
⌦ |ai

2
, (2.3)

where H
i=1,2 and |ai

i=1,2
denote the un-deformed 2d CFT Hamiltonian, and the eigenstate

of them, respectively. Thus, this thermofield double state is defined in the doubled Hilbert

space, H = H1 ⌦H2. The square of N 2 guarantees that hTFD|TFDi = 1. Then, we unitarily

evolve with Möbius/SS deformed Hamiltonian. The time evolution operator acting on this

thermofield double state is defined as

UMöbius/SSD = e
�it1H

1
Möbius/SSD ⌦ 12, (2.4)

where H
1

Möbius/SSD
and 12 denote the Möbius/SS deformed Hamiltonian acting on H1, and

identity operator on H2, respectively.

System.2: We start from an excited state which is defined as

| (t0)i =
⇣
e

�iH
1
0 t0 ⌦ 12

⌘
|TFDi , (2.5)

and then evolve it with the SSD Hamiltonian acting on only H1. Under this evolution, the

system is in the state given by

| (t1, t0)i =
⇣
e

�iH
1
SSDt1 ⌦ 12

⌘
| (t0)i . (2.6)
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where h(x) f(x), L denotes the Hamiltonian density, envelop function, and system size.
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fMöbius(x) = 1 � tanh 2✓ cos

✓
2⇡x

L

◆
, fSSD(x) = 2 sin2

⇣
⇡x

L

⌘
, fCSD(x) = 2 cos2

⇣
⇡x

L

⌘
, (2.2)

where in the SSD limit when ✓ ! 1, fMöbius(x) reduces to fSSD(x), while in the CSD limit

when ✓ ! �1, fMöbius(x) reduces to fCSD(x). For f(x) = fMöbius(x), f(x) = fSSD(x), and

f(x) = fCSD(x), the inhomogeneously-deformed Hamiltonians are called as Möbius, sine-

square (SS), and cosine-square (CS) deformed Hamiltonians. For x ⇡ 0, the Hamiltonian

density spatially modulated by fSSD(x) is smaller than the un-deformed one, while for x ⇡ L

2
,

it is larger than the un-deformed one. For x ⇡ L

2
, the Hamiltonian density modified by

fCSD(x) is smaller than the un-deformed one, while for x ⇡ 0, it is larger than the un-

deformed one. Therefore, the SSD and CSD may the dynamical properties of Hamiltonian

stronger at x ⇡ 0 or x ⇡ L

2
, respectively, while they may those properties weaker at x ⇡ L

2

or x ⇡ 0, respectively.

2.2 The systems evolved with the inhomogeneously-deformed Hamil-

tonians

Let us now describe the systems evolved with the inhomogeneously-deformed Hamiltonians.
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�:
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2)
2
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a
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1
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2
, (2.3)

where H
i=1,2 and |ai

i=1,2
denote the un-deformed 2d CFT Hamiltonian, and the eigenstate

of them, respectively. Thus, this thermofield double state is defined in the doubled Hilbert

space, H = H1 ⌦H2. The square of N 2 guarantees that hTFD|TFDi = 1. Then, we unitarily

evolve with Möbius/SS deformed Hamiltonian. The time evolution operator acting on this

thermofield double state is defined as

UMöbius/SSD = e
�it1H

1
Möbius/SSD ⌦ 12, (2.4)

where H
1

Möbius/SSD
and 12 denote the Möbius/SS deformed Hamiltonian acting on H1, and

identity operator on H2, respectively.

System.2: We start from an excited state which is defined as

| (t0)i =
⇣
e

�iH
1
0 t0 ⌦ 12

⌘
|TFDi , (2.5)

and then evolve it with the SSD Hamiltonian acting on only H1. Under this evolution, the

system is in the state given by

| (t1, t0)i =
⇣
e

�iH
1
SSDt1 ⌦ 12

⌘
| (t0)i . (2.6)

6

[b] The geometry corresponding to H2

Figure 1: A cartoon about the operator evolution in the Heisenberg picture. The green lines

illustrate the subsystems, A and B. The blue lines correspond to the non-universal pieces of

SA and SB. The non-universal piece of SA[B is given by the minimal geodesic length of the

ones that correspond to the purple dashed and orange dotted lines. The red arrow illustrates

the growth of X
Nearest with the increase of ✓.

3.1.1 The ✓- and Position-dependence of IA,B under evolution by HMöbius/SSD

Let us now present the time-dependence of IA,B under evolution induced by HMöbius/SSD. We

depict IA,B for various ✓ as function of t1 in Fig. 2. The center of B is x = X
f

1
. The solid

lines illustrate the time-dependence of IA,B for A, the center of which is x = X
f

1
, while the

dashed line illustrates that for A, the center of which is x = L

4
. Let t1,Nearest denote the time

5Probably, this sentence is put on other sections.
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The non-local correlation is recovered from the typical state:  
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. For HSSD, in the time-region where the black-hole-like exci-

tation, the excitation having the thermal entropy of H1, emerges at x = X
f

1
, IA,B reduces

to

IA,B ⇡ 2c⇡lA

6✏
, (3.3)

where lA = X1 � X2. One possible for the late-time IA,B that IA,B may measure the Bell

pairs initially shared by A and H1
5.
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where h(x) f(x), L denotes the Hamiltonian density, envelop function, and system size.

We impose the periodic boundary condition on these Hamiltonians. The envelop functions
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where in the SSD limit when ✓ ! 1, fMöbius(x) reduces to fSSD(x), while in the CSD limit
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square (SS), and cosine-square (CS) deformed Hamiltonians. For x ⇡ 0, the Hamiltonian

density spatially modulated by fSSD(x) is smaller than the un-deformed one, while for x ⇡ L

2
,

it is larger than the un-deformed one. For x ⇡ L

2
, the Hamiltonian density modified by

fCSD(x) is smaller than the un-deformed one, while for x ⇡ 0, it is larger than the un-

deformed one. Therefore, the SSD and CSD may the dynamical properties of Hamiltonian

stronger at x ⇡ 0 or x ⇡ L

2
, respectively, while they may those properties weaker at x ⇡ L

2
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2.2 The systems evolved with the inhomogeneously-deformed Hamil-

tonians
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System.1: Let us start from the thermofield double state of the finite inverse temperature

�:
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2)
2
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1
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2
, (2.3)

where H
i=1,2 and |ai

i=1,2
denote the un-deformed 2d CFT Hamiltonian, and the eigenstate

of them, respectively. Thus, this thermofield double state is defined in the doubled Hilbert

space, H = H1 ⌦H2. The square of N 2 guarantees that hTFD|TFDi = 1. Then, we unitarily

evolve with Möbius/SS deformed Hamiltonian. The time evolution operator acting on this

thermofield double state is defined as

UMöbius/SSD = e
�it1H

1
Möbius/SSD ⌦ 12, (2.4)

where H
1

Möbius/SSD
and 12 denote the Möbius/SS deformed Hamiltonian acting on H1, and

identity operator on H2, respectively.

System.2: We start from an excited state which is defined as

| (t0)i =
⇣
e

�iH
1
0 t0 ⌦ 12

⌘
|TFDi , (2.5)

and then evolve it with the SSD Hamiltonian acting on only H1. Under this evolution, the

system is in the state given by

| (t1, t0)i =
⇣
e

�iH
1
SSDt1 ⌦ 12

⌘
| (t0)i . (2.6)
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where the two- and four-point functions on the torus depend on the detail of 2d CFTs, and

we call them as the non-universal pieces 2. These locations, w
New

x,✏,↵
and w

New

x,✏,↵
, depends on the

imaginary times ⌧i=0,1,2. After we analytically continue ⌧i=0,1,2 to iti=0,1,2, only the imaginary

parts of w
New

x,✏,↵
and w

New

x,✏,↵
depend on these real times. In other words, under the evolution by

U
1

E,↵
e

�✏H , the twist and anti-twist operators spatially moves as in Appendix A.1. Under the

evolution by HMöbius/SSD/CSC, the primary operators at x = X
f

1
= 0 and x = X

f

2
= L

2
does

not spatially move. We call X
f

1
and X

f

2
as fixed points.

2.3.1 Non-universal pieces in 2d holographic CFT

Let us look closely at the non-universal piece of the entanglement entropy for the single and

double intervals in 2d holographic CFT. To compare the results on 2d holographic CFTs

with the ones in 2d free fermion, we calculated the non-universal pieces in this free fermion,

The details of results and calculation is reported in Appendix C.1.

Single interval

Here, we present the non-universal piece of the entanglement entropy for the single interval

in the coarse-grained region. In this region, the gravity dual of the system on the torus is

BTZ black hole [3]. Therefore, in the von Neumann limit when n ! 1, the non-universal

piece is given by the geodesic length in BTZ black hole [4, 5]. Let V denote the subsystem,

and also v1 and v2 denote the endpoints of V . Here, v1 > v2. The non-universal piece of

entanglement entropy for the reduced density matrix associated with V is holographically

2Mao tian, can you check if this is correct? Especially, I would ask you to check if the
temporary location of operators.
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The operators evolved by HMöbius periodically moves between x = X
f

1
and x = X

f

2
with

period T1 = L cosh 2✓. In the SSD limit when ✓ ! 1, these operators move with time to

x = X
f

2
. The speed of motion of these operators depends on the locations of them and ✓. The

system size grows and shrinks with time according to the motion of the evolved operators,

so that the geodesic length associated to this subsystem increases and decreases with time.

Let us looks closely at the time-dependence of the non-universal pieces of SB and SA[B.

For simplicity, let us suppose that B includes x = X
f

1
, its center is this fixed, and A does

not include this fixed point. For the non-universal piece of SA[B, the early time-dependence

of it may be given by the lengths of geodesics connecting the endpoints of A and B, Scon,

while the late-time dependence may be given by the ones connecting the endpoints on the

same Euclidean time-slices, Sdis. Therefore, for large t1 regime, the non-universal pieces of

SB and SA[B may be determined by the lengths of the geodesics connecting the endpoints

of the subsystems on the same Euclidean time-slices as in Fig. ??. Let us suppose that the

operator corresponding to the right endpoint of B move with time between x = X
Nearest and

x = X
Furtherest where 0 < X

Furtherest
< X

Nearest
<

L

2
, while the one corresponding to the

left endpoint of B move between x = L � X
Furtherest and x = L � X

Nearest. If ✓ becomes

larger, then X
Nearest gets closer to X

f

2
. For the small ✓, Sdis is given by the geodesic lengths

that are proportional to the the sizes of A and B, so that SA[B cancels SA and SB. As

a consequence, for the small ✓ but the large t1, IA,B is zero. For the large ✓, Sdis is given

by the geodesic lengths that are proportional to the the sizes of Ã and B̃. Here, Ã and

B̃ are complements of H2 and H1 to A and B, respectively. In this time-regime, SA[B is

proportional to L � (X1 � X2) + (XNew

Y1,✏,↵=1
� X

New

Y2,✏,↵=1
), while SA and SB are proportional

to X1 � X2 and L � (XNew

Y1,✏,↵=1
� X

New

Y2,✏,↵=1
), respectively, so that IA,B is proportional to

2
⇥
(X1 � X2) � (XNew

Y1,✏,↵=1
� X

New

Y2,✏,↵=1
)
⇤
. For HSSD, in the time-region where the black-hole-

like excitation, the excitation having the thermal entropy of H1, emerges at x = X
f

1
, IA,B

reduces to the value which is proportional to X1 � X2. One possible for the late-time IA,B

that IA,B may measure the Bell pairs initially shared by A and H1
5.

5Probably, this sentence is put on other sections.
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where h(x) f(x), L denotes the Hamiltonian density, envelop function, and system size.

We impose the periodic boundary condition on these Hamiltonians. The envelop functions

considered in this paper are

fMöbius(x) = 1 � tanh 2✓ cos

✓
2⇡x

L

◆
, fSSD(x) = 2 sin2

⇣
⇡x

L

⌘
, fCSD(x) = 2 cos2

⇣
⇡x

L

⌘
, (2.2)

where in the SSD limit when ✓ ! 1, fMöbius(x) reduces to fSSD(x), while in the CSD limit

when ✓ ! �1, fMöbius(x) reduces to fCSD(x). For f(x) = fMöbius(x), f(x) = fSSD(x), and

f(x) = fCSD(x), the inhomogeneously-deformed Hamiltonians are called as Möbius, sine-

square (SS), and cosine-square (CS) deformed Hamiltonians. For x ⇡ 0, the Hamiltonian

density spatially modulated by fSSD(x) is smaller than the un-deformed one, while for x ⇡ L

2
,

it is larger than the un-deformed one. For x ⇡ L

2
, the Hamiltonian density modified by

fCSD(x) is smaller than the un-deformed one, while for x ⇡ 0, it is larger than the un-

deformed one. Therefore, the SSD and CSD may the dynamical properties of Hamiltonian

stronger at x ⇡ 0 or x ⇡ L

2
, respectively, while they may those properties weaker at x ⇡ L

2

or x ⇡ 0, respectively.

2.2 The systems evolved with the inhomogeneously-deformed Hamil-

tonians

Let us now describe the systems evolved with the inhomogeneously-deformed Hamiltonians.

System.1: Let us start from the thermofield double state of the finite inverse temperature

�:

|TFDi = N e
� ✏(H1+H

2)
2

X

a

|ai
1
⌦ |ai

2
, (2.3)

where H
i=1,2 and |ai

i=1,2
denote the un-deformed 2d CFT Hamiltonian, and the eigenstate

of them, respectively. Thus, this thermofield double state is defined in the doubled Hilbert

space, H = H1 ⌦H2. The square of N 2 guarantees that hTFD|TFDi = 1. Then, we unitarily

evolve with Möbius/SS deformed Hamiltonian. The time evolution operator acting on this

thermofield double state is defined as

UMöbius/SSD = e
�it1H

1
Möbius/SSD ⌦ 12, (2.4)

where H
1

Möbius/SSD
and 12 denote the Möbius/SS deformed Hamiltonian acting on H1, and

identity operator on H2, respectively.

System.2: We start from an excited state which is defined as

| (t0)i =
⇣
e

�iH
1
0 t0 ⌦ 12

⌘
|TFDi , (2.5)

and then evolve it with the SSD Hamiltonian acting on only H1. Under this evolution, the

system is in the state given by

| (t1, t0)i =
⇣
e

�iH
1
SSDt1 ⌦ 12

⌘
| (t0)i . (2.6)
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where in the SSD limit when ✓ ! 1, fMöbius(x) reduces to fSSD(x), while in the CSD limit

when ✓ ! �1, fMöbius(x) reduces to fCSD(x). For f(x) = fMöbius(x), f(x) = fSSD(x), and

f(x) = fCSD(x), the inhomogeneously-deformed Hamiltonians are called as Möbius, sine-

square (SS), and cosine-square (CS) deformed Hamiltonians. For x ⇡ 0, the Hamiltonian

density spatially modulated by fSSD(x) is smaller than the un-deformed one, while for x ⇡ L
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,

it is larger than the un-deformed one. For x ⇡ L
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, the Hamiltonian density modified by

fCSD(x) is smaller than the un-deformed one, while for x ⇡ 0, it is larger than the un-

deformed one. Therefore, the SSD and CSD may the dynamical properties of Hamiltonian
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, respectively, while they may those properties weaker at x ⇡ L
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or x ⇡ 0, respectively.
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�:
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2)
2
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a
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1
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2
, (2.3)

where H
i=1,2 and |ai

i=1,2
denote the un-deformed 2d CFT Hamiltonian, and the eigenstate

of them, respectively. Thus, this thermofield double state is defined in the doubled Hilbert

space, H = H1 ⌦H2. The square of N 2 guarantees that hTFD|TFDi = 1. Then, we unitarily

evolve with Möbius/SS deformed Hamiltonian. The time evolution operator acting on this

thermofield double state is defined as

UMöbius/SSD = e
�it1H

1
Möbius/SSD ⌦ 12, (2.4)

where H
1

Möbius/SSD
and 12 denote the Möbius/SS deformed Hamiltonian acting on H1, and

identity operator on H2, respectively.

System.2: We start from an excited state which is defined as

| (t0)i =
⇣
e

�iH
1
0 t0 ⌦ 12

⌘
|TFDi , (2.5)

and then evolve it with the SSD Hamiltonian acting on only H1. Under this evolution, the

system is in the state given by

| (t1, t0)i =
⇣
e

�iH
1
SSDt1 ⌦ 12

⌘
| (t0)i . (2.6)
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Figure 1: A cartoon about the operator evolution in the Heisenberg picture. The green lines

illustrate the subsystems, A and B. The blue lines correspond to the non-universal pieces of

SA and SB. The non-universal piece of SA[B is given by the minimal geodesic length of the

ones that correspond to the purple dashed and orange dotted lines. The red arrow illustrates

the growth of X
Nearest with the increase of ✓.

3.1.1 The ✓- and Position-dependence of IA,B under evolution by HMöbius/SSD

Let us now present the time-dependence of IA,B under evolution induced by HMöbius/SSD. We

depict IA,B for various ✓ as function of t1 in Fig. 2. The center of B is x = X
f

1
. The solid

lines illustrate the time-dependence of IA,B for A, the center of which is x = X
f

1
, while the

dashed line illustrates that for A, the center of which is x = L

4
. Let t1,Nearest denote the time

5Probably, this sentence is put on other sections.
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X
f

2
. For the small ✓, Sdis is given by c⇡

6✏

h
2L �

⇣
X

New,↵=1

Y1,✏
� X

New,↵=1

Y2,✏
+ (X1 � X2)

⌘i
. As a

consequence, for the small ✓ but the large t1, IA,B is zero. For the large ✓, Sdis is given by
c⇡

6✏

h⇣
X

New,↵=1

Y1,✏
� X

New,↵=1

Y2,✏
+ (X1 � X2)

⌘i
. In this time-regime, SA and SB are approximated

by c⇡(L�(X1�X2))

6✏
and

c⇡(L�(X
New
Y1,✏,↵=0�X

New
Y2,✏,↵=0))

6✏
, respectively, so that IA,B is approximated by

c⇡[(X1�X2)�(X
New
Y1,✏,↵=0�X

New
Y2,✏,↵=0)]

3✏
. For HSSD, in the time-region where the black-hole-like exci-

tation, the excitation having the thermal entropy of H1, emerges at x = X
f

1
, IA,B reduces

to

IA,B ⇡ 2c⇡lA

6✏
, (3.3)

where lA = X1 � X2. One possible for the late-time IA,B that IA,B may measure the Bell

pairs initially shared by A and H1
5.
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where h(x) f(x), L denotes the Hamiltonian density, envelop function, and system size.

We impose the periodic boundary condition on these Hamiltonians. The envelop functions

considered in this paper are

fMöbius(x) = 1 � tanh 2✓ cos

✓
2⇡x

L

◆
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L

⌘
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L

⌘
, (2.2)

where in the SSD limit when ✓ ! 1, fMöbius(x) reduces to fSSD(x), while in the CSD limit

when ✓ ! �1, fMöbius(x) reduces to fCSD(x). For f(x) = fMöbius(x), f(x) = fSSD(x), and

f(x) = fCSD(x), the inhomogeneously-deformed Hamiltonians are called as Möbius, sine-

square (SS), and cosine-square (CS) deformed Hamiltonians. For x ⇡ 0, the Hamiltonian

density spatially modulated by fSSD(x) is smaller than the un-deformed one, while for x ⇡ L

2
,

it is larger than the un-deformed one. For x ⇡ L

2
, the Hamiltonian density modified by

fCSD(x) is smaller than the un-deformed one, while for x ⇡ 0, it is larger than the un-

deformed one. Therefore, the SSD and CSD may the dynamical properties of Hamiltonian

stronger at x ⇡ 0 or x ⇡ L

2
, respectively, while they may those properties weaker at x ⇡ L

2

or x ⇡ 0, respectively.

2.2 The systems evolved with the inhomogeneously-deformed Hamil-

tonians

Let us now describe the systems evolved with the inhomogeneously-deformed Hamiltonians.

System.1: Let us start from the thermofield double state of the finite inverse temperature

�:

|TFDi = N e
� ✏(H1+H

2)
2

X

a

|ai
1
⌦ |ai

2
, (2.3)

where H
i=1,2 and |ai

i=1,2
denote the un-deformed 2d CFT Hamiltonian, and the eigenstate

of them, respectively. Thus, this thermofield double state is defined in the doubled Hilbert

space, H = H1 ⌦H2. The square of N 2 guarantees that hTFD|TFDi = 1. Then, we unitarily

evolve with Möbius/SS deformed Hamiltonian. The time evolution operator acting on this

thermofield double state is defined as

UMöbius/SSD = e
�it1H

1
Möbius/SSD ⌦ 12, (2.4)

where H
1

Möbius/SSD
and 12 denote the Möbius/SS deformed Hamiltonian acting on H1, and

identity operator on H2, respectively.

System.2: We start from an excited state which is defined as

| (t0)i =
⇣
e

�iH
1
0 t0 ⌦ 12

⌘
|TFDi , (2.5)

and then evolve it with the SSD Hamiltonian acting on only H1. Under this evolution, the

system is in the state given by

| (t1, t0)i =
⇣
e

�iH
1
SSDt1 ⌦ 12

⌘
| (t0)i . (2.6)
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is mapped to w
New,↵

x,✏
, w

New,↵

x,✏
. As a consequence, S

(n)

V is written as

S
(n)

A
=

1

1 � n
log [h�n(wX1 , wX1)�n(wX2 , wX2)i2✏

],

S
(n)

B
=

1

1 � n
log

2

4⇧i=1,2

�����
dw

New

Yi,✏,↵

dwYi

�����

2hn

3

5 +
1

1 � n
log

⌦
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�
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New

Y1,✏,↵
, w

New

Y1,✏,↵

�
�n

�
w

New
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, w

New
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�↵
2✏

,

S
(n)

A[B
=

1

1 � n
log

2

4⇧i=1,2

�����
dw

New

Yi,✏,↵

dwYi

�����

2hn

3

5

+
1

1 � n
log

⌦
�n

�
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New

Y1,✏,↵
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New

Y1,✏,↵

�
�n

�
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New

Y2,✏,↵
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New
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�
�n(wX1 , wX1)�n(wX2 , wX2)

↵
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,

(2.15)

where the two- and four-point functions on the torus depend on the detail of 2d CFTs, and

we call them as the non-universal pieces 2. These locations, w
New

x,✏,↵
and w

New

x,✏,↵
, depends on the

imaginary times ⌧i=0,1,2. After we analytically continue ⌧i=0,1,2 to iti=0,1,2, only the imaginary

parts of w
New

x,✏,↵
and w

New

x,✏,↵
depend on these real times. In other words, under the evolution by

U
1

E,↵
e

�✏H , the twist and anti-twist operators spatially moves as in Appendix A.1. Under the

evolution by HMöbius/SSD/CSC, the primary operators at x = X
f

1
= 0 and x = X

f

2
= L

2
does

not spatially move. We call X
f

1
and X

f

2
as fixed points.

2.3.1 Non-universal pieces in 2d holographic CFT

Let us look closely at the non-universal piece of the entanglement entropy for the single and

double intervals in 2d holographic CFT. To compare the results on 2d holographic CFTs

with the ones in 2d free fermion, we calculated the non-universal pieces in this free fermion,

The details of results and calculation is reported in Appendix C.1.

Single interval

Here, we present the non-universal piece of the entanglement entropy for the single interval

in the coarse-grained region. In this region, the gravity dual of the system on the torus is

BTZ black hole [3]. Therefore, in the von Neumann limit when n ! 1, the non-universal

piece is given by the geodesic length in BTZ black hole [4, 5]. Let V denote the subsystem,

and also v1 and v2 denote the endpoints of V . Here, v1 > v2. The non-universal piece of

entanglement entropy for the reduced density matrix associated with V is holographically

2Mao tian, can you check if this is correct? Especially, I would ask you to check if the
temporary location of operators.

9

The operators evolved by HMöbius periodically moves between x = X
f

1
and x = X

f

2
with

period T1 = L cosh 2✓. In the SSD limit when ✓ ! 1, these operators move with time to

x = X
f

2
. The speed of motion of these operators depends on the locations of them and ✓. The

system size grows and shrinks with time according to the motion of the evolved operators,

so that the geodesic length associated to this subsystem increases and decreases with time.

Let us looks closely at the time-dependence of the non-universal pieces of SB and SA[B.

For simplicity, let us suppose that B includes x = X
f

1
, its center is this fixed, and A does

not include this fixed point. For the non-universal piece of SA[B, the early time-dependence

of it may be given by the lengths of geodesics connecting the endpoints of A and B, Scon,

while the late-time dependence may be given by the ones connecting the endpoints on the

same Euclidean time-slices, Sdis. Therefore, for large t1 regime, the non-universal pieces of

SB and SA[B may be determined by the lengths of the geodesics connecting the endpoints

of the subsystems on the same Euclidean time-slices as in Fig. ??. Let us suppose that the

operator corresponding to the right endpoint of B move with time between x = X
Nearest and

x = X
Furtherest where 0 < X

Furtherest
< X

Nearest
<

L

2
, while the one corresponding to the

left endpoint of B move between x = L � X
Furtherest and x = L � X

Nearest. If ✓ becomes

larger, then X
Nearest gets closer to X

f

2
. For the small ✓, Sdis is given by the geodesic lengths

that are proportional to the the sizes of A and B, so that SA[B cancels SA and SB. As

a consequence, for the small ✓ but the large t1, IA,B is zero. For the large ✓, Sdis is given

by the geodesic lengths that are proportional to the the sizes of Ã and B̃. Here, Ã and

B̃ are complements of H2 and H1 to A and B, respectively. In this time-regime, SA[B is

proportional to L � (X1 � X2) + (XNew

Y1,✏,↵=1
� X

New

Y2,✏,↵=1
), while SA and SB are proportional

to X1 � X2 and L � (XNew

Y1,✏,↵=1
� X

New

Y2,✏,↵=1
), respectively, so that IA,B is proportional to

2
⇥
(X1 � X2) � (XNew

Y1,✏,↵=1
� X

New

Y2,✏,↵=1
)
⇤
. For HSSD, in the time-region where the black-hole-

like excitation, the excitation having the thermal entropy of H1, emerges at x = X
f

1
, IA,B

reduces to the value which is proportional to X1 � X2. One possible for the late-time IA,B

that IA,B may measure the Bell pairs initially shared by A and H1
5.

5Probably, this sentence is put on other sections.
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where h(x) f(x), L denotes the Hamiltonian density, envelop function, and system size.

We impose the periodic boundary condition on these Hamiltonians. The envelop functions

considered in this paper are

fMöbius(x) = 1 � tanh 2✓ cos

✓
2⇡x

L

◆
, fSSD(x) = 2 sin2

⇣
⇡x

L

⌘
, fCSD(x) = 2 cos2

⇣
⇡x

L

⌘
, (2.2)

where in the SSD limit when ✓ ! 1, fMöbius(x) reduces to fSSD(x), while in the CSD limit

when ✓ ! �1, fMöbius(x) reduces to fCSD(x). For f(x) = fMöbius(x), f(x) = fSSD(x), and

f(x) = fCSD(x), the inhomogeneously-deformed Hamiltonians are called as Möbius, sine-

square (SS), and cosine-square (CS) deformed Hamiltonians. For x ⇡ 0, the Hamiltonian

density spatially modulated by fSSD(x) is smaller than the un-deformed one, while for x ⇡ L

2
,

it is larger than the un-deformed one. For x ⇡ L

2
, the Hamiltonian density modified by

fCSD(x) is smaller than the un-deformed one, while for x ⇡ 0, it is larger than the un-

deformed one. Therefore, the SSD and CSD may the dynamical properties of Hamiltonian

stronger at x ⇡ 0 or x ⇡ L

2
, respectively, while they may those properties weaker at x ⇡ L

2

or x ⇡ 0, respectively.

2.2 The systems evolved with the inhomogeneously-deformed Hamil-

tonians

Let us now describe the systems evolved with the inhomogeneously-deformed Hamiltonians.

System.1: Let us start from the thermofield double state of the finite inverse temperature

�:

|TFDi = N e
� ✏(H1+H

2)
2

X

a

|ai
1
⌦ |ai

2
, (2.3)

where H
i=1,2 and |ai

i=1,2
denote the un-deformed 2d CFT Hamiltonian, and the eigenstate

of them, respectively. Thus, this thermofield double state is defined in the doubled Hilbert

space, H = H1 ⌦H2. The square of N 2 guarantees that hTFD|TFDi = 1. Then, we unitarily

evolve with Möbius/SS deformed Hamiltonian. The time evolution operator acting on this

thermofield double state is defined as

UMöbius/SSD = e
�it1H

1
Möbius/SSD ⌦ 12, (2.4)

where H
1

Möbius/SSD
and 12 denote the Möbius/SS deformed Hamiltonian acting on H1, and

identity operator on H2, respectively.

System.2: We start from an excited state which is defined as

| (t0)i =
⇣
e

�iH
1
0 t0 ⌦ 12

⌘
|TFDi , (2.5)

and then evolve it with the SSD Hamiltonian acting on only H1. Under this evolution, the

system is in the state given by

| (t1, t0)i =
⇣
e

�iH
1
SSDt1 ⌦ 12

⌘
| (t0)i . (2.6)
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where in the SSD limit when ✓ ! 1, fMöbius(x) reduces to fSSD(x), while in the CSD limit
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where H
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i=1,2
denote the un-deformed 2d CFT Hamiltonian, and the eigenstate

of them, respectively. Thus, this thermofield double state is defined in the doubled Hilbert

space, H = H1 ⌦H2. The square of N 2 guarantees that hTFD|TFDi = 1. Then, we unitarily

evolve with Möbius/SS deformed Hamiltonian. The time evolution operator acting on this
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1
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where H
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and 12 denote the Möbius/SS deformed Hamiltonian acting on H1, and
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where the two- and four-point functions on the torus depend on the detail of 2d CFTs, and

we call them as the non-universal pieces 2. These locations, w
New

x,✏,↵
and w

New

x,✏,↵
, depends on the

imaginary times ⌧i=0,1,2. After we analytically continue ⌧i=0,1,2 to iti=0,1,2, only the imaginary

parts of w
New

x,✏,↵
and w

New

x,✏,↵
depend on these real times. In other words, under the evolution by

U
1

E,↵
e

�✏H , the twist and anti-twist operators spatially moves as in Appendix A.1. Under the

evolution by HMöbius/SSD/CSC, the primary operators at x = X
f

1
= 0 and x = X

f

2
= L

2
does

not spatially move. We call X
f

1
and X

f

2
as fixed points.

2.3.1 Non-universal pieces in 2d holographic CFT

Let us look closely at the non-universal piece of the entanglement entropy for the single and

double intervals in 2d holographic CFT. To compare the results on 2d holographic CFTs

with the ones in 2d free fermion, we calculated the non-universal pieces in this free fermion,

The details of results and calculation is reported in Appendix C.1.

Single interval

Here, we present the non-universal piece of the entanglement entropy for the single interval

in the coarse-grained region. In this region, the gravity dual of the system on the torus is

BTZ black hole [3]. Therefore, in the von Neumann limit when n ! 1, the non-universal

piece is given by the geodesic length in BTZ black hole [4, 5]. Let V denote the subsystem,

and also v1 and v2 denote the endpoints of V . Here, v1 > v2. The non-universal piece of

entanglement entropy for the reduced density matrix associated with V is holographically

2Mao tian, can you check if this is correct? Especially, I would ask you to check if the
temporary location of operators.
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The operators evolved by HMöbius periodically moves between x = X
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1
and x = X
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2
with

period T1 = L cosh 2✓. In the SSD limit when ✓ ! 1, these operators move with time to
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2
. The speed of motion of these operators depends on the locations of them and ✓. The

system size grows and shrinks with time according to the motion of the evolved operators,

so that the geodesic length associated to this subsystem increases and decreases with time.

Let us looks closely at the time-dependence of the non-universal pieces of SB and SA[B.

For simplicity, let us suppose that B includes x = X
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1
, its center is this fixed, and A does

not include this fixed point. For the non-universal piece of SA[B, the early time-dependence

of it may be given by the lengths of geodesics connecting the endpoints of A and B, Scon,

while the late-time dependence may be given by the ones connecting the endpoints on the

same Euclidean time-slices, Sdis. Therefore, for large t1 regime, the non-universal pieces of

SB and SA[B may be determined by the lengths of the geodesics connecting the endpoints

of the subsystems on the same Euclidean time-slices as in Fig. ??. Let us suppose that the

operator corresponding to the right endpoint of B move with time between x = X
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, while the one corresponding to the
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Nearest. If ✓ becomes

larger, then X
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. For the small ✓, Sdis is given by the geodesic lengths

that are proportional to the the sizes of A and B, so that SA[B cancels SA and SB. As

a consequence, for the small ✓ but the large t1, IA,B is zero. For the large ✓, Sdis is given

by the geodesic lengths that are proportional to the the sizes of Ã and B̃. Here, Ã and
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, IA,B

reduces to the value which is proportional to X1 � X2. One possible for the late-time IA,B

that IA,B may measure the Bell pairs initially shared by A and H1
5.
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where h(x) f(x), L denotes the Hamiltonian density, envelop function, and system size.

We impose the periodic boundary condition on these Hamiltonians. The envelop functions

considered in this paper are
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where in the SSD limit when ✓ ! 1, fMöbius(x) reduces to fSSD(x), while in the CSD limit

when ✓ ! �1, fMöbius(x) reduces to fCSD(x). For f(x) = fMöbius(x), f(x) = fSSD(x), and

f(x) = fCSD(x), the inhomogeneously-deformed Hamiltonians are called as Möbius, sine-

square (SS), and cosine-square (CS) deformed Hamiltonians. For x ⇡ 0, the Hamiltonian

density spatially modulated by fSSD(x) is smaller than the un-deformed one, while for x ⇡ L

2
,

it is larger than the un-deformed one. For x ⇡ L

2
, the Hamiltonian density modified by

fCSD(x) is smaller than the un-deformed one, while for x ⇡ 0, it is larger than the un-

deformed one. Therefore, the SSD and CSD may the dynamical properties of Hamiltonian

stronger at x ⇡ 0 or x ⇡ L

2
, respectively, while they may those properties weaker at x ⇡ L

2

or x ⇡ 0, respectively.

2.2 The systems evolved with the inhomogeneously-deformed Hamil-

tonians

Let us now describe the systems evolved with the inhomogeneously-deformed Hamiltonians.

System.1: Let us start from the thermofield double state of the finite inverse temperature

�:
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2
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1
⌦ |ai

2
, (2.3)

where H
i=1,2 and |ai

i=1,2
denote the un-deformed 2d CFT Hamiltonian, and the eigenstate

of them, respectively. Thus, this thermofield double state is defined in the doubled Hilbert

space, H = H1 ⌦H2. The square of N 2 guarantees that hTFD|TFDi = 1. Then, we unitarily

evolve with Möbius/SS deformed Hamiltonian. The time evolution operator acting on this

thermofield double state is defined as

UMöbius/SSD = e
�it1H

1
Möbius/SSD ⌦ 12, (2.4)

where H
1

Möbius/SSD
and 12 denote the Möbius/SS deformed Hamiltonian acting on H1, and

identity operator on H2, respectively.

System.2: We start from an excited state which is defined as

| (t0)i =
⇣
e

�iH
1
0 t0 ⌦ 12

⌘
|TFDi , (2.5)

and then evolve it with the SSD Hamiltonian acting on only H1. Under this evolution, the

system is in the state given by

| (t1, t0)i =
⇣
e

�iH
1
SSDt1 ⌦ 12

⌘
| (t0)i . (2.6)

6

[b] The geometry corresponding to H2

Figure 1: A cartoon about the operator evolution in the Heisenberg picture. The green lines

illustrate the subsystems, A and B. The blue lines correspond to the non-universal pieces of

SA and SB. The non-universal piece of SA[B is given by the minimal geodesic length of the

ones that correspond to the purple dashed and orange dotted lines. The red arrow illustrates

the growth of X
Nearest with the increase of ✓.

3.1.1 The ✓- and Position-dependence of IA,B under evolution by HMöbius/SSD

Let us now present the time-dependence of IA,B under evolution induced by HMöbius/SSD. We

depict IA,B for various ✓ as function of t1 in Fig. 2. The center of B is x = X
f

1
. The solid

lines illustrate the time-dependence of IA,B for A, the center of which is x = X
f

1
, while the

dashed line illustrates that for A, the center of which is x = L

4
. Let t1,Nearest denote the time

5Probably, this sentence is put on other sections.
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The non-local correlation is recovered from the typical state:  

X
f

2
. For the small ✓, Sdis is given by c⇡
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� X
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. As a
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� X
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6✏
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New
Y1,✏,↵=0�X

New
Y2,✏,↵=0))

6✏
, respectively, so that IA,B is approximated by

c⇡[(X1�X2)�(X
New
Y1,✏,↵=0�X

New
Y2,✏,↵=0)]

3✏
. For HSSD, in the time-region where the black-hole-like exci-

tation, the excitation having the thermal entropy of H1, emerges at x = X
f

1
, IA,B reduces

to

IA,B ⇡ 2c⇡lA

6✏
, (3.3)

where lA = X1 � X2. One possible for the late-time IA,B that IA,B may measure the Bell

pairs initially shared by A and H1
5.

B.H.
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where h(x) f(x), L denotes the Hamiltonian density, envelop function, and system size.

We impose the periodic boundary condition on these Hamiltonians. The envelop functions
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fMöbius(x) = 1 � tanh 2✓ cos

✓
2⇡x

L

◆
, fSSD(x) = 2 sin2

⇣
⇡x

L

⌘
, fCSD(x) = 2 cos2

⇣
⇡x

L

⌘
, (2.2)
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when ✓ ! �1, fMöbius(x) reduces to fCSD(x). For f(x) = fMöbius(x), f(x) = fSSD(x), and
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Let us now describe the systems evolved with the inhomogeneously-deformed Hamiltonians.

System.1: Let us start from the thermofield double state of the finite inverse temperature

�:
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� ✏(H1+H

2)
2
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1
⌦ |ai
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, (2.3)

where H
i=1,2 and |ai

i=1,2
denote the un-deformed 2d CFT Hamiltonian, and the eigenstate

of them, respectively. Thus, this thermofield double state is defined in the doubled Hilbert

space, H = H1 ⌦H2. The square of N 2 guarantees that hTFD|TFDi = 1. Then, we unitarily

evolve with Möbius/SS deformed Hamiltonian. The time evolution operator acting on this

thermofield double state is defined as

UMöbius/SSD = e
�it1H

1
Möbius/SSD ⌦ 12, (2.4)

where H
1

Möbius/SSD
and 12 denote the Möbius/SS deformed Hamiltonian acting on H1, and

identity operator on H2, respectively.

System.2: We start from an excited state which is defined as

| (t0)i =
⇣
e

�iH
1
0 t0 ⌦ 12

⌘
|TFDi , (2.5)

and then evolve it with the SSD Hamiltonian acting on only H1. Under this evolution, the

system is in the state given by

| (t1, t0)i =
⇣
e

�iH
1
SSDt1 ⌦ 12

⌘
| (t0)i . (2.6)
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where the two- and four-point functions on the torus depend on the detail of 2d CFTs, and

we call them as the non-universal pieces 2. These locations, w
New

x,✏,↵
and w

New

x,✏,↵
, depends on the

imaginary times ⌧i=0,1,2. After we analytically continue ⌧i=0,1,2 to iti=0,1,2, only the imaginary

parts of w
New

x,✏,↵
and w

New

x,✏,↵
depend on these real times. In other words, under the evolution by

U
1

E,↵
e

�✏H , the twist and anti-twist operators spatially moves as in Appendix A.1. Under the

evolution by HMöbius/SSD/CSC, the primary operators at x = X
f

1
= 0 and x = X

f

2
= L

2
does

not spatially move. We call X
f

1
and X

f

2
as fixed points.

2.3.1 Non-universal pieces in 2d holographic CFT

Let us look closely at the non-universal piece of the entanglement entropy for the single and

double intervals in 2d holographic CFT. To compare the results on 2d holographic CFTs

with the ones in 2d free fermion, we calculated the non-universal pieces in this free fermion,

The details of results and calculation is reported in Appendix C.1.

Single interval

Here, we present the non-universal piece of the entanglement entropy for the single interval

in the coarse-grained region. In this region, the gravity dual of the system on the torus is

BTZ black hole [3]. Therefore, in the von Neumann limit when n ! 1, the non-universal

piece is given by the geodesic length in BTZ black hole [4, 5]. Let V denote the subsystem,

and also v1 and v2 denote the endpoints of V . Here, v1 > v2. The non-universal piece of

entanglement entropy for the reduced density matrix associated with V is holographically

2Mao tian, can you check if this is correct? Especially, I would ask you to check if the
temporary location of operators.

9

The operators evolved by HMöbius periodically moves between x = X
f

1
and x = X

f

2
with

period T1 = L cosh 2✓. In the SSD limit when ✓ ! 1, these operators move with time to

x = X
f

2
. The speed of motion of these operators depends on the locations of them and ✓. The

system size grows and shrinks with time according to the motion of the evolved operators,

so that the geodesic length associated to this subsystem increases and decreases with time.

Let us looks closely at the time-dependence of the non-universal pieces of SB and SA[B.

For simplicity, let us suppose that B includes x = X
f

1
, its center is this fixed, and A does

not include this fixed point. For the non-universal piece of SA[B, the early time-dependence

of it may be given by the lengths of geodesics connecting the endpoints of A and B, Scon,

while the late-time dependence may be given by the ones connecting the endpoints on the

same Euclidean time-slices, Sdis. Therefore, for large t1 regime, the non-universal pieces of

SB and SA[B may be determined by the lengths of the geodesics connecting the endpoints

of the subsystems on the same Euclidean time-slices as in Fig. ??. Let us suppose that the

operator corresponding to the right endpoint of B move with time between x = X
Nearest and

x = X
Furtherest where 0 < X

Furtherest
< X

Nearest
<

L

2
, while the one corresponding to the

left endpoint of B move between x = L � X
Furtherest and x = L � X

Nearest. If ✓ becomes

larger, then X
Nearest gets closer to X

f

2
. For the small ✓, Sdis is given by the geodesic lengths

that are proportional to the the sizes of A and B, so that SA[B cancels SA and SB. As

a consequence, for the small ✓ but the large t1, IA,B is zero. For the large ✓, Sdis is given

by the geodesic lengths that are proportional to the the sizes of Ã and B̃. Here, Ã and

B̃ are complements of H2 and H1 to A and B, respectively. In this time-regime, SA[B is

proportional to L � (X1 � X2) + (XNew

Y1,✏,↵=1
� X

New

Y2,✏,↵=1
), while SA and SB are proportional

to X1 � X2 and L � (XNew

Y1,✏,↵=1
� X

New

Y2,✏,↵=1
), respectively, so that IA,B is proportional to

2
⇥
(X1 � X2) � (XNew

Y1,✏,↵=1
� X

New

Y2,✏,↵=1
)
⇤
. For HSSD, in the time-region where the black-hole-

like excitation, the excitation having the thermal entropy of H1, emerges at x = X
f

1
, IA,B

reduces to the value which is proportional to X1 � X2. One possible for the late-time IA,B

that IA,B may measure the Bell pairs initially shared by A and H1
5.
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where h(x) f(x), L denotes the Hamiltonian density, envelop function, and system size.

We impose the periodic boundary condition on these Hamiltonians. The envelop functions

considered in this paper are

fMöbius(x) = 1 � tanh 2✓ cos

✓
2⇡x

L

◆
, fSSD(x) = 2 sin2

⇣
⇡x

L

⌘
, fCSD(x) = 2 cos2

⇣
⇡x

L

⌘
, (2.2)

where in the SSD limit when ✓ ! 1, fMöbius(x) reduces to fSSD(x), while in the CSD limit

when ✓ ! �1, fMöbius(x) reduces to fCSD(x). For f(x) = fMöbius(x), f(x) = fSSD(x), and

f(x) = fCSD(x), the inhomogeneously-deformed Hamiltonians are called as Möbius, sine-

square (SS), and cosine-square (CS) deformed Hamiltonians. For x ⇡ 0, the Hamiltonian

density spatially modulated by fSSD(x) is smaller than the un-deformed one, while for x ⇡ L

2
,

it is larger than the un-deformed one. For x ⇡ L

2
, the Hamiltonian density modified by

fCSD(x) is smaller than the un-deformed one, while for x ⇡ 0, it is larger than the un-

deformed one. Therefore, the SSD and CSD may the dynamical properties of Hamiltonian

stronger at x ⇡ 0 or x ⇡ L

2
, respectively, while they may those properties weaker at x ⇡ L

2

or x ⇡ 0, respectively.

2.2 The systems evolved with the inhomogeneously-deformed Hamil-

tonians

Let us now describe the systems evolved with the inhomogeneously-deformed Hamiltonians.

System.1: Let us start from the thermofield double state of the finite inverse temperature

�:

|TFDi = N e
� ✏(H1+H

2)
2

X

a

|ai
1
⌦ |ai

2
, (2.3)

where H
i=1,2 and |ai

i=1,2
denote the un-deformed 2d CFT Hamiltonian, and the eigenstate

of them, respectively. Thus, this thermofield double state is defined in the doubled Hilbert

space, H = H1 ⌦H2. The square of N 2 guarantees that hTFD|TFDi = 1. Then, we unitarily

evolve with Möbius/SS deformed Hamiltonian. The time evolution operator acting on this

thermofield double state is defined as

UMöbius/SSD = e
�it1H

1
Möbius/SSD ⌦ 12, (2.4)

where H
1

Möbius/SSD
and 12 denote the Möbius/SS deformed Hamiltonian acting on H1, and

identity operator on H2, respectively.

System.2: We start from an excited state which is defined as

| (t0)i =
⇣
e

�iH
1
0 t0 ⌦ 12

⌘
|TFDi , (2.5)

and then evolve it with the SSD Hamiltonian acting on only H1. Under this evolution, the

system is in the state given by

| (t1, t0)i =
⇣
e

�iH
1
SSDt1 ⌦ 12

⌘
| (t0)i . (2.6)
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where h(x) f(x), L denotes the Hamiltonian density, envelop function, and system size.

We impose the periodic boundary condition on these Hamiltonians. The envelop functions
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where in the SSD limit when ✓ ! 1, fMöbius(x) reduces to fSSD(x), while in the CSD limit

when ✓ ! �1, fMöbius(x) reduces to fCSD(x). For f(x) = fMöbius(x), f(x) = fSSD(x), and

f(x) = fCSD(x), the inhomogeneously-deformed Hamiltonians are called as Möbius, sine-

square (SS), and cosine-square (CS) deformed Hamiltonians. For x ⇡ 0, the Hamiltonian

density spatially modulated by fSSD(x) is smaller than the un-deformed one, while for x ⇡ L

2
,

it is larger than the un-deformed one. For x ⇡ L

2
, the Hamiltonian density modified by

fCSD(x) is smaller than the un-deformed one, while for x ⇡ 0, it is larger than the un-

deformed one. Therefore, the SSD and CSD may the dynamical properties of Hamiltonian

stronger at x ⇡ 0 or x ⇡ L

2
, respectively, while they may those properties weaker at x ⇡ L

2

or x ⇡ 0, respectively.

2.2 The systems evolved with the inhomogeneously-deformed Hamil-

tonians

Let us now describe the systems evolved with the inhomogeneously-deformed Hamiltonians.

System.1: Let us start from the thermofield double state of the finite inverse temperature

�:

|TFDi = N e
� ✏(H1+H

2)
2

X

a

|ai
1
⌦ |ai

2
, (2.3)

where H
i=1,2 and |ai

i=1,2
denote the un-deformed 2d CFT Hamiltonian, and the eigenstate

of them, respectively. Thus, this thermofield double state is defined in the doubled Hilbert

space, H = H1 ⌦H2. The square of N 2 guarantees that hTFD|TFDi = 1. Then, we unitarily

evolve with Möbius/SS deformed Hamiltonian. The time evolution operator acting on this

thermofield double state is defined as

UMöbius/SSD = e
�it1H

1
Möbius/SSD ⌦ 12, (2.4)

where H
1

Möbius/SSD
and 12 denote the Möbius/SS deformed Hamiltonian acting on H1, and

identity operator on H2, respectively.

System.2: We start from an excited state which is defined as

| (t0)i =
⇣
e

�iH
1
0 t0 ⌦ 12

⌘
|TFDi , (2.5)

and then evolve it with the SSD Hamiltonian acting on only H1. Under this evolution, the

system is in the state given by

| (t1, t0)i =
⇣
e

�iH
1
SSDt1 ⌦ 12

⌘
| (t0)i . (2.6)
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[b] The geometry corresponding to H2

Figure 1: A cartoon about the operator evolution in the Heisenberg picture. The green lines

illustrate the subsystems, A and B. The blue lines correspond to the non-universal pieces of

SA and SB. The non-universal piece of SA[B is given by the minimal geodesic length of the

ones that correspond to the purple dashed and orange dotted lines. The red arrow illustrates

the growth of X
Nearest with the increase of ✓.

3.1.1 The ✓- and Position-dependence of IA,B under evolution by HMöbius/SSD

Let us now present the time-dependence of IA,B under evolution induced by HMöbius/SSD. We

depict IA,B for various ✓ as function of t1 in Fig. 2. The center of B is x = X
f

1
. The solid

lines illustrate the time-dependence of IA,B for A, the center of which is x = X
f

1
, while the

dashed line illustrates that for A, the center of which is x = L

4
. Let t1,Nearest denote the time
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X
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. For the small ✓, Sdis is given by c⇡
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. As a

consequence, for the small ✓ but the large t1, IA,B is zero. For the large ✓, Sdis is given by
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, respectively, so that IA,B is approximated by
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3✏
. For HSSD, in the time-region where the black-hole-like exci-

tation, the excitation having the thermal entropy of H1, emerges at x = X
f

1
, IA,B reduces

to

IA,B ⇡ 2c⇡lA

6✏
, (3.3)

where lA = X1 � X2. One possible for the late-time IA,B that IA,B may measure the Bell

pairs initially shared by A and H1
5.

B.H.

B

where h(x) f(x), L denotes the Hamiltonian density, envelop function, and system size.

We impose the periodic boundary condition on these Hamiltonians. The envelop functions

considered in this paper are
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where in the SSD limit when ✓ ! 1, fMöbius(x) reduces to fSSD(x), while in the CSD limit

when ✓ ! �1, fMöbius(x) reduces to fCSD(x). For f(x) = fMöbius(x), f(x) = fSSD(x), and

f(x) = fCSD(x), the inhomogeneously-deformed Hamiltonians are called as Möbius, sine-

square (SS), and cosine-square (CS) deformed Hamiltonians. For x ⇡ 0, the Hamiltonian

density spatially modulated by fSSD(x) is smaller than the un-deformed one, while for x ⇡ L

2
,

it is larger than the un-deformed one. For x ⇡ L

2
, the Hamiltonian density modified by

fCSD(x) is smaller than the un-deformed one, while for x ⇡ 0, it is larger than the un-

deformed one. Therefore, the SSD and CSD may the dynamical properties of Hamiltonian

stronger at x ⇡ 0 or x ⇡ L

2
, respectively, while they may those properties weaker at x ⇡ L

2

or x ⇡ 0, respectively.

2.2 The systems evolved with the inhomogeneously-deformed Hamil-

tonians

Let us now describe the systems evolved with the inhomogeneously-deformed Hamiltonians.

System.1: Let us start from the thermofield double state of the finite inverse temperature

�:
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2
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1
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2
, (2.3)

where H
i=1,2 and |ai

i=1,2
denote the un-deformed 2d CFT Hamiltonian, and the eigenstate

of them, respectively. Thus, this thermofield double state is defined in the doubled Hilbert
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where the two- and four-point functions on the torus depend on the detail of 2d CFTs, and

we call them as the non-universal pieces 2. These locations, w
New

x,✏,↵
and w

New

x,✏,↵
, depends on the

imaginary times ⌧i=0,1,2. After we analytically continue ⌧i=0,1,2 to iti=0,1,2, only the imaginary

parts of w
New

x,✏,↵
and w

New

x,✏,↵
depend on these real times. In other words, under the evolution by

U
1

E,↵
e

�✏H , the twist and anti-twist operators spatially moves as in Appendix A.1. Under the

evolution by HMöbius/SSD/CSC, the primary operators at x = X
f

1
= 0 and x = X

f

2
= L

2
does

not spatially move. We call X
f

1
and X

f

2
as fixed points.

2.3.1 Non-universal pieces in 2d holographic CFT

Let us look closely at the non-universal piece of the entanglement entropy for the single and

double intervals in 2d holographic CFT. To compare the results on 2d holographic CFTs

with the ones in 2d free fermion, we calculated the non-universal pieces in this free fermion,

The details of results and calculation is reported in Appendix C.1.

Single interval

Here, we present the non-universal piece of the entanglement entropy for the single interval

in the coarse-grained region. In this region, the gravity dual of the system on the torus is

BTZ black hole [3]. Therefore, in the von Neumann limit when n ! 1, the non-universal

piece is given by the geodesic length in BTZ black hole [4, 5]. Let V denote the subsystem,

and also v1 and v2 denote the endpoints of V . Here, v1 > v2. The non-universal piece of

entanglement entropy for the reduced density matrix associated with V is holographically

2Mao tian, can you check if this is correct? Especially, I would ask you to check if the
temporary location of operators.
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The operators evolved by HMöbius periodically moves between x = X
f

1
and x = X

f

2
with

period T1 = L cosh 2✓. In the SSD limit when ✓ ! 1, these operators move with time to

x = X
f

2
. The speed of motion of these operators depends on the locations of them and ✓. The

system size grows and shrinks with time according to the motion of the evolved operators,

so that the geodesic length associated to this subsystem increases and decreases with time.

Let us looks closely at the time-dependence of the non-universal pieces of SB and SA[B.

For simplicity, let us suppose that B includes x = X
f

1
, its center is this fixed, and A does

not include this fixed point. For the non-universal piece of SA[B, the early time-dependence

of it may be given by the lengths of geodesics connecting the endpoints of A and B, Scon,

while the late-time dependence may be given by the ones connecting the endpoints on the

same Euclidean time-slices, Sdis. Therefore, for large t1 regime, the non-universal pieces of

SB and SA[B may be determined by the lengths of the geodesics connecting the endpoints

of the subsystems on the same Euclidean time-slices as in Fig. ??. Let us suppose that the

operator corresponding to the right endpoint of B move with time between x = X
Nearest and

x = X
Furtherest where 0 < X

Furtherest
< X

Nearest
<

L

2
, while the one corresponding to the

left endpoint of B move between x = L � X
Furtherest and x = L � X

Nearest. If ✓ becomes

larger, then X
Nearest gets closer to X

f

2
. For the small ✓, Sdis is given by the geodesic lengths

that are proportional to the the sizes of A and B, so that SA[B cancels SA and SB. As

a consequence, for the small ✓ but the large t1, IA,B is zero. For the large ✓, Sdis is given

by the geodesic lengths that are proportional to the the sizes of Ã and B̃. Here, Ã and

B̃ are complements of H2 and H1 to A and B, respectively. In this time-regime, SA[B is

proportional to L � (X1 � X2) + (XNew
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� X
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), while SA and SB are proportional

to X1 � X2 and L � (XNew

Y1,✏,↵=1
� X
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), respectively, so that IA,B is proportional to

2
⇥
(X1 � X2) � (XNew

Y1,✏,↵=1
� X
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Y2,✏,↵=1
)
⇤
. For HSSD, in the time-region where the black-hole-

like excitation, the excitation having the thermal entropy of H1, emerges at x = X
f

1
, IA,B

reduces to the value which is proportional to X1 � X2. One possible for the late-time IA,B

that IA,B may measure the Bell pairs initially shared by A and H1
5.

5Probably, this sentence is put on other sections.
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where h(x) f(x), L denotes the Hamiltonian density, envelop function, and system size.

We impose the periodic boundary condition on these Hamiltonians. The envelop functions

considered in this paper are

fMöbius(x) = 1 � tanh 2✓ cos

✓
2⇡x

L

◆
, fSSD(x) = 2 sin2

⇣
⇡x

L

⌘
, fCSD(x) = 2 cos2

⇣
⇡x

L

⌘
, (2.2)

where in the SSD limit when ✓ ! 1, fMöbius(x) reduces to fSSD(x), while in the CSD limit

when ✓ ! �1, fMöbius(x) reduces to fCSD(x). For f(x) = fMöbius(x), f(x) = fSSD(x), and

f(x) = fCSD(x), the inhomogeneously-deformed Hamiltonians are called as Möbius, sine-

square (SS), and cosine-square (CS) deformed Hamiltonians. For x ⇡ 0, the Hamiltonian

density spatially modulated by fSSD(x) is smaller than the un-deformed one, while for x ⇡ L

2
,

it is larger than the un-deformed one. For x ⇡ L

2
, the Hamiltonian density modified by

fCSD(x) is smaller than the un-deformed one, while for x ⇡ 0, it is larger than the un-

deformed one. Therefore, the SSD and CSD may the dynamical properties of Hamiltonian

stronger at x ⇡ 0 or x ⇡ L

2
, respectively, while they may those properties weaker at x ⇡ L

2

or x ⇡ 0, respectively.

2.2 The systems evolved with the inhomogeneously-deformed Hamil-

tonians

Let us now describe the systems evolved with the inhomogeneously-deformed Hamiltonians.

System.1: Let us start from the thermofield double state of the finite inverse temperature

�:

|TFDi = N e
� ✏(H1+H

2)
2

X

a

|ai
1
⌦ |ai

2
, (2.3)

where H
i=1,2 and |ai

i=1,2
denote the un-deformed 2d CFT Hamiltonian, and the eigenstate

of them, respectively. Thus, this thermofield double state is defined in the doubled Hilbert

space, H = H1 ⌦H2. The square of N 2 guarantees that hTFD|TFDi = 1. Then, we unitarily

evolve with Möbius/SS deformed Hamiltonian. The time evolution operator acting on this

thermofield double state is defined as

UMöbius/SSD = e
�it1H

1
Möbius/SSD ⌦ 12, (2.4)

where H
1

Möbius/SSD
and 12 denote the Möbius/SS deformed Hamiltonian acting on H1, and

identity operator on H2, respectively.

System.2: We start from an excited state which is defined as

| (t0)i =
⇣
e

�iH
1
0 t0 ⌦ 12

⌘
|TFDi , (2.5)

and then evolve it with the SSD Hamiltonian acting on only H1. Under this evolution, the

system is in the state given by

| (t1, t0)i =
⇣
e

�iH
1
SSDt1 ⌦ 12

⌘
| (t0)i . (2.6)
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[b] The geometry corresponding to H2

Figure 1: A cartoon about the operator evolution in the Heisenberg picture. The green lines

illustrate the subsystems, A and B. The blue lines correspond to the non-universal pieces of

SA and SB. The non-universal piece of SA[B is given by the minimal geodesic length of the

ones that correspond to the purple dashed and orange dotted lines. The red arrow illustrates

the growth of X
Nearest with the increase of ✓.

3.1.1 The ✓- and Position-dependence of IA,B under evolution by HMöbius/SSD

Let us now present the time-dependence of IA,B under evolution induced by HMöbius/SSD. We

depict IA,B for various ✓ as function of t1 in Fig. 2. The center of B is x = X
f

1
. The solid

lines illustrate the time-dependence of IA,B for A, the center of which is x = X
f

1
, while the

dashed line illustrates that for A, the center of which is x = L

4
. Let t1,Nearest denote the time

5Probably, this sentence is put on other sections.
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square of N 2 guarantees that hTFD|TFDi = 1. Then, we unitarily evolve with Möbius/SS

deformed Hamiltonian. The time evolution operator acting on this thermofield double state

is defined as

UMöbius/SSD = e
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where H
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and 12 denote the Möbius/SS deformed Hamiltonian acting on H1, and
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| (t0)i =
⇣
e

�iH
1
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and then evolve it with the SSD Hamiltonian acting on only H1. Under this evolution, the

system is in the state given by

| (t1, t0)i =
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e

�iH
1
SSDt1 ⌦ 12
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| (t0)i . (2.6)

System.3: Let us start from an excited state defined as

|�(t1)i =
⇣
e

�iH
1
SSDt1 ⌦ 12

⌘
|TFDi , (2.7)

and then evolve it with the un-deformed Hamiltonian acting on only H1. Under this evolu-

tion, the system is in the state given by

|�(t1, t0)i =
⇣
e

�iH
1
0 t0 ⌦ 12

⌘
|�(t1)i . (2.8)

2.3 Entanglement entropies in the twist operator formalism

To employ the path-integral formalism suited to analytic computation, let us define Euclidean

density operators as

⇢E,↵=0,1,2,3 = N 2
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where the Euclidean normalization constant N �2

E
= tre�2✏H guarantees that tr⇢E,↵ = 1.

These density operators may be the analytic-continued ones in imaginary time corresponding

to the ones defined in Section 2.2. The Euclidean evolution operators are defined as
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Divide the system into the subsystem V and V , the complement to it, and then define the

reduce Euclidean density operators for V as ⇢E,↵;V = trV⇢E,↵. Let A, B, and A [ B denote
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In the large    -regime, the system may be approximated by a typical state.
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c⇡(L�(X
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Y1,✏,↵=0�X
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Y2,✏,↵=0))

6✏
, respectively, so that IA,B is approximated by

c⇡[(X1�X2)�(X
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Y1,✏,↵=0�X

New
Y2,✏,↵=0)]

3✏
. For HSSD, in the time-region where the black-hole-like exci-

tation, the excitation having the thermal entropy of H1, emerges at x = X
f

1
, IA,B reduces

to

IA,B ⇡ 2c⇡lA

6✏
, (3.3)

where lA = X1 � X2. One possible for the late-time IA,B that IA,B may measure the Bell

pairs initially shared by A and H1
5.

B.H.

B

where h(x) f(x), L denotes the Hamiltonian density, envelop function, and system size.

We impose the periodic boundary condition on these Hamiltonians. The envelop functions

considered in this paper are

fMöbius(x) = 1 � tanh 2✓ cos

✓
2⇡x

L

◆
, fSSD(x) = 2 sin2

⇣
⇡x

L

⌘
, fCSD(x) = 2 cos2

⇣
⇡x

L

⌘
, (2.2)

where in the SSD limit when ✓ ! 1, fMöbius(x) reduces to fSSD(x), while in the CSD limit

when ✓ ! �1, fMöbius(x) reduces to fCSD(x). For f(x) = fMöbius(x), f(x) = fSSD(x), and

f(x) = fCSD(x), the inhomogeneously-deformed Hamiltonians are called as Möbius, sine-

square (SS), and cosine-square (CS) deformed Hamiltonians. For x ⇡ 0, the Hamiltonian

density spatially modulated by fSSD(x) is smaller than the un-deformed one, while for x ⇡ L

2
,

it is larger than the un-deformed one. For x ⇡ L

2
, the Hamiltonian density modified by

fCSD(x) is smaller than the un-deformed one, while for x ⇡ 0, it is larger than the un-

deformed one. Therefore, the SSD and CSD may the dynamical properties of Hamiltonian

stronger at x ⇡ 0 or x ⇡ L

2
, respectively, while they may those properties weaker at x ⇡ L

2

or x ⇡ 0, respectively.

2.2 The systems evolved with the inhomogeneously-deformed Hamil-

tonians

Let us now describe the systems evolved with the inhomogeneously-deformed Hamiltonians.

System.1: Let us start from the thermofield double state of the finite inverse temperature

�:

|TFDi = N e
� ✏(H1+H

2)
2

X

a

|ai
1
⌦ |ai

2
, (2.3)

where H
i=1,2 and |ai

i=1,2
denote the un-deformed 2d CFT Hamiltonian, and the eigenstate

of them, respectively. Thus, this thermofield double state is defined in the doubled Hilbert

space, H = H1 ⌦H2. The square of N 2 guarantees that hTFD|TFDi = 1. Then, we unitarily

evolve with Möbius/SS deformed Hamiltonian. The time evolution operator acting on this

thermofield double state is defined as

UMöbius/SSD = e
�it1H

1
Möbius/SSD ⌦ 12, (2.4)

where H
1

Möbius/SSD
and 12 denote the Möbius/SS deformed Hamiltonian acting on H1, and

identity operator on H2, respectively.

System.2: We start from an excited state which is defined as

| (t0)i =
⇣
e

�iH
1
0 t0 ⌦ 12

⌘
|TFDi , (2.5)

and then evolve it with the SSD Hamiltonian acting on only H1. Under this evolution, the

system is in the state given by

| (t1, t0)i =
⇣
e

�iH
1
SSDt1 ⌦ 12

⌘
| (t0)i . (2.6)
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where the two- and four-point functions on the torus depend on the detail of 2d CFTs, and

we call them as the non-universal pieces 2. These locations, w
New

x,✏,↵
and w

New

x,✏,↵
, depends on the

imaginary times ⌧i=0,1,2. After we analytically continue ⌧i=0,1,2 to iti=0,1,2, only the imaginary

parts of w
New

x,✏,↵
and w

New

x,✏,↵
depend on these real times. In other words, under the evolution by

U
1

E,↵
e

�✏H , the twist and anti-twist operators spatially moves as in Appendix A.1. Under the

evolution by HMöbius/SSD/CSC, the primary operators at x = X
f

1
= 0 and x = X

f

2
= L

2
does

not spatially move. We call X
f

1
and X

f

2
as fixed points.

2.3.1 Non-universal pieces in 2d holographic CFT

Let us look closely at the non-universal piece of the entanglement entropy for the single and

double intervals in 2d holographic CFT. To compare the results on 2d holographic CFTs

with the ones in 2d free fermion, we calculated the non-universal pieces in this free fermion,

The details of results and calculation is reported in Appendix C.1.

Single interval

Here, we present the non-universal piece of the entanglement entropy for the single interval

in the coarse-grained region. In this region, the gravity dual of the system on the torus is

BTZ black hole [3]. Therefore, in the von Neumann limit when n ! 1, the non-universal

piece is given by the geodesic length in BTZ black hole [4, 5]. Let V denote the subsystem,

and also v1 and v2 denote the endpoints of V . Here, v1 > v2. The non-universal piece of

entanglement entropy for the reduced density matrix associated with V is holographically

2Mao tian, can you check if this is correct? Especially, I would ask you to check if the
temporary location of operators.
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The operators evolved by HMöbius periodically moves between x = X
f

1
and x = X

f

2
with

period T1 = L cosh 2✓. In the SSD limit when ✓ ! 1, these operators move with time to

x = X
f

2
. The speed of motion of these operators depends on the locations of them and ✓. The

system size grows and shrinks with time according to the motion of the evolved operators,

so that the geodesic length associated to this subsystem increases and decreases with time.

Let us looks closely at the time-dependence of the non-universal pieces of SB and SA[B.

For simplicity, let us suppose that B includes x = X
f

1
, its center is this fixed, and A does

not include this fixed point. For the non-universal piece of SA[B, the early time-dependence

of it may be given by the lengths of geodesics connecting the endpoints of A and B, Scon,

while the late-time dependence may be given by the ones connecting the endpoints on the

same Euclidean time-slices, Sdis. Therefore, for large t1 regime, the non-universal pieces of

SB and SA[B may be determined by the lengths of the geodesics connecting the endpoints

of the subsystems on the same Euclidean time-slices as in Fig. ??. Let us suppose that the

operator corresponding to the right endpoint of B move with time between x = X
Nearest and

x = X
Furtherest where 0 < X

Furtherest
< X

Nearest
<

L

2
, while the one corresponding to the

left endpoint of B move between x = L � X
Furtherest and x = L � X

Nearest. If ✓ becomes

larger, then X
Nearest gets closer to X

f

2
. For the small ✓, Sdis is given by the geodesic lengths

that are proportional to the the sizes of A and B, so that SA[B cancels SA and SB. As

a consequence, for the small ✓ but the large t1, IA,B is zero. For the large ✓, Sdis is given

by the geodesic lengths that are proportional to the the sizes of Ã and B̃. Here, Ã and

B̃ are complements of H2 and H1 to A and B, respectively. In this time-regime, SA[B is

proportional to L � (X1 � X2) + (XNew

Y1,✏,↵=1
� X

New

Y2,✏,↵=1
), while SA and SB are proportional

to X1 � X2 and L � (XNew

Y1,✏,↵=1
� X

New

Y2,✏,↵=1
), respectively, so that IA,B is proportional to

2
⇥
(X1 � X2) � (XNew

Y1,✏,↵=1
� X

New

Y2,✏,↵=1
)
⇤
. For HSSD, in the time-region where the black-hole-

like excitation, the excitation having the thermal entropy of H1, emerges at x = X
f

1
, IA,B

reduces to the value which is proportional to X1 � X2. One possible for the late-time IA,B

that IA,B may measure the Bell pairs initially shared by A and H1
5.
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where h(x) f(x), L denotes the Hamiltonian density, envelop function, and system size.

We impose the periodic boundary condition on these Hamiltonians. The envelop functions

considered in this paper are

fMöbius(x) = 1 � tanh 2✓ cos

✓
2⇡x

L

◆
, fSSD(x) = 2 sin2

⇣
⇡x

L

⌘
, fCSD(x) = 2 cos2

⇣
⇡x

L

⌘
, (2.2)

where in the SSD limit when ✓ ! 1, fMöbius(x) reduces to fSSD(x), while in the CSD limit

when ✓ ! �1, fMöbius(x) reduces to fCSD(x). For f(x) = fMöbius(x), f(x) = fSSD(x), and

f(x) = fCSD(x), the inhomogeneously-deformed Hamiltonians are called as Möbius, sine-

square (SS), and cosine-square (CS) deformed Hamiltonians. For x ⇡ 0, the Hamiltonian

density spatially modulated by fSSD(x) is smaller than the un-deformed one, while for x ⇡ L

2
,

it is larger than the un-deformed one. For x ⇡ L

2
, the Hamiltonian density modified by

fCSD(x) is smaller than the un-deformed one, while for x ⇡ 0, it is larger than the un-

deformed one. Therefore, the SSD and CSD may the dynamical properties of Hamiltonian

stronger at x ⇡ 0 or x ⇡ L

2
, respectively, while they may those properties weaker at x ⇡ L

2

or x ⇡ 0, respectively.

2.2 The systems evolved with the inhomogeneously-deformed Hamil-

tonians

Let us now describe the systems evolved with the inhomogeneously-deformed Hamiltonians.

System.1: Let us start from the thermofield double state of the finite inverse temperature

�:

|TFDi = N e
� ✏(H1+H

2)
2

X

a

|ai
1
⌦ |ai

2
, (2.3)

where H
i=1,2 and |ai

i=1,2
denote the un-deformed 2d CFT Hamiltonian, and the eigenstate

of them, respectively. Thus, this thermofield double state is defined in the doubled Hilbert

space, H = H1 ⌦H2. The square of N 2 guarantees that hTFD|TFDi = 1. Then, we unitarily

evolve with Möbius/SS deformed Hamiltonian. The time evolution operator acting on this

thermofield double state is defined as

UMöbius/SSD = e
�it1H

1
Möbius/SSD ⌦ 12, (2.4)

where H
1

Möbius/SSD
and 12 denote the Möbius/SS deformed Hamiltonian acting on H1, and

identity operator on H2, respectively.

System.2: We start from an excited state which is defined as

| (t0)i =
⇣
e

�iH
1
0 t0 ⌦ 12

⌘
|TFDi , (2.5)

and then evolve it with the SSD Hamiltonian acting on only H1. Under this evolution, the

system is in the state given by

| (t1, t0)i =
⇣
e

�iH
1
SSDt1 ⌦ 12

⌘
| (t0)i . (2.6)
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where h(x) f(x), L denotes the Hamiltonian density, envelop function, and system size.

We impose the periodic boundary condition on these Hamiltonians. The envelop functions
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where in the SSD limit when ✓ ! 1, fMöbius(x) reduces to fSSD(x), while in the CSD limit

when ✓ ! �1, fMöbius(x) reduces to fCSD(x). For f(x) = fMöbius(x), f(x) = fSSD(x), and

f(x) = fCSD(x), the inhomogeneously-deformed Hamiltonians are called as Möbius, sine-

square (SS), and cosine-square (CS) deformed Hamiltonians. For x ⇡ 0, the Hamiltonian

density spatially modulated by fSSD(x) is smaller than the un-deformed one, while for x ⇡ L

2
,

it is larger than the un-deformed one. For x ⇡ L

2
, the Hamiltonian density modified by

fCSD(x) is smaller than the un-deformed one, while for x ⇡ 0, it is larger than the un-

deformed one. Therefore, the SSD and CSD may the dynamical properties of Hamiltonian

stronger at x ⇡ 0 or x ⇡ L

2
, respectively, while they may those properties weaker at x ⇡ L

2

or x ⇡ 0, respectively.

2.2 The systems evolved with the inhomogeneously-deformed Hamil-

tonians

Let us now describe the systems evolved with the inhomogeneously-deformed Hamiltonians.

System.1: Let us start from the thermofield double state of the finite inverse temperature

�:

|TFDi = N e
� ✏(H1+H

2)
2

X

a

|ai
1
⌦ |ai

2
, (2.3)

where H
i=1,2 and |ai

i=1,2
denote the un-deformed 2d CFT Hamiltonian, and the eigenstate

of them, respectively. Thus, this thermofield double state is defined in the doubled Hilbert

space, H = H1 ⌦H2. The square of N 2 guarantees that hTFD|TFDi = 1. Then, we unitarily

evolve with Möbius/SS deformed Hamiltonian. The time evolution operator acting on this

thermofield double state is defined as

UMöbius/SSD = e
�it1H

1
Möbius/SSD ⌦ 12, (2.4)

where H
1

Möbius/SSD
and 12 denote the Möbius/SS deformed Hamiltonian acting on H1, and

identity operator on H2, respectively.

System.2: We start from an excited state which is defined as

| (t0)i =
⇣
e

�iH
1
0 t0 ⌦ 12

⌘
|TFDi , (2.5)

and then evolve it with the SSD Hamiltonian acting on only H1. Under this evolution, the

system is in the state given by

| (t1, t0)i =
⇣
e

�iH
1
SSDt1 ⌦ 12

⌘
| (t0)i . (2.6)
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[b] The geometry corresponding to H2

Figure 1: A cartoon about the operator evolution in the Heisenberg picture. The green lines

illustrate the subsystems, A and B. The blue lines correspond to the non-universal pieces of

SA and SB. The non-universal piece of SA[B is given by the minimal geodesic length of the

ones that correspond to the purple dashed and orange dotted lines. The red arrow illustrates

the growth of X
Nearest with the increase of ✓.

3.1.1 The ✓- and Position-dependence of IA,B under evolution by HMöbius/SSD

Let us now present the time-dependence of IA,B under evolution induced by HMöbius/SSD. We

depict IA,B for various ✓ as function of t1 in Fig. 2. The center of B is x = X
f

1
. The solid

lines illustrate the time-dependence of IA,B for A, the center of which is x = X
f

1
, while the

dashed line illustrates that for A, the center of which is x = L

4
. Let t1,Nearest denote the time

5Probably, this sentence is put on other sections.
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The non-local correlation is recovered from the typical state:  
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3✏
. For HSSD, in the time-region where the black-hole-like exci-

tation, the excitation having the thermal entropy of H1, emerges at x = X
f

1
, IA,B reduces

to

IA,B ⇡ 2c⇡lA

6✏
, (3.3)

where lA = X1 � X2. One possible for the late-time IA,B that IA,B may measure the Bell

pairs initially shared by A and H1
5.
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where h(x) f(x), L denotes the Hamiltonian density, envelop function, and system size.

We impose the periodic boundary condition on these Hamiltonians. The envelop functions

considered in this paper are
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where in the SSD limit when ✓ ! 1, fMöbius(x) reduces to fSSD(x), while in the CSD limit

when ✓ ! �1, fMöbius(x) reduces to fCSD(x). For f(x) = fMöbius(x), f(x) = fSSD(x), and

f(x) = fCSD(x), the inhomogeneously-deformed Hamiltonians are called as Möbius, sine-

square (SS), and cosine-square (CS) deformed Hamiltonians. For x ⇡ 0, the Hamiltonian

density spatially modulated by fSSD(x) is smaller than the un-deformed one, while for x ⇡ L

2
,

it is larger than the un-deformed one. For x ⇡ L

2
, the Hamiltonian density modified by

fCSD(x) is smaller than the un-deformed one, while for x ⇡ 0, it is larger than the un-

deformed one. Therefore, the SSD and CSD may the dynamical properties of Hamiltonian

stronger at x ⇡ 0 or x ⇡ L

2
, respectively, while they may those properties weaker at x ⇡ L

2

or x ⇡ 0, respectively.

2.2 The systems evolved with the inhomogeneously-deformed Hamil-

tonians

Let us now describe the systems evolved with the inhomogeneously-deformed Hamiltonians.

System.1: Let us start from the thermofield double state of the finite inverse temperature

�:

|TFDi = N e
� ✏(H1+H

2)
2

X

a

|ai
1
⌦ |ai

2
, (2.3)

where H
i=1,2 and |ai

i=1,2
denote the un-deformed 2d CFT Hamiltonian, and the eigenstate

of them, respectively. Thus, this thermofield double state is defined in the doubled Hilbert

space, H = H1 ⌦H2. The square of N 2 guarantees that hTFD|TFDi = 1. Then, we unitarily

evolve with Möbius/SS deformed Hamiltonian. The time evolution operator acting on this

thermofield double state is defined as

UMöbius/SSD = e
�it1H

1
Möbius/SSD ⌦ 12, (2.4)

where H
1

Möbius/SSD
and 12 denote the Möbius/SS deformed Hamiltonian acting on H1, and

identity operator on H2, respectively.

System.2: We start from an excited state which is defined as

| (t0)i =
⇣
e

�iH
1
0 t0 ⌦ 12

⌘
|TFDi , (2.5)

and then evolve it with the SSD Hamiltonian acting on only H1. Under this evolution, the

system is in the state given by

| (t1, t0)i =
⇣
e

�iH
1
SSDt1 ⌦ 12

⌘
| (t0)i . (2.6)
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where the two- and four-point functions on the torus depend on the detail of 2d CFTs, and

we call them as the non-universal pieces 2. These locations, w
New

x,✏,↵
and w

New

x,✏,↵
, depends on the

imaginary times ⌧i=0,1,2. After we analytically continue ⌧i=0,1,2 to iti=0,1,2, only the imaginary

parts of w
New

x,✏,↵
and w

New

x,✏,↵
depend on these real times. In other words, under the evolution by

U
1

E,↵
e

�✏H , the twist and anti-twist operators spatially moves as in Appendix A.1. Under the

evolution by HMöbius/SSD/CSC, the primary operators at x = X
f

1
= 0 and x = X

f

2
= L

2
does

not spatially move. We call X
f

1
and X

f

2
as fixed points.

2.3.1 Non-universal pieces in 2d holographic CFT

Let us look closely at the non-universal piece of the entanglement entropy for the single and

double intervals in 2d holographic CFT. To compare the results on 2d holographic CFTs

with the ones in 2d free fermion, we calculated the non-universal pieces in this free fermion,

The details of results and calculation is reported in Appendix C.1.

Single interval

Here, we present the non-universal piece of the entanglement entropy for the single interval

in the coarse-grained region. In this region, the gravity dual of the system on the torus is

BTZ black hole [3]. Therefore, in the von Neumann limit when n ! 1, the non-universal

piece is given by the geodesic length in BTZ black hole [4, 5]. Let V denote the subsystem,

and also v1 and v2 denote the endpoints of V . Here, v1 > v2. The non-universal piece of

entanglement entropy for the reduced density matrix associated with V is holographically

2Mao tian, can you check if this is correct? Especially, I would ask you to check if the
temporary location of operators.
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The operators evolved by HMöbius periodically moves between x = X
f

1
and x = X

f

2
with

period T1 = L cosh 2✓. In the SSD limit when ✓ ! 1, these operators move with time to

x = X
f

2
. The speed of motion of these operators depends on the locations of them and ✓. The

system size grows and shrinks with time according to the motion of the evolved operators,

so that the geodesic length associated to this subsystem increases and decreases with time.

Let us looks closely at the time-dependence of the non-universal pieces of SB and SA[B.

For simplicity, let us suppose that B includes x = X
f

1
, its center is this fixed, and A does

not include this fixed point. For the non-universal piece of SA[B, the early time-dependence

of it may be given by the lengths of geodesics connecting the endpoints of A and B, Scon,

while the late-time dependence may be given by the ones connecting the endpoints on the

same Euclidean time-slices, Sdis. Therefore, for large t1 regime, the non-universal pieces of

SB and SA[B may be determined by the lengths of the geodesics connecting the endpoints

of the subsystems on the same Euclidean time-slices as in Fig. ??. Let us suppose that the

operator corresponding to the right endpoint of B move with time between x = X
Nearest and

x = X
Furtherest where 0 < X

Furtherest
< X

Nearest
<

L

2
, while the one corresponding to the

left endpoint of B move between x = L � X
Furtherest and x = L � X

Nearest. If ✓ becomes

larger, then X
Nearest gets closer to X

f

2
. For the small ✓, Sdis is given by the geodesic lengths

that are proportional to the the sizes of A and B, so that SA[B cancels SA and SB. As

a consequence, for the small ✓ but the large t1, IA,B is zero. For the large ✓, Sdis is given

by the geodesic lengths that are proportional to the the sizes of Ã and B̃. Here, Ã and

B̃ are complements of H2 and H1 to A and B, respectively. In this time-regime, SA[B is

proportional to L � (X1 � X2) + (XNew

Y1,✏,↵=1
� X

New

Y2,✏,↵=1
), while SA and SB are proportional

to X1 � X2 and L � (XNew

Y1,✏,↵=1
� X

New

Y2,✏,↵=1
), respectively, so that IA,B is proportional to

2
⇥
(X1 � X2) � (XNew

Y1,✏,↵=1
� X

New

Y2,✏,↵=1
)
⇤
. For HSSD, in the time-region where the black-hole-

like excitation, the excitation having the thermal entropy of H1, emerges at x = X
f

1
, IA,B

reduces to the value which is proportional to X1 � X2. One possible for the late-time IA,B

that IA,B may measure the Bell pairs initially shared by A and H1
5.

5Probably, this sentence is put on other sections.
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where h(x) f(x), L denotes the Hamiltonian density, envelop function, and system size.

We impose the periodic boundary condition on these Hamiltonians. The envelop functions

considered in this paper are

fMöbius(x) = 1 � tanh 2✓ cos

✓
2⇡x

L

◆
, fSSD(x) = 2 sin2

⇣
⇡x

L

⌘
, fCSD(x) = 2 cos2

⇣
⇡x

L

⌘
, (2.2)

where in the SSD limit when ✓ ! 1, fMöbius(x) reduces to fSSD(x), while in the CSD limit

when ✓ ! �1, fMöbius(x) reduces to fCSD(x). For f(x) = fMöbius(x), f(x) = fSSD(x), and

f(x) = fCSD(x), the inhomogeneously-deformed Hamiltonians are called as Möbius, sine-

square (SS), and cosine-square (CS) deformed Hamiltonians. For x ⇡ 0, the Hamiltonian

density spatially modulated by fSSD(x) is smaller than the un-deformed one, while for x ⇡ L

2
,

it is larger than the un-deformed one. For x ⇡ L

2
, the Hamiltonian density modified by

fCSD(x) is smaller than the un-deformed one, while for x ⇡ 0, it is larger than the un-

deformed one. Therefore, the SSD and CSD may the dynamical properties of Hamiltonian

stronger at x ⇡ 0 or x ⇡ L

2
, respectively, while they may those properties weaker at x ⇡ L

2

or x ⇡ 0, respectively.

2.2 The systems evolved with the inhomogeneously-deformed Hamil-

tonians

Let us now describe the systems evolved with the inhomogeneously-deformed Hamiltonians.

System.1: Let us start from the thermofield double state of the finite inverse temperature

�:

|TFDi = N e
� ✏(H1+H

2)
2

X

a

|ai
1
⌦ |ai

2
, (2.3)

where H
i=1,2 and |ai

i=1,2
denote the un-deformed 2d CFT Hamiltonian, and the eigenstate

of them, respectively. Thus, this thermofield double state is defined in the doubled Hilbert

space, H = H1 ⌦H2. The square of N 2 guarantees that hTFD|TFDi = 1. Then, we unitarily

evolve with Möbius/SS deformed Hamiltonian. The time evolution operator acting on this

thermofield double state is defined as

UMöbius/SSD = e
�it1H

1
Möbius/SSD ⌦ 12, (2.4)

where H
1

Möbius/SSD
and 12 denote the Möbius/SS deformed Hamiltonian acting on H1, and

identity operator on H2, respectively.

System.2: We start from an excited state which is defined as

| (t0)i =
⇣
e

�iH
1
0 t0 ⌦ 12

⌘
|TFDi , (2.5)

and then evolve it with the SSD Hamiltonian acting on only H1. Under this evolution, the

system is in the state given by

| (t1, t0)i =
⇣
e

�iH
1
SSDt1 ⌦ 12

⌘
| (t0)i . (2.6)
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where H
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denote the un-deformed 2d CFT Hamiltonian, and the eigenstate

of them, respectively. Thus, this thermofield double state is defined in the doubled Hilbert

space, H = H1 ⌦H2. The square of N 2 guarantees that hTFD|TFDi = 1. Then, we unitarily

evolve with Möbius/SS deformed Hamiltonian. The time evolution operator acting on this

thermofield double state is defined as

UMöbius/SSD = e
�it1H

1
Möbius/SSD ⌦ 12, (2.4)

where H
1

Möbius/SSD
and 12 denote the Möbius/SS deformed Hamiltonian acting on H1, and

identity operator on H2, respectively.

System.2: We start from an excited state which is defined as

| (t0)i =
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e

�iH
1
0 t0 ⌦ 12

⌘
|TFDi , (2.5)

and then evolve it with the SSD Hamiltonian acting on only H1. Under this evolution, the

system is in the state given by

| (t1, t0)i =
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e

�iH
1
SSDt1 ⌦ 12

⌘
| (t0)i . (2.6)
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[b] The geometry corresponding to H2

Figure 1: A cartoon about the operator evolution in the Heisenberg picture. The green lines

illustrate the subsystems, A and B. The blue lines correspond to the non-universal pieces of

SA and SB. The non-universal piece of SA[B is given by the minimal geodesic length of the

ones that correspond to the purple dashed and orange dotted lines. The red arrow illustrates

the growth of X
Nearest with the increase of ✓.

3.1.1 The ✓- and Position-dependence of IA,B under evolution by HMöbius/SSD

Let us now present the time-dependence of IA,B under evolution induced by HMöbius/SSD. We

depict IA,B for various ✓ as function of t1 in Fig. 2. The center of B is x = X
f

1
. The solid

lines illustrate the time-dependence of IA,B for A, the center of which is x = X
f

1
, while the

dashed line illustrates that for A, the center of which is x = L

4
. Let t1,Nearest denote the time

5Probably, this sentence is put on other sections.
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X
f

2
. For the small ✓, Sdis is given by c⇡

6✏

h
2L �

⇣
X

New,↵=1

Y1,✏
� X

New,↵=1

Y2,✏
+ (X1 � X2)

⌘i
. As a

consequence, for the small ✓ but the large t1, IA,B is zero. For the large ✓, Sdis is given by
c⇡

6✏

h⇣
X

New,↵=1

Y1,✏
� X

New,↵=1

Y2,✏
+ (X1 � X2)

⌘i
. In this time-regime, SA and SB are approximated

by c⇡(L�(X1�X2))

6✏
and

c⇡(L�(X
New
Y1,✏,↵=0�X

New
Y2,✏,↵=0))

6✏
, respectively, so that IA,B is approximated by

c⇡[(X1�X2)�(X
New
Y1,✏,↵=0�X

New
Y2,✏,↵=0)]

3✏
. For HSSD, in the time-region where the black-hole-like exci-

tation, the excitation having the thermal entropy of H1, emerges at x = X
f

1
, IA,B reduces

to

IA,B ⇡ 2c⇡lA

6✏
, (3.3)

where lA = X1 � X2. One possible for the late-time IA,B that IA,B may measure the Bell

pairs initially shared by A and H1
5.
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considered in this paper are
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2
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2
, (2.3)

where H
i=1,2 and |ai

i=1,2
denote the un-deformed 2d CFT Hamiltonian, and the eigenstate

of them, respectively. Thus, this thermofield double state is defined in the doubled Hilbert

space, H = H1 ⌦H2. The square of N 2 guarantees that hTFD|TFDi = 1. Then, we unitarily

evolve with Möbius/SS deformed Hamiltonian. The time evolution operator acting on this

thermofield double state is defined as

UMöbius/SSD = e
�it1H

1
Möbius/SSD ⌦ 12, (2.4)

where H
1

Möbius/SSD
and 12 denote the Möbius/SS deformed Hamiltonian acting on H1, and

identity operator on H2, respectively.

System.2: We start from an excited state which is defined as

| (t0)i =
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e

�iH
1
0 t0 ⌦ 12

⌘
|TFDi , (2.5)

and then evolve it with the SSD Hamiltonian acting on only H1. Under this evolution, the

system is in the state given by

| (t1, t0)i =
⇣
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SSDt1 ⌦ 12

⌘
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is mapped to w
New,↵

x,✏
, w

New,↵

x,✏
. As a consequence, S

(n)

V is written as

S
(n)

A
=

1

1 � n
log [h�n(wX1 , wX1)�n(wX2 , wX2)i2✏

],

S
(n)

B
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1

1 � n
log

2

4⇧i=1,2

�����
dw
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dwYi

�����

2hn

3
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1
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log
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, w

New

Y2,✏,↵

�↵
2✏

,

S
(n)

A[B
=

1

1 � n
log

2

4⇧i=1,2

�����
dw

New

Yi,✏,↵

dwYi

�����

2hn

3

5

+
1
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log
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New
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New
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�
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New
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(2.15)

where the two- and four-point functions on the torus depend on the detail of 2d CFTs, and

we call them as the non-universal pieces 2. These locations, w
New

x,✏,↵
and w

New

x,✏,↵
, depends on the

imaginary times ⌧i=0,1,2. After we analytically continue ⌧i=0,1,2 to iti=0,1,2, only the imaginary

parts of w
New

x,✏,↵
and w

New

x,✏,↵
depend on these real times. In other words, under the evolution by

U
1

E,↵
e

�✏H , the twist and anti-twist operators spatially moves as in Appendix A.1. Under the

evolution by HMöbius/SSD/CSC, the primary operators at x = X
f

1
= 0 and x = X

f

2
= L

2
does

not spatially move. We call X
f

1
and X

f

2
as fixed points.

2.3.1 Non-universal pieces in 2d holographic CFT

Let us look closely at the non-universal piece of the entanglement entropy for the single and

double intervals in 2d holographic CFT. To compare the results on 2d holographic CFTs

with the ones in 2d free fermion, we calculated the non-universal pieces in this free fermion,

The details of results and calculation is reported in Appendix C.1.

Single interval

Here, we present the non-universal piece of the entanglement entropy for the single interval

in the coarse-grained region. In this region, the gravity dual of the system on the torus is

BTZ black hole [3]. Therefore, in the von Neumann limit when n ! 1, the non-universal

piece is given by the geodesic length in BTZ black hole [4, 5]. Let V denote the subsystem,

and also v1 and v2 denote the endpoints of V . Here, v1 > v2. The non-universal piece of

entanglement entropy for the reduced density matrix associated with V is holographically

2Mao tian, can you check if this is correct? Especially, I would ask you to check if the
temporary location of operators.
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The operators evolved by HMöbius periodically moves between x = X
f

1
and x = X

f

2
with

period T1 = L cosh 2✓. In the SSD limit when ✓ ! 1, these operators move with time to

x = X
f

2
. The speed of motion of these operators depends on the locations of them and ✓. The

system size grows and shrinks with time according to the motion of the evolved operators,

so that the geodesic length associated to this subsystem increases and decreases with time.

Let us looks closely at the time-dependence of the non-universal pieces of SB and SA[B.

For simplicity, let us suppose that B includes x = X
f

1
, its center is this fixed, and A does

not include this fixed point. For the non-universal piece of SA[B, the early time-dependence

of it may be given by the lengths of geodesics connecting the endpoints of A and B, Scon,

while the late-time dependence may be given by the ones connecting the endpoints on the

same Euclidean time-slices, Sdis. Therefore, for large t1 regime, the non-universal pieces of

SB and SA[B may be determined by the lengths of the geodesics connecting the endpoints

of the subsystems on the same Euclidean time-slices as in Fig. ??. Let us suppose that the

operator corresponding to the right endpoint of B move with time between x = X
Nearest and

x = X
Furtherest where 0 < X

Furtherest
< X

Nearest
<

L

2
, while the one corresponding to the

left endpoint of B move between x = L � X
Furtherest and x = L � X

Nearest. If ✓ becomes

larger, then X
Nearest gets closer to X

f

2
. For the small ✓, Sdis is given by the geodesic lengths

that are proportional to the the sizes of A and B, so that SA[B cancels SA and SB. As

a consequence, for the small ✓ but the large t1, IA,B is zero. For the large ✓, Sdis is given

by the geodesic lengths that are proportional to the the sizes of Ã and B̃. Here, Ã and

B̃ are complements of H2 and H1 to A and B, respectively. In this time-regime, SA[B is

proportional to L � (X1 � X2) + (XNew

Y1,✏,↵=1
� X

New

Y2,✏,↵=1
), while SA and SB are proportional

to X1 � X2 and L � (XNew

Y1,✏,↵=1
� X

New

Y2,✏,↵=1
), respectively, so that IA,B is proportional to

2
⇥
(X1 � X2) � (XNew

Y1,✏,↵=1
� X

New

Y2,✏,↵=1
)
⇤
. For HSSD, in the time-region where the black-hole-

like excitation, the excitation having the thermal entropy of H1, emerges at x = X
f

1
, IA,B

reduces to the value which is proportional to X1 � X2. One possible for the late-time IA,B

that IA,B may measure the Bell pairs initially shared by A and H1
5.

5Probably, this sentence is put on other sections.
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where h(x) f(x), L denotes the Hamiltonian density, envelop function, and system size.

We impose the periodic boundary condition on these Hamiltonians. The envelop functions

considered in this paper are

fMöbius(x) = 1 � tanh 2✓ cos

✓
2⇡x

L

◆
, fSSD(x) = 2 sin2

⇣
⇡x

L

⌘
, fCSD(x) = 2 cos2

⇣
⇡x

L

⌘
, (2.2)

where in the SSD limit when ✓ ! 1, fMöbius(x) reduces to fSSD(x), while in the CSD limit

when ✓ ! �1, fMöbius(x) reduces to fCSD(x). For f(x) = fMöbius(x), f(x) = fSSD(x), and

f(x) = fCSD(x), the inhomogeneously-deformed Hamiltonians are called as Möbius, sine-

square (SS), and cosine-square (CS) deformed Hamiltonians. For x ⇡ 0, the Hamiltonian

density spatially modulated by fSSD(x) is smaller than the un-deformed one, while for x ⇡ L

2
,

it is larger than the un-deformed one. For x ⇡ L

2
, the Hamiltonian density modified by

fCSD(x) is smaller than the un-deformed one, while for x ⇡ 0, it is larger than the un-

deformed one. Therefore, the SSD and CSD may the dynamical properties of Hamiltonian

stronger at x ⇡ 0 or x ⇡ L

2
, respectively, while they may those properties weaker at x ⇡ L

2

or x ⇡ 0, respectively.

2.2 The systems evolved with the inhomogeneously-deformed Hamil-

tonians

Let us now describe the systems evolved with the inhomogeneously-deformed Hamiltonians.

System.1: Let us start from the thermofield double state of the finite inverse temperature

�:

|TFDi = N e
� ✏(H1+H

2)
2

X

a

|ai
1
⌦ |ai

2
, (2.3)

where H
i=1,2 and |ai

i=1,2
denote the un-deformed 2d CFT Hamiltonian, and the eigenstate

of them, respectively. Thus, this thermofield double state is defined in the doubled Hilbert

space, H = H1 ⌦H2. The square of N 2 guarantees that hTFD|TFDi = 1. Then, we unitarily

evolve with Möbius/SS deformed Hamiltonian. The time evolution operator acting on this

thermofield double state is defined as

UMöbius/SSD = e
�it1H

1
Möbius/SSD ⌦ 12, (2.4)

where H
1

Möbius/SSD
and 12 denote the Möbius/SS deformed Hamiltonian acting on H1, and

identity operator on H2, respectively.

System.2: We start from an excited state which is defined as

| (t0)i =
⇣
e

�iH
1
0 t0 ⌦ 12

⌘
|TFDi , (2.5)

and then evolve it with the SSD Hamiltonian acting on only H1. Under this evolution, the

system is in the state given by

| (t1, t0)i =
⇣
e

�iH
1
SSDt1 ⌦ 12

⌘
| (t0)i . (2.6)
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square (SS), and cosine-square (CS) deformed Hamiltonians. For x ⇡ 0, the Hamiltonian

density spatially modulated by fSSD(x) is smaller than the un-deformed one, while for x ⇡ L

2
,

it is larger than the un-deformed one. For x ⇡ L

2
, the Hamiltonian density modified by

fCSD(x) is smaller than the un-deformed one, while for x ⇡ 0, it is larger than the un-

deformed one. Therefore, the SSD and CSD may the dynamical properties of Hamiltonian

stronger at x ⇡ 0 or x ⇡ L

2
, respectively, while they may those properties weaker at x ⇡ L

2
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where H
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of them, respectively. Thus, this thermofield double state is defined in the doubled Hilbert

space, H = H1 ⌦H2. The square of N 2 guarantees that hTFD|TFDi = 1. Then, we unitarily
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Möbius/SSD ⌦ 12, (2.4)

where H
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and 12 denote the Möbius/SS deformed Hamiltonian acting on H1, and

identity operator on H2, respectively.

System.2: We start from an excited state which is defined as

| (t0)i =
⇣
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�iH
1
0 t0 ⌦ 12
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|TFDi , (2.5)

and then evolve it with the SSD Hamiltonian acting on only H1. Under this evolution, the
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[b] The geometry corresponding to H2

Figure 1: A cartoon about the operator evolution in the Heisenberg picture. The green lines

illustrate the subsystems, A and B. The blue lines correspond to the non-universal pieces of

SA and SB. The non-universal piece of SA[B is given by the minimal geodesic length of the

ones that correspond to the purple dashed and orange dotted lines. The red arrow illustrates

the growth of X
Nearest with the increase of ✓.

3.1.1 The ✓- and Position-dependence of IA,B under evolution by HMöbius/SSD

Let us now present the time-dependence of IA,B under evolution induced by HMöbius/SSD. We

depict IA,B for various ✓ as function of t1 in Fig. 2. The center of B is x = X
f

1
. The solid

lines illustrate the time-dependence of IA,B for A, the center of which is x = X
f

1
, while the

dashed line illustrates that for A, the center of which is x = L

4
. Let t1,Nearest denote the time

5Probably, this sentence is put on other sections.
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1

E,↵
=

8
>>>><

>>>>:

e
H

1
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Divide the system into the subsystem V and V , the complement to it, and then define the
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UMöbius/SSD = e
�it1H

1
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Figure 7: A sketch of the emergence and the time-evolution of the two B.H.-like excitations.

illustrate the t0-dependence of IA,B for various t1. In (A) and (C), in the large t1-regime, the

t0-dependence of is approximated by

For (A) IA,B ⇡
(

c⇡lA

3✏
for (n + 1)L � Y1 > t0 > nL � Y2

0 for (n + 1)L � Y2 > t0 > (n + 1)L � Y1,
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.

(5.6)

The dashed lines in Fig. 8 illustrate this asymptotic behavior. In (A) and (C), for the large

t1-regime, the t0-dependence of IA,B is periodic with L. In (A) and (C), there are the t0-

regimes where both B.H.-like excitations are in B, while in (B), there are no t0-regimes where

both B.H.-like excitations are in B. In the t0-regimes where both B.H.-like excitations are

in B, IA,B is approximated by c⇡lA

3✏
.

5.2.2 Double intervals

Now, let us look closely at the t0-dependence of IA,B when B is given by a union of symmetric

double intervals, B1 and B2, that are defined by

B1 =

⇢
x

����L > L � Y1 > x > L � Y2 >
L

2

�
, B2 =

⇢
x

����
L

2
> Y1 > x > Y2 > 0

�
, (5.7)

where L

2
> Y1 > Y2 > 0. In Fig. 9, the positions of the edges of the subsystems are

Y1 > Y2 > X2 > X1 > 0. In this case, the value of IA,B with the small t1 is practically zero.
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1.2 Results on present paper

• Setup.1:

– Bipartite (operator) mutual information: Let us take the subsystems, A and B1,

to be the sub-regions of H2 and H1, respectively. Then, define the mutual infor-

mation as the linear combination of entanglement entropies associated with A, B1

, and A [ B1,

IA,B1 = SA + SB1 � SA[B1 , (1.1)

where A [ B denotes the union of A and B. For A including x = X
1

f
, IA,B1

decreases with t1, upto t1,⇤, and then increases with tt1 , saturating at the value

that is proportional to the number of Bell pairs shared in A and B at t1 = 0.

Here, t1,⇤ may depend on the sizes of A and B1, the system size, and �.

– Tripartite (operator) mutual information: Let us divide H1 into B1 and B2. Take

A and B1 to be subsystems of H2 and H1 including x = X
1

f
, and then define the

tripartite (operator) mutual information as

IA,B1,B2 = IA,B1 + IA,B2 � IA,B1[B2 . (1.2)

For large t1, IA,B1,B2 vanishes. A possible interpretation for this t1-dependence

of IA,B1,B2 is that the Bell pairs initially shared by A and B1 still remains in the

large t1 region.

• Setup.2:

– Bipartite (operator) mutual information: Let us take A and B1 to be the sub-

regions of H2 and H1 including x = X
1

f
, respectively. For large t0, IA,B1 at t1 = 0

vanishes, and then increases with t1, saturating at the value that is proportional

to he number of Bell pairs shared in A and B at t0 = 0 and t1 = 0. One possible

interpretation for this behavior of IA,B1 is that these Bell pairs scrambled under

the evolution by H0 is retrieved from A [ B1 under the SSD time-evolution.

– Tripartite (operator) mutual information: During the evolution by H0, IA,B1,B2

decreasing, saturating at the negative value that is proportional to the number of

Bell pairs initially shared in A and B1. Subsequently, the system unitarily evolves

according to the equation of motion given by HSSD. During this time-evolution,

IA,B1,B2 increases with t1, saturating at zero.

We can see from the behaviors of IA,B and IA,B1,B2 that one can retrieves the Bell pairs

scrambled by H0 during the evolution by HSSD.

• Setup.3:

– Bipartite (operator) mutual information: Let us take A and B1 to be the sub-

regions of H2 and H1, respectively.

3

Single interval

Here, we present the non-universal piece of the entanglement entropy for the single interval

in the coarse-grained region. In this region, the gravity dual of the system on the torus is

BTZ black hole [5]. Therefore, in the von Neumann limit when n ! 1, the non-universal

piece is given by the geodesic length in BTZ black hole [6, 7]. Let V denote the subsystem,

and also v1 and v2 denote the endpoints of V . Here, v1 > v2. The non-universal piece of

entanglement entropy for the reduced density matrix associated with V is holographically

given by
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(2.16)

Double intervals

Let us turn to the analysis on the non-universal piece of the entanglement entropy for the

double intervals. The entanglement entropy of the states considered in this paper has to

satisfy two conditions: (1) If V is the total Hilbert space, V = H1[H2, then the entanglement

entropy for V is zero; (2) If V is H1 or H2, the one for V is thermal entropy, SV=Hi=1,2 =

Sthermal. The non-universal piece satisfying these conditions is given by [8]3

lim
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+ Min [Sdis, Scon] ,

(2.17)

where Sdis is determined by the length of geodesic that connects the endpoints of intervals at

the same Euclidean time slices, while Scon is determined by that of intervals at the di↵erent

Euclidean time-slices. The some details of Sdis and Scon are reported in Appendix B.1.

The temporal and spatial locations, ⌧
New

x,✏,↵
and X

New

x,✏,↵
, of endpoints are defined as
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x,✏,↵
= Im

"
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3Can someone add the references?
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The dashed lines in Fig. 8 illustrate this asymptotic behavior. In (A) and (C), for the large

t1-regime, the t0-dependence of IA,B is periodic with L. In (A) and (C), there are the t0-

regimes where both B.H.-like excitations are in B, while in (B), there are no t0-regimes where

both B.H.-like excitations are in B. In the t0-regimes where both B.H.-like excitations are

in B, IA,B is approximated by c⇡lA
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.

5.2.2 Double intervals

Now, let us look closely at the t0-dependence of IA,B when B is given by a union of symmetric

double intervals, B1 and B2, that are defined by

B1 =
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where L

2
> Y1 > Y2 > 0. In Fig. 9, the positions of the edges of the subsystems are

Y1 > Y2 > X2 > X1 > 0. In this case, the value of IA,B with the small t1 is practically zero.
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where L
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> Y1 > Y2 > 0. In Fig. 9, the positions of the edges of the subsystems are

Y1 > Y2 > X2 > X1 > 0. In this case, the value of IA,B with the small t1 is practically zero.

21

Contents

1 Parts 1

1 Parts

qi

2,L
,qi

1,L
,qi+1

1,L
,qi+k

1,L
,qi+l

1,L
H1 H2,x = X1

f
(1.1)

References

1

Contents

1 Parts 1

1 Parts

qi

2,L
,qi

1,L
,qi+1

1,L
,qi+k

1,L
,qi+l

1,L
H1 H2,x = X1

f
(1.1)

References

1

Contents

1 Parts 1

1 Parts

qi

2,L
,qi

1,L
,qi+1

1,L
,qi+k

1,L
,qi+l

1,L
H1 H2, x = X

1

f
(1.1)

References

1

(a) The propagation of

quasi-particles on H1.

B.H.-like excitations

Contents

1 Parts 1

1 Parts

qi

2,L
,qi

1,L
,qi+1

1,L
,qi+k

1,L
,qi+l

1,L
H1 H2,x = X1

f
(1.1)

References

1

(b) The emergence of

B.H.-like excitations.

Contents

1 Parts 1

1 Parts

qi

2,L
,qi

1,L
,qi+1

1,L
,qi+k

1,L
,qi+l

1,L
H1 H2,x = X1

f
(1.1)

References

1

(c) The relativistic

propagation of the B.H.-like

excitations.

Figure 7: A sketch of the emergence and the time-evolution of the two B.H.-like excitations.

illustrate the t0-dependence of IA,B for various t1. In (A) and (C), in the large t1-regime, the

t0-dependence of is approximated by

For (A) IA,B ⇡
(

c⇡lA

3✏
for (n + 1)L � Y1 > t0 > nL � Y2

0 for (n + 1)L � Y2 > t0 > (n + 1)L � Y1,

,

For (C) IA,B ⇡

8
>><

>>:

0 for (n + 1) L � Y1 > t0 > nL � Y2

c⇡lA

3✏
for nL + Y1 > t0 > (n + 1) L � Y1

0 for (n + 1)L � Y2 > t0 > nL + Y1

.

(5.6)

The dashed lines in Fig. 8 illustrate this asymptotic behavior. In (A) and (C), for the large

t1-regime, the t0-dependence of IA,B is periodic with L. In (A) and (C), there are the t0-
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where L
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> Y1 > Y2 > 0. In Fig. 9, the positions of the edges of the subsystems are

Y1 > Y2 > X2 > X1 > 0. In this case, the value of IA,B with the small t1 is practically zero.

21

Summary 3: Genuine tripartite entanglement
The system considered  is in:|Ψ(t)⟩ = e−itH1

inh |TFD⟩ .x = X1
f , IA,B = SA + SB − SA∪B

|Ψ(t0, t1)⟩ =
(
e−it0H1

0 ⊗ 1H2

)(
e−it1H1

SSD ⊗ 1H2

) 1√
tre−2ϵH0

∑

a

e
−ϵ
2 (H1

0+H2
0) |a⟩H1

⊗ |a⟩H2

(0.4)

4



Let us divide          into      ,      , and the complement to them.
denotes the subsystem of       . 

square of N 2 guarantees that hTFD|TFDi = 1. Then, we unitarily evolve with Möbius/SS

deformed Hamiltonian. The time evolution operator acting on this thermofield double state

is defined as

UMöbius/SSD = e
�it1H

1
Möbius/SSD ⌦ 12, (2.4)

where H
1

Möbius/SSD
and 12 denote the Möbius/SS deformed Hamiltonian acting on H1, and

identity operator on H2, respectively.

System.2: We start from an excited state which is defined as

| (t0)i =
⇣
e

�iH
1
0 t0 ⌦ 12

⌘
|TFDi , (2.5)

and then evolve it with the SSD Hamiltonian acting on only H1. Under this evolution, the

system is in the state given by

| (t1, t0)i =
⇣
e

�iH
1
SSDt1 ⌦ 12

⌘
| (t0)i . (2.6)

System.3: Let us start from an excited state defined as

|�(t1)i =
⇣
e

�iH
1
SSDt1 ⌦ 12

⌘
|TFDi , (2.7)

and then evolve it with the un-deformed Hamiltonian acting on only H1. Under this evolu-

tion, the system is in the state given by

|�(t1, t0)i =
⇣
e

�iH
1
0 t0 ⌦ 12

⌘
|�(t1)i . (2.8)

2.3 Entanglement entropies in the twist operator formalism

To employ the path-integral formalism suited to analytic computation, let us define Euclidean

density operators as

⇢E,↵=0,1,2,3 = N 2

E

X

a,b

e
�✏(Ea+Eb)

⇣
U

1

E,↵=0,1,2,3
|ai hb|

1
Ũ

1

E↵=0,1,2,3
⌦ |a⇤i hb⇤|

2

⌘
, (2.9)

where the Euclidean normalization constant N �2

E
= tre�2✏H guarantees that tr⇢E,↵ = 1.

These density operators may be the analytic-continued ones in imaginary time corresponding

to the ones defined in Section 2.2. The Euclidean evolution operators are defined as

U
1

E,↵
=

8
>>>><

>>>>:

e
�H

1
Möbius⌧1 ↵ = 0

e
�H

1
SSD⌧1e

�H
1
⌧0 ↵ = 1

e
�H

1
⌧0e

�H
1
SSD⌧1 ↵ = 2

e
�H

1
SCD⌧2e

�H
1
SSD⌧1 ↵ = 3

, Ũ
1

E,↵
=

8
>>>><

>>>>:

e
H

1
Möbius⌧1 ↵ = 0

e
H

1
⌧0e

H
1
SSD⌧1 ↵ = 1

e
H

1
SSD⌧1e

H
1
⌧0 ↵ = 2

e
H

1
SSD⌧1e

H
1
SCD⌧2 ↵ = 3

. (2.10)

Divide the system into the subsystem V and V , the complement to it, and then define the

reduce Euclidean density operators for V as ⇢E,↵;V = trV⇢E,↵. Let A, B, and A [ B denote
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Figure 7: A sketch of the emergence and the time-evolution of the two B.H.-like excitations.

illustrate the t0-dependence of IA,B for various t1. In (A) and (C), in the large t1-regime, the

t0-dependence of is approximated by

For (A) IA,B ⇡
(

c⇡lA

3✏
for (n + 1)L � Y1 > t0 > nL � Y2

0 for (n + 1)L � Y2 > t0 > (n + 1)L � Y1,

,

For (C) IA,B ⇡
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for nL + Y1 > t0 > (n + 1) L � Y1

0 for (n + 1)L � Y2 > t0 > nL + Y1

.

(5.6)

The dashed lines in Fig. 8 illustrate this asymptotic behavior. In (A) and (C), for the large

t1-regime, the t0-dependence of IA,B is periodic with L. In (A) and (C), there are the t0-

regimes where both B.H.-like excitations are in B, while in (B), there are no t0-regimes where

both B.H.-like excitations are in B. In the t0-regimes where both B.H.-like excitations are

in B, IA,B is approximated by c⇡lA

3✏
.

5.2.2 Double intervals

Now, let us look closely at the t0-dependence of IA,B when B is given by a union of symmetric

double intervals, B1 and B2, that are defined by

B1 =

⇢
x

����L > L � Y1 > x > L � Y2 >
L

2

�
, B2 =

⇢
x

����
L

2
> Y1 > x > Y2 > 0

�
, (5.7)

where L

2
> Y1 > Y2 > 0. In Fig. 9, the positions of the edges of the subsystems are

Y1 > Y2 > X2 > X1 > 0. In this case, the value of IA,B with the small t1 is practically zero.

21

Contents

1 Parts 1

1 Parts

qi

2,L
,qi

1,L
,qi+1

1,L
,qi+k

1,L
,qi+l

1,L
H1 H2,x = X1

f
(1.1)

References

1

Contents

1 Parts 1

1 Parts

qi

2,L
,qi

1,L
,qi+1

1,L
,qi+k

1,L
,qi+l

1,L
H1 H2,x = X1

f
(1.1)

References

1

Contents

1 Parts 1

1 Parts

qi

2,L
,qi

1,L
,qi+1

1,L
,qi+k

1,L
,qi+l

1,L
H1 H2, x = X

1

f
(1.1)

References

1

(a) The propagation of

quasi-particles on H1.

B.H.-like excitations

Contents

1 Parts 1

1 Parts

qi

2,L
,qi

1,L
,qi+1

1,L
,qi+k

1,L
,qi+l

1,L
H1 H2,x = X1

f
(1.1)

References

1

(b) The emergence of

B.H.-like excitations.

Contents

1 Parts 1

1 Parts

qi

2,L
,qi

1,L
,qi+1

1,L
,qi+k

1,L
,qi+l

1,L
H1 H2,x = X1

f
(1.1)

References

1

(c) The relativistic

propagation of the B.H.-like

excitations.

Figure 7: A sketch of the emergence and the time-evolution of the two B.H.-like excitations.

illustrate the t0-dependence of IA,B for various t1. In (A) and (C), in the large t1-regime, the

t0-dependence of is approximated by

For (A) IA,B ⇡
(

c⇡lA

3✏
for (n + 1)L � Y1 > t0 > nL � Y2

0 for (n + 1)L � Y2 > t0 > (n + 1)L � Y1,

,

For (C) IA,B ⇡

8
>><

>>:

0 for (n + 1) L � Y1 > t0 > nL � Y2

c⇡lA

3✏
for nL + Y1 > t0 > (n + 1) L � Y1

0 for (n + 1)L � Y2 > t0 > nL + Y1

.

(5.6)

The dashed lines in Fig. 8 illustrate this asymptotic behavior. In (A) and (C), for the large

t1-regime, the t0-dependence of IA,B is periodic with L. In (A) and (C), there are the t0-

regimes where both B.H.-like excitations are in B, while in (B), there are no t0-regimes where

both B.H.-like excitations are in B. In the t0-regimes where both B.H.-like excitations are

in B, IA,B is approximated by c⇡lA
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5.2.2 Double intervals

Now, let us look closely at the t0-dependence of IA,B when B is given by a union of symmetric

double intervals, B1 and B2, that are defined by

B1 =
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����L > L � Y1 > x > L � Y2 >
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2
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2
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where L

2
> Y1 > Y2 > 0. In Fig. 9, the positions of the edges of the subsystems are

Y1 > Y2 > X2 > X1 > 0. In this case, the value of IA,B with the small t1 is practically zero.
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1.2 Results on present paper

• Setup.1:

– Bipartite (operator) mutual information: Let us take the subsystems, A and B1,

to be the sub-regions of H2 and H1, respectively. Then, define the mutual infor-

mation as the linear combination of entanglement entropies associated with A, B1

, and A [ B1,

IA,B1 = SA + SB1 � SA[B1 , (1.1)

where A [ B denotes the union of A and B. For A including x = X
1

f
, IA,B1

decreases with t1, upto t1,⇤, and then increases with tt1 , saturating at the value

that is proportional to the number of Bell pairs shared in A and B at t1 = 0.

Here, t1,⇤ may depend on the sizes of A and B1, the system size, and �.

– Tripartite (operator) mutual information: Let us divide H1 into B1 and B2. Take

A and B1 to be subsystems of H2 and H1 including x = X
1

f
, and then define the

tripartite (operator) mutual information as

IA,B1,B2 = IA,B1 + IA,B2 � IA,B1[B2 . (1.2)

For large t1, IA,B1,B2 vanishes. A possible interpretation for this t1-dependence

of IA,B1,B2 is that the Bell pairs initially shared by A and B1 still remains in the

large t1 region.

• Setup.2:

– Bipartite (operator) mutual information: Let us take A and B1 to be the sub-

regions of H2 and H1 including x = X
1

f
, respectively. For large t0, IA,B1 at t1 = 0

vanishes, and then increases with t1, saturating at the value that is proportional

to he number of Bell pairs shared in A and B at t0 = 0 and t1 = 0. One possible

interpretation for this behavior of IA,B1 is that these Bell pairs scrambled under

the evolution by H0 is retrieved from A [ B1 under the SSD time-evolution.

– Tripartite (operator) mutual information: During the evolution by H0, IA,B1,B2

decreasing, saturating at the negative value that is proportional to the number of

Bell pairs initially shared in A and B1. Subsequently, the system unitarily evolves

according to the equation of motion given by HSSD. During this time-evolution,

IA,B1,B2 increases with t1, saturating at zero.

We can see from the behaviors of IA,B and IA,B1,B2 that one can retrieves the Bell pairs

scrambled by H0 during the evolution by HSSD.

• Setup.3:

– Bipartite (operator) mutual information: Let us take A and B1 to be the sub-

regions of H2 and H1, respectively.

3

Single interval

Here, we present the non-universal piece of the entanglement entropy for the single interval

in the coarse-grained region. In this region, the gravity dual of the system on the torus is

BTZ black hole [5]. Therefore, in the von Neumann limit when n ! 1, the non-universal

piece is given by the geodesic length in BTZ black hole [6, 7]. Let V denote the subsystem,

and also v1 and v2 denote the endpoints of V . Here, v1 > v2. The non-universal piece of

entanglement entropy for the reduced density matrix associated with V is holographically

given by

lim
n!1
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log
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)
���2

i
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1

f
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.

(2.16)

Double intervals

Let us turn to the analysis on the non-universal piece of the entanglement entropy for the

double intervals. The entanglement entropy of the states considered in this paper has to

satisfy two conditions: (1) If V is the total Hilbert space, V = H1[H2, then the entanglement

entropy for V is zero; (2) If V is H1 or H2, the one for V is thermal entropy, SV=Hi=1,2 =

Sthermal. The non-universal piece satisfying these conditions is given by [8]3

lim
n!1

1

1 � n
log

⌦
�n

�
w

New

Y1,✏=0,↵
, w

New

Y1,✏=0,↵

�
�n

�
w

New

Y2,✏,↵
, w

New

Y2,✏,↵

�
�n(wX1 , wX1)�n(wX2 , wX2)

↵
2✏

⇡ 2c

3
log

✓
2✏

⇡

◆
+ Min [Sdis, Scon] ,

(2.17)

where Sdis is determined by the length of geodesic that connects the endpoints of intervals at

the same Euclidean time slices, while Scon is determined by that of intervals at the di↵erent

Euclidean time-slices. The some details of Sdis and Scon are reported in Appendix B.1.

The temporal and spatial locations, ⌧
New

x,✏,↵
and X

New

x,✏,↵
, of endpoints are defined as

⌧
New

x,✏,↵
= Im

"
w

New

x,✏,↵
+ w

New

x,✏,↵

2

#
, X

New

x,✏,↵
=

w
New

x,✏,↵
� w

New

x,✏,↵

2i
. (2.18)

3Can someone add the references?
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1.2 Results on present paper

• Setup.1:

– Bipartite (operator) mutual information: Let us take the subsystems, A and B1,

to be the sub-regions of H2 and H1, respectively. Then, define the mutual infor-

mation as the linear combination of entanglement entropies associated with A, B1

, and A [ B1,

IA,B1 = SA + SB1 � SA[B1 , (1.1)

where A [ B denotes the union of A and B. For A including x = X
1

f
, IA,B1

decreases with t1, upto t1,⇤, and then increases with tt1 , saturating at the value

that is proportional to the number of Bell pairs shared in A and B at t1 = 0.

Here, t1,⇤ may depend on the sizes of A and B1, the system size, and �.

– Tripartite (operator) mutual information: Let us divide H1 into B1 and B2. Take

A and B1 to be subsystems of H2 and H1 including x = X
1

f
, and then define the

tripartite (operator) mutual information as

IA,B1,B2 = IA,B1 + IA,B2 � IA,B1[B2 . (1.2)

For large t1, IA,B1,B2 vanishes. A possible interpretation for this t1-dependence

of IA,B1,B2 is that the Bell pairs initially shared by A and B1 still remains in the

large t1 region.

• Setup.2:

– Bipartite (operator) mutual information: Let us take A and B1 to be the sub-

regions of H2 and H1 including x = X
1

f
, respectively. For large t0, IA,B1 at t1 = 0

vanishes, and then increases with t1, saturating at the value that is proportional

to he number of Bell pairs shared in A and B at t0 = 0 and t1 = 0. One possible

interpretation for this behavior of IA,B1 is that these Bell pairs scrambled under

the evolution by H0 is retrieved from A [ B1 under the SSD time-evolution.

– Tripartite (operator) mutual information: During the evolution by H0, IA,B1,B2

decreasing, saturating at the negative value that is proportional to the number of

Bell pairs initially shared in A and B1. Subsequently, the system unitarily evolves

according to the equation of motion given by HSSD. During this time-evolution,

IA,B1,B2 increases with t1, saturating at zero.

We can see from the behaviors of IA,B and IA,B1,B2 that one can retrieves the Bell pairs

scrambled by H0 during the evolution by HSSD.

• Setup.3:

– Bipartite (operator) mutual information: Let us take A and B1 to be the sub-

regions of H2 and H1, respectively.
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Figure 7: A sketch of the emergence and the time-evolution of the two B.H.-like excitations.

illustrate the t0-dependence of IA,B for various t1. In (A) and (C), in the large t1-regime, the

t0-dependence of is approximated by

For (A) IA,B ⇡
(

c⇡lA

3✏
for (n + 1)L � Y1 > t0 > nL � Y2

0 for (n + 1)L � Y2 > t0 > (n + 1)L � Y1,

,

For (C) IA,B ⇡

8
>><

>>:

0 for (n + 1) L � Y1 > t0 > nL � Y2

c⇡lA

3✏
for nL + Y1 > t0 > (n + 1) L � Y1

0 for (n + 1)L � Y2 > t0 > nL + Y1

.

(5.6)

The dashed lines in Fig. 8 illustrate this asymptotic behavior. In (A) and (C), for the large

t1-regime, the t0-dependence of IA,B is periodic with L. In (A) and (C), there are the t0-

regimes where both B.H.-like excitations are in B, while in (B), there are no t0-regimes where

both B.H.-like excitations are in B. In the t0-regimes where both B.H.-like excitations are

in B, IA,B is approximated by c⇡lA

3✏
.

5.2.2 Double intervals

Now, let us look closely at the t0-dependence of IA,B when B is given by a union of symmetric

double intervals, B1 and B2, that are defined by

B1 =

⇢
x

����L > L � Y1 > x > L � Y2 >
L

2

�
, B2 =

⇢
x

����
L

2
> Y1 > x > Y2 > 0

�
, (5.7)

where L

2
> Y1 > Y2 > 0. In Fig. 9, the positions of the edges of the subsystems are

Y1 > Y2 > X2 > X1 > 0. In this case, the value of IA,B with the small t1 is practically zero.
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The dashed lines in Fig. 8 illustrate this asymptotic behavior. In (A) and (C), for the large

t1-regime, the t0-dependence of IA,B is periodic with L. In (A) and (C), there are the t0-

regimes where both B.H.-like excitations are in B, while in (B), there are no t0-regimes where

both B.H.-like excitations are in B. In the t0-regimes where both B.H.-like excitations are

in B, IA,B is approximated by c⇡lA

3✏
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5.2.2 Double intervals

Now, let us look closely at the t0-dependence of IA,B when B is given by a union of symmetric

double intervals, B1 and B2, that are defined by

B1 =

⇢
x

����L > L � Y1 > x > L � Y2 >
L

2

�
, B2 =

⇢
x

����
L

2
> Y1 > x > Y2 > 0

�
, (5.7)

where L

2
> Y1 > Y2 > 0. In Fig. 9, the positions of the edges of the subsystems are

Y1 > Y2 > X2 > X1 > 0. In this case, the value of IA,B with the small t1 is practically zero.
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The dashed lines in Fig. 8 illustrate this asymptotic behavior. In (A) and (C), for the large

t1-regime, the t0-dependence of IA,B is periodic with L. In (A) and (C), there are the t0-

regimes where both B.H.-like excitations are in B, while in (B), there are no t0-regimes where

both B.H.-like excitations are in B. In the t0-regimes where both B.H.-like excitations are

in B, IA,B is approximated by c⇡lA
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5.2.2 Double intervals

Now, let us look closely at the t0-dependence of IA,B when B is given by a union of symmetric
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where L
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> Y1 > Y2 > 0. In Fig. 9, the positions of the edges of the subsystems are

Y1 > Y2 > X2 > X1 > 0. In this case, the value of IA,B with the small t1 is practically zero.
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Summary 3: Genuine tripartite entanglement
The system considered  is in:|Ψ(t)⟩ = e−itH1

inh |TFD⟩ .x = X1
f , IA,B = SA + SB − SA∪B

|Ψ(t0, t1)⟩ =
(
e−it0H1

0 ⊗ 1H2

)(
e−it1H1

SSD ⊗ 1H2

) 1√
tre−2ϵH0

∑

a

e
−ϵ
2 (H1

0+H2
0) |a⟩H1

⊗ |a⟩H2

(0.4)

4

Inhomogeneous(SSD) Homogeneous



Let us divide          into      ,      , and the complement to them.
denotes the subsystem of       . 

square of N 2 guarantees that hTFD|TFDi = 1. Then, we unitarily evolve with Möbius/SS

deformed Hamiltonian. The time evolution operator acting on this thermofield double state

is defined as

UMöbius/SSD = e
�it1H

1
Möbius/SSD ⌦ 12, (2.4)

where H
1

Möbius/SSD
and 12 denote the Möbius/SS deformed Hamiltonian acting on H1, and

identity operator on H2, respectively.

System.2: We start from an excited state which is defined as

| (t0)i =
⇣
e

�iH
1
0 t0 ⌦ 12

⌘
|TFDi , (2.5)

and then evolve it with the SSD Hamiltonian acting on only H1. Under this evolution, the

system is in the state given by

| (t1, t0)i =
⇣
e

�iH
1
SSDt1 ⌦ 12

⌘
| (t0)i . (2.6)

System.3: Let us start from an excited state defined as

|�(t1)i =
⇣
e

�iH
1
SSDt1 ⌦ 12

⌘
|TFDi , (2.7)

and then evolve it with the un-deformed Hamiltonian acting on only H1. Under this evolu-

tion, the system is in the state given by

|�(t1, t0)i =
⇣
e

�iH
1
0 t0 ⌦ 12

⌘
|�(t1)i . (2.8)

2.3 Entanglement entropies in the twist operator formalism

To employ the path-integral formalism suited to analytic computation, let us define Euclidean

density operators as

⇢E,↵=0,1,2,3 = N 2

E

X

a,b

e
�✏(Ea+Eb)

⇣
U

1

E,↵=0,1,2,3
|ai hb|

1
Ũ

1

E↵=0,1,2,3
⌦ |a⇤i hb⇤|

2

⌘
, (2.9)

where the Euclidean normalization constant N �2

E
= tre�2✏H guarantees that tr⇢E,↵ = 1.

These density operators may be the analytic-continued ones in imaginary time corresponding

to the ones defined in Section 2.2. The Euclidean evolution operators are defined as

U
1

E,↵
=

8
>>>><

>>>>:

e
�H

1
Möbius⌧1 ↵ = 0

e
�H

1
SSD⌧1e

�H
1
⌧0 ↵ = 1

e
�H

1
⌧0e

�H
1
SSD⌧1 ↵ = 2

e
�H

1
SCD⌧2e

�H
1
SSD⌧1 ↵ = 3

, Ũ
1

E,↵
=

8
>>>><

>>>>:

e
H

1
Möbius⌧1 ↵ = 0

e
H

1
⌧0e

H
1
SSD⌧1 ↵ = 1

e
H

1
SSD⌧1e

H
1
⌧0 ↵ = 2

e
H

1
SSD⌧1e

H
1
SCD⌧2 ↵ = 3

. (2.10)

Divide the system into the subsystem V and V , the complement to it, and then define the

reduce Euclidean density operators for V as ⇢E,↵;V = trV⇢E,↵. Let A, B, and A [ B denote
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illustrate the t0-dependence of IA,B for various t1. In (A) and (C), in the large t1-regime, the

t0-dependence of is approximated by
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The dashed lines in Fig. 8 illustrate this asymptotic behavior. In (A) and (C), for the large

t1-regime, the t0-dependence of IA,B is periodic with L. In (A) and (C), there are the t0-

regimes where both B.H.-like excitations are in B, while in (B), there are no t0-regimes where

both B.H.-like excitations are in B. In the t0-regimes where both B.H.-like excitations are

in B, IA,B is approximated by c⇡lA
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5.2.2 Double intervals

Now, let us look closely at the t0-dependence of IA,B when B is given by a union of symmetric

double intervals, B1 and B2, that are defined by
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where L

2
> Y1 > Y2 > 0. In Fig. 9, the positions of the edges of the subsystems are

Y1 > Y2 > X2 > X1 > 0. In this case, the value of IA,B with the small t1 is practically zero.
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illustrate the t0-dependence of IA,B for various t1. In (A) and (C), in the large t1-regime, the

t0-dependence of is approximated by
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The dashed lines in Fig. 8 illustrate this asymptotic behavior. In (A) and (C), for the large

t1-regime, the t0-dependence of IA,B is periodic with L. In (A) and (C), there are the t0-

regimes where both B.H.-like excitations are in B, while in (B), there are no t0-regimes where

both B.H.-like excitations are in B. In the t0-regimes where both B.H.-like excitations are

in B, IA,B is approximated by c⇡lA

3✏
.

5.2.2 Double intervals

Now, let us look closely at the t0-dependence of IA,B when B is given by a union of symmetric

double intervals, B1 and B2, that are defined by

B1 =

⇢
x

����L > L � Y1 > x > L � Y2 >
L

2

�
, B2 =

⇢
x

����
L

2
> Y1 > x > Y2 > 0

�
, (5.7)

where L

2
> Y1 > Y2 > 0. In Fig. 9, the positions of the edges of the subsystems are

Y1 > Y2 > X2 > X1 > 0. In this case, the value of IA,B with the small t1 is practically zero.
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1.2 Results on present paper

• Setup.1:

– Bipartite (operator) mutual information: Let us take the subsystems, A and B1,

to be the sub-regions of H2 and H1, respectively. Then, define the mutual infor-

mation as the linear combination of entanglement entropies associated with A, B1

, and A [ B1,

IA,B1 = SA + SB1 � SA[B1 , (1.1)

where A [ B denotes the union of A and B. For A including x = X
1

f
, IA,B1

decreases with t1, upto t1,⇤, and then increases with tt1 , saturating at the value

that is proportional to the number of Bell pairs shared in A and B at t1 = 0.

Here, t1,⇤ may depend on the sizes of A and B1, the system size, and �.

– Tripartite (operator) mutual information: Let us divide H1 into B1 and B2. Take

A and B1 to be subsystems of H2 and H1 including x = X
1

f
, and then define the

tripartite (operator) mutual information as

IA,B1,B2 = IA,B1 + IA,B2 � IA,B1[B2 . (1.2)

For large t1, IA,B1,B2 vanishes. A possible interpretation for this t1-dependence

of IA,B1,B2 is that the Bell pairs initially shared by A and B1 still remains in the

large t1 region.

• Setup.2:

– Bipartite (operator) mutual information: Let us take A and B1 to be the sub-

regions of H2 and H1 including x = X
1

f
, respectively. For large t0, IA,B1 at t1 = 0

vanishes, and then increases with t1, saturating at the value that is proportional

to he number of Bell pairs shared in A and B at t0 = 0 and t1 = 0. One possible

interpretation for this behavior of IA,B1 is that these Bell pairs scrambled under

the evolution by H0 is retrieved from A [ B1 under the SSD time-evolution.

– Tripartite (operator) mutual information: During the evolution by H0, IA,B1,B2

decreasing, saturating at the negative value that is proportional to the number of

Bell pairs initially shared in A and B1. Subsequently, the system unitarily evolves

according to the equation of motion given by HSSD. During this time-evolution,

IA,B1,B2 increases with t1, saturating at zero.

We can see from the behaviors of IA,B and IA,B1,B2 that one can retrieves the Bell pairs

scrambled by H0 during the evolution by HSSD.

• Setup.3:

– Bipartite (operator) mutual information: Let us take A and B1 to be the sub-

regions of H2 and H1, respectively.
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Double intervals

Let us turn to the analysis on the non-universal piece of the entanglement entropy for the

double intervals. The entanglement entropy of the states considered in this paper has to

satisfy two conditions: (1) If V is the total Hilbert space, V = H1[H2, then the entanglement
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where Sdis is determined by the length of geodesic that connects the endpoints of intervals at
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Euclidean time-slices. The some details of Sdis and Scon are reported in Appendix B.1.

The temporal and spatial locations, ⌧
New

x,✏,↵
and X

New

x,✏,↵
, of endpoints are defined as

⌧
New

x,✏,↵
= Im

"
w

New

x,✏,↵
+ w

New

x,✏,↵

2

#
, X

New

x,✏,↵
=

w
New

x,✏,↵
� w

New

x,✏,↵

2i
. (2.18)

3Can someone add the references?

10

Contents

1 Parts 1

1 Parts

qi
2,L,q

i
1,L,q

i+1
1,L ,q

i+k
1,L ,q

i+l
1,L H1 H2,x = X1

f (1.1)

References

1

Contents

1 Parts 1

1 Parts

qi
2,L,q

i
1,L,q

i+1
1,L ,q

i+k
1,L ,q

i+l
1,L H1 H2,x = X1

f (1.1)

References

1

Contents

1 Parts 1

1 Parts

qi
2,L,q

i
1,L,q

i+1
1,L ,q

i+k
1,L ,q

i+l
1,L H1 H2, x = X1

f , B1, B2 (1.1)

References

1

Contents

1 Parts 1

1 Parts

qi
2,L,q

i
1,L,q

i+1
1,L ,q

i+k
1,L ,q

i+l
1,L H1 H2, x = X1

f , B1, B2 (1.1)

References

1

1.2 Results on present paper

• Setup.1:

– Bipartite (operator) mutual information: Let us take the subsystems, A and B1,

to be the sub-regions of H2 and H1, respectively. Then, define the mutual infor-

mation as the linear combination of entanglement entropies associated with A, B1

, and A [ B1,

IA,B1 = SA + SB1 � SA[B1 , (1.1)

where A [ B denotes the union of A and B. For A including x = X
1
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, IA,B1

decreases with t1, upto t1,⇤, and then increases with tt1 , saturating at the value

that is proportional to the number of Bell pairs shared in A and B at t1 = 0.

Here, t1,⇤ may depend on the sizes of A and B1, the system size, and �.

– Tripartite (operator) mutual information: Let us divide H1 into B1 and B2. Take

A and B1 to be subsystems of H2 and H1 including x = X
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, and then define the

tripartite (operator) mutual information as

IA,B1,B2 = IA,B1 + IA,B2 � IA,B1[B2 . (1.2)

For large t1, IA,B1,B2 vanishes. A possible interpretation for this t1-dependence

of IA,B1,B2 is that the Bell pairs initially shared by A and B1 still remains in the

large t1 region.

• Setup.2:

– Bipartite (operator) mutual information: Let us take A and B1 to be the sub-

regions of H2 and H1 including x = X
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, respectively. For large t0, IA,B1 at t1 = 0

vanishes, and then increases with t1, saturating at the value that is proportional

to he number of Bell pairs shared in A and B at t0 = 0 and t1 = 0. One possible

interpretation for this behavior of IA,B1 is that these Bell pairs scrambled under

the evolution by H0 is retrieved from A [ B1 under the SSD time-evolution.

– Tripartite (operator) mutual information: During the evolution by H0, IA,B1,B2

decreasing, saturating at the negative value that is proportional to the number of

Bell pairs initially shared in A and B1. Subsequently, the system unitarily evolves

according to the equation of motion given by HSSD. During this time-evolution,

IA,B1,B2 increases with t1, saturating at zero.

We can see from the behaviors of IA,B and IA,B1,B2 that one can retrieves the Bell pairs

scrambled by H0 during the evolution by HSSD.

• Setup.3:

– Bipartite (operator) mutual information: Let us take A and B1 to be the sub-

regions of H2 and H1, respectively.
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Figure 7: A sketch of the emergence and the time-evolution of the two B.H.-like excitations.

illustrate the t0-dependence of IA,B for various t1. In (A) and (C), in the large t1-regime, the

t0-dependence of is approximated by
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(5.6)

The dashed lines in Fig. 8 illustrate this asymptotic behavior. In (A) and (C), for the large

t1-regime, the t0-dependence of IA,B is periodic with L. In (A) and (C), there are the t0-

regimes where both B.H.-like excitations are in B, while in (B), there are no t0-regimes where

both B.H.-like excitations are in B. In the t0-regimes where both B.H.-like excitations are

in B, IA,B is approximated by c⇡lA

3✏
.

5.2.2 Double intervals

Now, let us look closely at the t0-dependence of IA,B when B is given by a union of symmetric

double intervals, B1 and B2, that are defined by

B1 =

⇢
x

����L > L � Y1 > x > L � Y2 >
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2
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, B2 =

⇢
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, (5.7)

where L

2
> Y1 > Y2 > 0. In Fig. 9, the positions of the edges of the subsystems are

Y1 > Y2 > X2 > X1 > 0. In this case, the value of IA,B with the small t1 is practically zero.

21

Contents

1 Parts 1

1 Parts

qi

2,L
,qi

1,L
,qi+1

1,L
,qi+k

1,L
,qi+l

1,L
H1 H2,x = X1

f
(1.1)

References

1

Contents

1 Parts 1

1 Parts

qi

2,L
,qi

1,L
,qi+1

1,L
,qi+k

1,L
,qi+l

1,L
H1 H2,x = X1

f
(1.1)

References

1

Contents

1 Parts 1

1 Parts

qi

2,L
,qi

1,L
,qi+1

1,L
,qi+k

1,L
,qi+l

1,L
H1 H2, x = X

1

f
(1.1)

References

1

(a) The propagation of

quasi-particles on H1.

B.H.-like excitations

Contents

1 Parts 1

1 Parts

qi

2,L
,qi

1,L
,qi+1

1,L
,qi+k

1,L
,qi+l

1,L
H1 H2,x = X1

f
(1.1)

References

1

(b) The emergence of

B.H.-like excitations.

Contents

1 Parts 1

1 Parts

qi

2,L
,qi

1,L
,qi+1

1,L
,qi+k

1,L
,qi+l

1,L
H1 H2,x = X1

f
(1.1)

References

1

(c) The relativistic

propagation of the B.H.-like

excitations.

Figure 7: A sketch of the emergence and the time-evolution of the two B.H.-like excitations.

illustrate the t0-dependence of IA,B for various t1. In (A) and (C), in the large t1-regime, the

t0-dependence of is approximated by

For (A) IA,B ⇡
(

c⇡lA

3✏
for (n + 1)L � Y1 > t0 > nL � Y2

0 for (n + 1)L � Y2 > t0 > (n + 1)L � Y1,

,

For (C) IA,B ⇡

8
>><

>>:

0 for (n + 1) L � Y1 > t0 > nL � Y2

c⇡lA

3✏
for nL + Y1 > t0 > (n + 1) L � Y1

0 for (n + 1)L � Y2 > t0 > nL + Y1

.

(5.6)

The dashed lines in Fig. 8 illustrate this asymptotic behavior. In (A) and (C), for the large

t1-regime, the t0-dependence of IA,B is periodic with L. In (A) and (C), there are the t0-

regimes where both B.H.-like excitations are in B, while in (B), there are no t0-regimes where

both B.H.-like excitations are in B. In the t0-regimes where both B.H.-like excitations are

in B, IA,B is approximated by c⇡lA
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2
> Y1 > Y2 > 0. In Fig. 9, the positions of the edges of the subsystems are

Y1 > Y2 > X2 > X1 > 0. In this case, the value of IA,B with the small t1 is practically zero.
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The dashed lines in Fig. 8 illustrate this asymptotic behavior. In (A) and (C), for the large

t1-regime, the t0-dependence of IA,B is periodic with L. In (A) and (C), there are the t0-

regimes where both B.H.-like excitations are in B, while in (B), there are no t0-regimes where

both B.H.-like excitations are in B. In the t0-regimes where both B.H.-like excitations are

in B, IA,B is approximated by c⇡lA
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where L

2
> Y1 > Y2 > 0. In Fig. 9, the positions of the edges of the subsystems are

Y1 > Y2 > X2 > X1 > 0. In this case, the value of IA,B with the small t1 is practically zero.
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Summary 3: Genuine tripartite entanglement
The system considered  is in:|Ψ(t)⟩ = e−itH1

inh |TFD⟩ .x = X1
f , IA,B = SA + SB − SA∪B

|Ψ(t0, t1)⟩ =
(
e−it0H1

0 ⊗ 1H2

)(
e−it1H1

SSD ⊗ 1H2

) 1√
tre−2ϵH0
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e
−ϵ
2 (H1

0+H2
0) |a⟩H1

⊗ |a⟩H2

(0.4)

4

Eigenstates of 

|Ψ(t)⟩ = e−itH1
inh |TFD⟩ .x = X1

f , IA,B = SA + SB − SA∪B

|Ψ(t0, t1)⟩ =
(
e−it0H1

0 ⊗ 1H2

)(
e−it1H1

SSD ⊗ 1H2

) 1√
tre−2ϵH0

∑

a

e
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2 (H1

0+H2
0) |a⟩H1

⊗ |a⟩H2

(0.4)

4



Let us divide          into      ,      , and the complement to them.
denotes the subsystem of       . 

square of N 2 guarantees that hTFD|TFDi = 1. Then, we unitarily evolve with Möbius/SS

deformed Hamiltonian. The time evolution operator acting on this thermofield double state

is defined as

UMöbius/SSD = e
�it1H

1
Möbius/SSD ⌦ 12, (2.4)

where H
1

Möbius/SSD
and 12 denote the Möbius/SS deformed Hamiltonian acting on H1, and

identity operator on H2, respectively.

System.2: We start from an excited state which is defined as

| (t0)i =
⇣
e

�iH
1
0 t0 ⌦ 12

⌘
|TFDi , (2.5)

and then evolve it with the SSD Hamiltonian acting on only H1. Under this evolution, the

system is in the state given by

| (t1, t0)i =
⇣
e

�iH
1
SSDt1 ⌦ 12

⌘
| (t0)i . (2.6)

System.3: Let us start from an excited state defined as

|�(t1)i =
⇣
e

�iH
1
SSDt1 ⌦ 12

⌘
|TFDi , (2.7)

and then evolve it with the un-deformed Hamiltonian acting on only H1. Under this evolu-

tion, the system is in the state given by

|�(t1, t0)i =
⇣
e

�iH
1
0 t0 ⌦ 12

⌘
|�(t1)i . (2.8)

2.3 Entanglement entropies in the twist operator formalism

To employ the path-integral formalism suited to analytic computation, let us define Euclidean

density operators as

⇢E,↵=0,1,2,3 = N 2

E

X

a,b

e
�✏(Ea+Eb)

⇣
U

1
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|ai hb|

1
Ũ

1

E↵=0,1,2,3
⌦ |a⇤i hb⇤|

2

⌘
, (2.9)

where the Euclidean normalization constant N �2

E
= tre�2✏H guarantees that tr⇢E,↵ = 1.

These density operators may be the analytic-continued ones in imaginary time corresponding
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Divide the system into the subsystem V and V , the complement to it, and then define the

reduce Euclidean density operators for V as ⇢E,↵;V = trV⇢E,↵. Let A, B, and A [ B denote
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Figure 7: A sketch of the emergence and the time-evolution of the two B.H.-like excitations.

illustrate the t0-dependence of IA,B for various t1. In (A) and (C), in the large t1-regime, the

t0-dependence of is approximated by

For (A) IA,B ⇡
(

c⇡lA

3✏
for (n + 1)L � Y1 > t0 > nL � Y2

0 for (n + 1)L � Y2 > t0 > (n + 1)L � Y1,

,
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(5.6)

The dashed lines in Fig. 8 illustrate this asymptotic behavior. In (A) and (C), for the large

t1-regime, the t0-dependence of IA,B is periodic with L. In (A) and (C), there are the t0-

regimes where both B.H.-like excitations are in B, while in (B), there are no t0-regimes where

both B.H.-like excitations are in B. In the t0-regimes where both B.H.-like excitations are

in B, IA,B is approximated by c⇡lA

3✏
.

5.2.2 Double intervals

Now, let us look closely at the t0-dependence of IA,B when B is given by a union of symmetric

double intervals, B1 and B2, that are defined by

B1 =

⇢
x

����L > L � Y1 > x > L � Y2 >
L

2

�
, B2 =

⇢
x

����
L

2
> Y1 > x > Y2 > 0

�
, (5.7)

where L

2
> Y1 > Y2 > 0. In Fig. 9, the positions of the edges of the subsystems are

Y1 > Y2 > X2 > X1 > 0. In this case, the value of IA,B with the small t1 is practically zero.
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The dashed lines in Fig. 8 illustrate this asymptotic behavior. In (A) and (C), for the large

t1-regime, the t0-dependence of IA,B is periodic with L. In (A) and (C), there are the t0-
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where L
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> Y1 > Y2 > 0. In Fig. 9, the positions of the edges of the subsystems are

Y1 > Y2 > X2 > X1 > 0. In this case, the value of IA,B with the small t1 is practically zero.
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1.2 Results on present paper

• Setup.1:

– Bipartite (operator) mutual information: Let us take the subsystems, A and B1,

to be the sub-regions of H2 and H1, respectively. Then, define the mutual infor-

mation as the linear combination of entanglement entropies associated with A, B1

, and A [ B1,

IA,B1 = SA + SB1 � SA[B1 , (1.1)

where A [ B denotes the union of A and B. For A including x = X
1

f
, IA,B1

decreases with t1, upto t1,⇤, and then increases with tt1 , saturating at the value

that is proportional to the number of Bell pairs shared in A and B at t1 = 0.

Here, t1,⇤ may depend on the sizes of A and B1, the system size, and �.

– Tripartite (operator) mutual information: Let us divide H1 into B1 and B2. Take

A and B1 to be subsystems of H2 and H1 including x = X
1

f
, and then define the

tripartite (operator) mutual information as

IA,B1,B2 = IA,B1 + IA,B2 � IA,B1[B2 . (1.2)

For large t1, IA,B1,B2 vanishes. A possible interpretation for this t1-dependence

of IA,B1,B2 is that the Bell pairs initially shared by A and B1 still remains in the

large t1 region.

• Setup.2:

– Bipartite (operator) mutual information: Let us take A and B1 to be the sub-

regions of H2 and H1 including x = X
1

f
, respectively. For large t0, IA,B1 at t1 = 0

vanishes, and then increases with t1, saturating at the value that is proportional

to he number of Bell pairs shared in A and B at t0 = 0 and t1 = 0. One possible

interpretation for this behavior of IA,B1 is that these Bell pairs scrambled under

the evolution by H0 is retrieved from A [ B1 under the SSD time-evolution.

– Tripartite (operator) mutual information: During the evolution by H0, IA,B1,B2

decreasing, saturating at the negative value that is proportional to the number of

Bell pairs initially shared in A and B1. Subsequently, the system unitarily evolves

according to the equation of motion given by HSSD. During this time-evolution,

IA,B1,B2 increases with t1, saturating at zero.

We can see from the behaviors of IA,B and IA,B1,B2 that one can retrieves the Bell pairs

scrambled by H0 during the evolution by HSSD.

• Setup.3:

– Bipartite (operator) mutual information: Let us take A and B1 to be the sub-

regions of H2 and H1, respectively.

3

Single interval

Here, we present the non-universal piece of the entanglement entropy for the single interval

in the coarse-grained region. In this region, the gravity dual of the system on the torus is

BTZ black hole [5]. Therefore, in the von Neumann limit when n ! 1, the non-universal

piece is given by the geodesic length in BTZ black hole [6, 7]. Let V denote the subsystem,

and also v1 and v2 denote the endpoints of V . Here, v1 > v2. The non-universal piece of

entanglement entropy for the reduced density matrix associated with V is holographically

given by
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(2.16)

Double intervals

Let us turn to the analysis on the non-universal piece of the entanglement entropy for the

double intervals. The entanglement entropy of the states considered in this paper has to

satisfy two conditions: (1) If V is the total Hilbert space, V = H1[H2, then the entanglement

entropy for V is zero; (2) If V is H1 or H2, the one for V is thermal entropy, SV=Hi=1,2 =

Sthermal. The non-universal piece satisfying these conditions is given by [8]3

lim
n!1
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◆
+ Min [Sdis, Scon] ,

(2.17)

where Sdis is determined by the length of geodesic that connects the endpoints of intervals at

the same Euclidean time slices, while Scon is determined by that of intervals at the di↵erent

Euclidean time-slices. The some details of Sdis and Scon are reported in Appendix B.1.

The temporal and spatial locations, ⌧
New

x,✏,↵
and X

New

x,✏,↵
, of endpoints are defined as

⌧
New

x,✏,↵
= Im

"
w

New

x,✏,↵
+ w

New

x,✏,↵

2

#
, X

New

x,✏,↵
=

w
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� w

New

x,✏,↵

2i
. (2.18)
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– Bipartite (operator) mutual information: Let us take the subsystems, A and B1,

to be the sub-regions of H2 and H1, respectively. Then, define the mutual infor-

mation as the linear combination of entanglement entropies associated with A, B1
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where A [ B denotes the union of A and B. For A including x = X
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that is proportional to the number of Bell pairs shared in A and B at t1 = 0.
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tripartite (operator) mutual information as
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For large t1, IA,B1,B2 vanishes. A possible interpretation for this t1-dependence

of IA,B1,B2 is that the Bell pairs initially shared by A and B1 still remains in the
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We can see from the behaviors of IA,B and IA,B1,B2 that one can retrieves the Bell pairs
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Figure 7: A sketch of the emergence and the time-evolution of the two B.H.-like excitations.

illustrate the t0-dependence of IA,B for various t1. In (A) and (C), in the large t1-regime, the

t0-dependence of is approximated by

For (A) IA,B ⇡
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The dashed lines in Fig. 8 illustrate this asymptotic behavior. In (A) and (C), for the large

t1-regime, the t0-dependence of IA,B is periodic with L. In (A) and (C), there are the t0-

regimes where both B.H.-like excitations are in B, while in (B), there are no t0-regimes where

both B.H.-like excitations are in B. In the t0-regimes where both B.H.-like excitations are

in B, IA,B is approximated by c⇡lA

3✏
.

5.2.2 Double intervals

Now, let us look closely at the t0-dependence of IA,B when B is given by a union of symmetric
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where L

2
> Y1 > Y2 > 0. In Fig. 9, the positions of the edges of the subsystems are

Y1 > Y2 > X2 > X1 > 0. In this case, the value of IA,B with the small t1 is practically zero.
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Figure 7: A sketch of the emergence and the time-evolution of the two B.H.-like excitations.

illustrate the t0-dependence of IA,B for various t1. In (A) and (C), in the large t1-regime, the

t0-dependence of is approximated by

For (A) IA,B ⇡
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The dashed lines in Fig. 8 illustrate this asymptotic behavior. In (A) and (C), for the large

t1-regime, the t0-dependence of IA,B is periodic with L. In (A) and (C), there are the t0-

regimes where both B.H.-like excitations are in B, while in (B), there are no t0-regimes where

both B.H.-like excitations are in B. In the t0-regimes where both B.H.-like excitations are

in B, IA,B is approximated by c⇡lA

3✏
.

5.2.2 Double intervals

Now, let us look closely at the t0-dependence of IA,B when B is given by a union of symmetric

double intervals, B1 and B2, that are defined by

B1 =

⇢
x

����L > L � Y1 > x > L � Y2 >
L

2

�
, B2 =

⇢
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L

2
> Y1 > x > Y2 > 0
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, (5.7)

where L

2
> Y1 > Y2 > 0. In Fig. 9, the positions of the edges of the subsystems are

Y1 > Y2 > X2 > X1 > 0. In this case, the value of IA,B with the small t1 is practically zero.
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B does not include x=0 or x=L/2.

Summary 3: Genuine tripartite entanglement
The system considered  is in:|Ψ(t)⟩ = e−itH1

inh |TFD⟩ .x = X1
f , IA,B = SA + SB − SA∪B

|Ψ(t0, t1)⟩ =
(
e−it0H1

0 ⊗ 1H2

)(
e−it1H1

SSD ⊗ 1H2

) 1√
tre−2ϵH0

∑

a

e
−ϵ
2 (H1

0+H2
0) |a⟩H1

⊗ |a⟩H2

(0.4)
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Let us divide          into      ,      , and the complement to them.
denotes the subsystem of       . 

square of N 2 guarantees that hTFD|TFDi = 1. Then, we unitarily evolve with Möbius/SS

deformed Hamiltonian. The time evolution operator acting on this thermofield double state

is defined as

UMöbius/SSD = e
�it1H

1
Möbius/SSD ⌦ 12, (2.4)

where H
1

Möbius/SSD
and 12 denote the Möbius/SS deformed Hamiltonian acting on H1, and

identity operator on H2, respectively.

System.2: We start from an excited state which is defined as

| (t0)i =
⇣
e

�iH
1
0 t0 ⌦ 12

⌘
|TFDi , (2.5)

and then evolve it with the SSD Hamiltonian acting on only H1. Under this evolution, the

system is in the state given by

| (t1, t0)i =
⇣
e

�iH
1
SSDt1 ⌦ 12

⌘
| (t0)i . (2.6)

System.3: Let us start from an excited state defined as

|�(t1)i =
⇣
e

�iH
1
SSDt1 ⌦ 12

⌘
|TFDi , (2.7)

and then evolve it with the un-deformed Hamiltonian acting on only H1. Under this evolu-

tion, the system is in the state given by

|�(t1, t0)i =
⇣
e

�iH
1
0 t0 ⌦ 12

⌘
|�(t1)i . (2.8)

2.3 Entanglement entropies in the twist operator formalism
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density operators as
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E

X
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e
�✏(Ea+Eb)

⇣
U
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E,↵=0,1,2,3
|ai hb|

1
Ũ

1

E↵=0,1,2,3
⌦ |a⇤i hb⇤|

2

⌘
, (2.9)

where the Euclidean normalization constant N �2

E
= tre�2✏H guarantees that tr⇢E,↵ = 1.

These density operators may be the analytic-continued ones in imaginary time corresponding

to the ones defined in Section 2.2. The Euclidean evolution operators are defined as

U
1

E,↵
=

8
>>>><

>>>>:

e
�H

1
Möbius⌧1 ↵ = 0

e
�H

1
SSD⌧1e

�H
1
⌧0 ↵ = 1

e
�H

1
⌧0e

�H
1
SSD⌧1 ↵ = 2

e
�H

1
SCD⌧2e

�H
1
SSD⌧1 ↵ = 3

, Ũ
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E,↵
=

8
>>>><

>>>>:

e
H
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Möbius⌧1 ↵ = 0

e
H

1
⌧0e

H
1
SSD⌧1 ↵ = 1

e
H

1
SSD⌧1e

H
1
⌧0 ↵ = 2

e
H

1
SSD⌧1e

H
1
SCD⌧2 ↵ = 3

. (2.10)

Divide the system into the subsystem V and V , the complement to it, and then define the

reduce Euclidean density operators for V as ⇢E,↵;V = trV⇢E,↵. Let A, B, and A [ B denote
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Figure 7: A sketch of the emergence and the time-evolution of the two B.H.-like excitations.

illustrate the t0-dependence of IA,B for various t1. In (A) and (C), in the large t1-regime, the

t0-dependence of is approximated by
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The dashed lines in Fig. 8 illustrate this asymptotic behavior. In (A) and (C), for the large

t1-regime, the t0-dependence of IA,B is periodic with L. In (A) and (C), there are the t0-

regimes where both B.H.-like excitations are in B, while in (B), there are no t0-regimes where

both B.H.-like excitations are in B. In the t0-regimes where both B.H.-like excitations are

in B, IA,B is approximated by c⇡lA
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5.2.2 Double intervals

Now, let us look closely at the t0-dependence of IA,B when B is given by a union of symmetric

double intervals, B1 and B2, that are defined by
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where L

2
> Y1 > Y2 > 0. In Fig. 9, the positions of the edges of the subsystems are

Y1 > Y2 > X2 > X1 > 0. In this case, the value of IA,B with the small t1 is practically zero.
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The dashed lines in Fig. 8 illustrate this asymptotic behavior. In (A) and (C), for the large

t1-regime, the t0-dependence of IA,B is periodic with L. In (A) and (C), there are the t0-

regimes where both B.H.-like excitations are in B, while in (B), there are no t0-regimes where

both B.H.-like excitations are in B. In the t0-regimes where both B.H.-like excitations are

in B, IA,B is approximated by c⇡lA
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5.2.2 Double intervals

Now, let us look closely at the t0-dependence of IA,B when B is given by a union of symmetric

double intervals, B1 and B2, that are defined by

B1 =
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where L

2
> Y1 > Y2 > 0. In Fig. 9, the positions of the edges of the subsystems are

Y1 > Y2 > X2 > X1 > 0. In this case, the value of IA,B with the small t1 is practically zero.
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1.2 Results on present paper

• Setup.1:

– Bipartite (operator) mutual information: Let us take the subsystems, A and B1,

to be the sub-regions of H2 and H1, respectively. Then, define the mutual infor-

mation as the linear combination of entanglement entropies associated with A, B1

, and A [ B1,

IA,B1 = SA + SB1 � SA[B1 , (1.1)

where A [ B denotes the union of A and B. For A including x = X
1

f
, IA,B1

decreases with t1, upto t1,⇤, and then increases with tt1 , saturating at the value

that is proportional to the number of Bell pairs shared in A and B at t1 = 0.

Here, t1,⇤ may depend on the sizes of A and B1, the system size, and �.

– Tripartite (operator) mutual information: Let us divide H1 into B1 and B2. Take

A and B1 to be subsystems of H2 and H1 including x = X
1

f
, and then define the

tripartite (operator) mutual information as

IA,B1,B2 = IA,B1 + IA,B2 � IA,B1[B2 . (1.2)

For large t1, IA,B1,B2 vanishes. A possible interpretation for this t1-dependence

of IA,B1,B2 is that the Bell pairs initially shared by A and B1 still remains in the

large t1 region.

• Setup.2:

– Bipartite (operator) mutual information: Let us take A and B1 to be the sub-

regions of H2 and H1 including x = X
1

f
, respectively. For large t0, IA,B1 at t1 = 0

vanishes, and then increases with t1, saturating at the value that is proportional

to he number of Bell pairs shared in A and B at t0 = 0 and t1 = 0. One possible

interpretation for this behavior of IA,B1 is that these Bell pairs scrambled under

the evolution by H0 is retrieved from A [ B1 under the SSD time-evolution.

– Tripartite (operator) mutual information: During the evolution by H0, IA,B1,B2

decreasing, saturating at the negative value that is proportional to the number of

Bell pairs initially shared in A and B1. Subsequently, the system unitarily evolves

according to the equation of motion given by HSSD. During this time-evolution,

IA,B1,B2 increases with t1, saturating at zero.

We can see from the behaviors of IA,B and IA,B1,B2 that one can retrieves the Bell pairs

scrambled by H0 during the evolution by HSSD.

• Setup.3:

– Bipartite (operator) mutual information: Let us take A and B1 to be the sub-

regions of H2 and H1, respectively.

3

Single interval

Here, we present the non-universal piece of the entanglement entropy for the single interval

in the coarse-grained region. In this region, the gravity dual of the system on the torus is

BTZ black hole [5]. Therefore, in the von Neumann limit when n ! 1, the non-universal

piece is given by the geodesic length in BTZ black hole [6, 7]. Let V denote the subsystem,

and also v1 and v2 denote the endpoints of V . Here, v1 > v2. The non-universal piece of

entanglement entropy for the reduced density matrix associated with V is holographically

given by

lim
n!1

1

1 � n
log

⌦
�n

�
w

New,↵

v1,✏
, w

New,↵

v1,✏

�
�n

�
w
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, w
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v2,✏

�↵
2✏

⇡ c

3
log

✓
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◆

+

8
>>>>><

>>>>>:
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h

c

6
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��sin
�
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���2, c

6
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��sin
�
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� w
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)
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i
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1

f
= 0 2 V

Min
h

c

6
log

��sin
�

⇡
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(wNew
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� w
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± iL)
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6✏
,

c

6
log

��sin
�

⇡
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(wNew
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� w
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)
���2

i

if x = X
1

f
= 0 /2 V

.

(2.16)

Double intervals

Let us turn to the analysis on the non-universal piece of the entanglement entropy for the

double intervals. The entanglement entropy of the states considered in this paper has to

satisfy two conditions: (1) If V is the total Hilbert space, V = H1[H2, then the entanglement

entropy for V is zero; (2) If V is H1 or H2, the one for V is thermal entropy, SV=Hi=1,2 =

Sthermal. The non-universal piece satisfying these conditions is given by [8]3

lim
n!1

1

1 � n
log

⌦
�n

�
w

New

Y1,✏=0,↵
, w

New

Y1,✏=0,↵

�
�n

�
w

New

Y2,✏,↵
, w

New

Y2,✏,↵

�
�n(wX1 , wX1)�n(wX2 , wX2)

↵
2✏

⇡ 2c

3
log

✓
2✏

⇡

◆
+ Min [Sdis, Scon] ,

(2.17)

where Sdis is determined by the length of geodesic that connects the endpoints of intervals at

the same Euclidean time slices, while Scon is determined by that of intervals at the di↵erent

Euclidean time-slices. The some details of Sdis and Scon are reported in Appendix B.1.

The temporal and spatial locations, ⌧
New

x,✏,↵
and X

New

x,✏,↵
, of endpoints are defined as

⌧
New

x,✏,↵
= Im

"
w

New

x,✏,↵
+ w

New

x,✏,↵

2

#
, X

New

x,✏,↵
=

w
New

x,✏,↵
� w

New

x,✏,↵

2i
. (2.18)
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to be the sub-regions of H2 and H1, respectively. Then, define the mutual infor-

mation as the linear combination of entanglement entropies associated with A, B1
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where A [ B denotes the union of A and B. For A including x = X
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1

f
, and then define the

tripartite (operator) mutual information as
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For large t1, IA,B1,B2 vanishes. A possible interpretation for this t1-dependence

of IA,B1,B2 is that the Bell pairs initially shared by A and B1 still remains in the
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The dashed lines in Fig. 8 illustrate this asymptotic behavior. In (A) and (C), for the large

t1-regime, the t0-dependence of IA,B is periodic with L. In (A) and (C), there are the t0-

regimes where both B.H.-like excitations are in B, while in (B), there are no t0-regimes where

both B.H.-like excitations are in B. In the t0-regimes where both B.H.-like excitations are

in B, IA,B is approximated by c⇡lA
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5.2.2 Double intervals

Now, let us look closely at the t0-dependence of IA,B when B is given by a union of symmetric

double intervals, B1 and B2, that are defined by
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where L

2
> Y1 > Y2 > 0. In Fig. 9, the positions of the edges of the subsystems are

Y1 > Y2 > X2 > X1 > 0. In this case, the value of IA,B with the small t1 is practically zero.
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Summary 3: Genuine tripartite entanglement

In 2d Free fermion,

|Ψ(t)⟩ = e−itH1
inh |TFD⟩ .x = X1

f , IA,B = SA + SB − SA∪B

|Ψ(t0, t1)⟩ =
(
e−it0H1

0 ⊗ 1H2

)(
e−it1H1

SSD ⊗ 1H2

) 1√
tre−2ϵH0

∑

a

e
−ϵ
2 (H1

0+H2
0) |a⟩H1

⊗ |a⟩H2

ds2 = −dt2 + dx2 ds2 = −f 2(x)dt2 + dx2

dx

dt
= f(x)

dx

dt
(x ≈ 0) ≈ 0 t0 ≫ O(L) IA,B ≈ 0

IA,Bi=1,2 ≥ 0, IB1,B2 ≥ 0.

(0.4)
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1.2 Results on present paper

• Setup.1:

– Bipartite (operator) mutual information: Let us take the subsystems, A and B1,

to be the sub-regions of H2 and H1, respectively. Then, define the mutual infor-

mation as the linear combination of entanglement entropies associated with A, B1

, and A [ B1,

IA,B1 = SA + SB1 � SA[B1 , (1.1)

where A [ B denotes the union of A and B. For A including x = X
1

f
, IA,B1

decreases with t1, upto t1,⇤, and then increases with tt1 , saturating at the value

that is proportional to the number of Bell pairs shared in A and B at t1 = 0.

Here, t1,⇤ may depend on the sizes of A and B1, the system size, and �.

– Tripartite (operator) mutual information: Let us divide H1 into B1 and B2. Take

A and B1 to be subsystems of H2 and H1 including x = X
1

f
, and then define the

tripartite (operator) mutual information as

IA,B1,B2 = IA,B1 + IA,B2 � IA,B1[B2 . (1.2)

For large t1, IA,B1,B2 vanishes. A possible interpretation for this t1-dependence

of IA,B1,B2 is that the Bell pairs initially shared by A and B1 still remains in the

large t1 region.

• Setup.2:

– Bipartite (operator) mutual information: Let us take A and B1 to be the sub-

regions of H2 and H1 including x = X
1

f
, respectively. For large t0, IA,B1 at t1 = 0

vanishes, and then increases with t1, saturating at the value that is proportional

to he number of Bell pairs shared in A and B at t0 = 0 and t1 = 0. One possible

interpretation for this behavior of IA,B1 is that these Bell pairs scrambled under

the evolution by H0 is retrieved from A [ B1 under the SSD time-evolution.

– Tripartite (operator) mutual information: During the evolution by H0, IA,B1,B2

decreasing, saturating at the negative value that is proportional to the number of

Bell pairs initially shared in A and B1. Subsequently, the system unitarily evolves

according to the equation of motion given by HSSD. During this time-evolution,

IA,B1,B2 increases with t1, saturating at zero.

We can see from the behaviors of IA,B and IA,B1,B2 that one can retrieves the Bell pairs

scrambled by H0 during the evolution by HSSD.

• Setup.3:

– Bipartite (operator) mutual information: Let us take A and B1 to be the sub-

regions of H2 and H1, respectively.
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Summary 3: Quasiparticle picture 
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inh |TFD⟩ .x = X1
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(0.4)
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During the SSD time evolution, 
quasiparticles on     move to the 
fixed point and accumulate there.

Group of left and right-moving 
quasi-particles 

square of N 2 guarantees that hTFD|TFDi = 1. Then, we unitarily evolve with Möbius/SS

deformed Hamiltonian. The time evolution operator acting on this thermofield double state

is defined as

UMöbius/SSD = e
�it1H

1
Möbius/SSD ⌦ 12, (2.4)

where H
1

Möbius/SSD
and 12 denote the Möbius/SS deformed Hamiltonian acting on H1, and

identity operator on H2, respectively.

System.2: We start from an excited state which is defined as

| (t0)i =
⇣
e

�iH
1
0 t0 ⌦ 12

⌘
|TFDi , (2.5)

and then evolve it with the SSD Hamiltonian acting on only H1. Under this evolution, the

system is in the state given by

| (t1, t0)i =
⇣
e

�iH
1
SSDt1 ⌦ 12

⌘
| (t0)i . (2.6)

System.3: Let us start from an excited state defined as

|�(t1)i =
⇣
e

�iH
1
SSDt1 ⌦ 12

⌘
|TFDi , (2.7)

and then evolve it with the un-deformed Hamiltonian acting on only H1. Under this evolu-

tion, the system is in the state given by

|�(t1, t0)i =
⇣
e

�iH
1
0 t0 ⌦ 12

⌘
|�(t1)i . (2.8)

2.3 Entanglement entropies in the twist operator formalism

To employ the path-integral formalism suited to analytic computation, let us define Euclidean

density operators as

⇢E,↵=0,1,2,3 = N 2

E

X

a,b

e
�✏(Ea+Eb)

⇣
U

1

E,↵=0,1,2,3
|ai hb|

1
Ũ

1

E↵=0,1,2,3
⌦ |a⇤i hb⇤|

2

⌘
, (2.9)

where the Euclidean normalization constant N �2

E
= tre�2✏H guarantees that tr⇢E,↵ = 1.

These density operators may be the analytic-continued ones in imaginary time corresponding

to the ones defined in Section 2.2. The Euclidean evolution operators are defined as

U
1

E,↵
=

8
>>>><

>>>>:

e
�H

1
Möbius⌧1 ↵ = 0

e
�H

1
SSD⌧1e

�H
1
⌧0 ↵ = 1

e
�H

1
⌧0e

�H
1
SSD⌧1 ↵ = 2

e
�H

1
SCD⌧2e
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1
SSD⌧1 ↵ = 3
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e
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1
⌧0 ↵ = 2

e
H

1
SSD⌧1e

H
1
SCD⌧2 ↵ = 3

. (2.10)

Divide the system into the subsystem V and V , the complement to it, and then define the

reduce Euclidean density operators for V as ⇢E,↵;V = trV⇢E,↵. Let A, B, and A [ B denote

7



. 

Contents

1 Parts 1

1 Parts

qi
2,L,q

i
1,L,q

i+1
1,L ,q

i+k
1,L ,q

i+l
1,L H1 H2,x = X1

f (1.1)

References

1

Contents

1 Parts 1

1 Parts

qi
2,L,q

i
1,L,q

i+1
1,L ,q

i+k
1,L ,q

i+l
1,L H1 H2,x = X1

f (1.1)

References

1

Contents

1 Parts 1

1 Parts

qi
2,L,q

i
1,L,q

i+1
1,L ,q

i+k
1,L ,q

i+l
1,L H1 H2, x = X1

f , B1, B2 (1.1)

References

1

Contents

1 Parts 1

1 Parts

qi
2,L,q

i
1,L,q

i+1
1,L ,q

i+k
1,L ,q

i+l
1,L H1 H2, x = X1

f , B1, B2 (1.1)

References

1

1.2 Results on present paper

• Setup.1:

– Bipartite (operator) mutual information: Let us take the subsystems, A and B1,

to be the sub-regions of H2 and H1, respectively. Then, define the mutual infor-

mation as the linear combination of entanglement entropies associated with A, B1

, and A [ B1,

IA,B1 = SA + SB1 � SA[B1 , (1.1)

where A [ B denotes the union of A and B. For A including x = X
1

f
, IA,B1

decreases with t1, upto t1,⇤, and then increases with tt1 , saturating at the value

that is proportional to the number of Bell pairs shared in A and B at t1 = 0.

Here, t1,⇤ may depend on the sizes of A and B1, the system size, and �.

– Tripartite (operator) mutual information: Let us divide H1 into B1 and B2. Take

A and B1 to be subsystems of H2 and H1 including x = X
1

f
, and then define the

tripartite (operator) mutual information as

IA,B1,B2 = IA,B1 + IA,B2 � IA,B1[B2 . (1.2)

For large t1, IA,B1,B2 vanishes. A possible interpretation for this t1-dependence

of IA,B1,B2 is that the Bell pairs initially shared by A and B1 still remains in the

large t1 region.

• Setup.2:

– Bipartite (operator) mutual information: Let us take A and B1 to be the sub-

regions of H2 and H1 including x = X
1

f
, respectively. For large t0, IA,B1 at t1 = 0

vanishes, and then increases with t1, saturating at the value that is proportional

to he number of Bell pairs shared in A and B at t0 = 0 and t1 = 0. One possible

interpretation for this behavior of IA,B1 is that these Bell pairs scrambled under

the evolution by H0 is retrieved from A [ B1 under the SSD time-evolution.

– Tripartite (operator) mutual information: During the evolution by H0, IA,B1,B2

decreasing, saturating at the negative value that is proportional to the number of

Bell pairs initially shared in A and B1. Subsequently, the system unitarily evolves

according to the equation of motion given by HSSD. During this time-evolution,

IA,B1,B2 increases with t1, saturating at zero.

We can see from the behaviors of IA,B and IA,B1,B2 that one can retrieves the Bell pairs

scrambled by H0 during the evolution by HSSD.

• Setup.3:

– Bipartite (operator) mutual information: Let us take A and B1 to be the sub-

regions of H2 and H1, respectively.

3

Summary 3: Quasiparticle picture 
The system considered  is in:|Ψ(t)⟩ = e−itH1

inh |TFD⟩ .x = X1
f , IA,B = SA + SB − SA∪B

|Ψ(t0, t1)⟩ =
(
e−it0H1

0 ⊗ 1H2

)(
e−it1H1

SSD ⊗ 1H2

) 1√
tre−2ϵH0

∑

a

e
−ϵ
2 (H1

0+H2
0) |a⟩H1

⊗ |a⟩H2

(0.4)

4

During the SSD time evolution, 
quasiparticles on     move to the 
fixed point and accumulate there.

During the uniform time evolution, 
the groups of quasiparticles move
left and right at the speed of light. 

square of N 2 guarantees that hTFD|TFDi = 1. Then, we unitarily evolve with Möbius/SS
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Möbius⌧1 ↵ = 0

e
�H

1
SSD⌧1e

�H
1
⌧0 ↵ = 1

e
�H

1
⌧0e

�H
1
SSD⌧1 ↵ = 2

e
�H

1
SCD⌧2e

�H
1
SSD⌧1 ↵ = 3

, Ũ
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1.2 Results on present paper

• Setup.1:

– Bipartite (operator) mutual information: Let us take the subsystems, A and B1,

to be the sub-regions of H2 and H1, respectively. Then, define the mutual infor-

mation as the linear combination of entanglement entropies associated with A, B1

, and A [ B1,

IA,B1 = SA + SB1 � SA[B1 , (1.1)

where A [ B denotes the union of A and B. For A including x = X
1

f
, IA,B1

decreases with t1, upto t1,⇤, and then increases with tt1 , saturating at the value

that is proportional to the number of Bell pairs shared in A and B at t1 = 0.

Here, t1,⇤ may depend on the sizes of A and B1, the system size, and �.

– Tripartite (operator) mutual information: Let us divide H1 into B1 and B2. Take

A and B1 to be subsystems of H2 and H1 including x = X
1

f
, and then define the

tripartite (operator) mutual information as

IA,B1,B2 = IA,B1 + IA,B2 � IA,B1[B2 . (1.2)

For large t1, IA,B1,B2 vanishes. A possible interpretation for this t1-dependence

of IA,B1,B2 is that the Bell pairs initially shared by A and B1 still remains in the

large t1 region.

• Setup.2:

– Bipartite (operator) mutual information: Let us take A and B1 to be the sub-

regions of H2 and H1 including x = X
1

f
, respectively. For large t0, IA,B1 at t1 = 0

vanishes, and then increases with t1, saturating at the value that is proportional

to he number of Bell pairs shared in A and B at t0 = 0 and t1 = 0. One possible

interpretation for this behavior of IA,B1 is that these Bell pairs scrambled under

the evolution by H0 is retrieved from A [ B1 under the SSD time-evolution.

– Tripartite (operator) mutual information: During the evolution by H0, IA,B1,B2

decreasing, saturating at the negative value that is proportional to the number of

Bell pairs initially shared in A and B1. Subsequently, the system unitarily evolves

according to the equation of motion given by HSSD. During this time-evolution,

IA,B1,B2 increases with t1, saturating at zero.

We can see from the behaviors of IA,B and IA,B1,B2 that one can retrieves the Bell pairs

scrambled by H0 during the evolution by HSSD.

• Setup.3:

– Bipartite (operator) mutual information: Let us take A and B1 to be the sub-

regions of H2 and H1, respectively.

3

Summary 3: Quasiparticle picture 
The system considered  is in:|Ψ(t)⟩ = e−itH1

inh |TFD⟩ .x = X1
f , IA,B = SA + SB − SA∪B

|Ψ(t0, t1)⟩ =
(
e−it0H1

0 ⊗ 1H2

)(
e−it1H1

SSD ⊗ 1H2

) 1√
tre−2ϵH0

∑

a

e
−ϵ
2 (H1

0+H2
0) |a⟩H1

⊗ |a⟩H2

(0.4)

4

During the SSD time evolution, 
quasiparticles on     move to the 
fixed point and accumulate there.

During the uniform time evolution, 
the groups of quasiparticles move
left and right at the speed of light. 

square of N 2 guarantees that hTFD|TFDi = 1. Then, we unitarily evolve with Möbius/SS

deformed Hamiltonian. The time evolution operator acting on this thermofield double state

is defined as

UMöbius/SSD = e
�it1H

1
Möbius/SSD ⌦ 12, (2.4)

where H
1

Möbius/SSD
and 12 denote the Möbius/SS deformed Hamiltonian acting on H1, and

identity operator on H2, respectively.

System.2: We start from an excited state which is defined as

| (t0)i =
⇣
e

�iH
1
0 t0 ⌦ 12

⌘
|TFDi , (2.5)

and then evolve it with the SSD Hamiltonian acting on only H1. Under this evolution, the

system is in the state given by

| (t1, t0)i =
⇣
e

�iH
1
SSDt1 ⌦ 12

⌘
| (t0)i . (2.6)

System.3: Let us start from an excited state defined as

|�(t1)i =
⇣
e

�iH
1
SSDt1 ⌦ 12

⌘
|TFDi , (2.7)

and then evolve it with the un-deformed Hamiltonian acting on only H1. Under this evolu-

tion, the system is in the state given by

|�(t1, t0)i =
⇣
e

�iH
1
0 t0 ⌦ 12

⌘
|�(t1)i . (2.8)

2.3 Entanglement entropies in the twist operator formalism

To employ the path-integral formalism suited to analytic computation, let us define Euclidean

density operators as

⇢E,↵=0,1,2,3 = N 2

E

X

a,b

e
�✏(Ea+Eb)

⇣
U

1

E,↵=0,1,2,3
|ai hb|

1
Ũ

1

E↵=0,1,2,3
⌦ |a⇤i hb⇤|

2

⌘
, (2.9)

where the Euclidean normalization constant N �2

E
= tre�2✏H guarantees that tr⇢E,↵ = 1.

These density operators may be the analytic-continued ones in imaginary time corresponding

to the ones defined in Section 2.2. The Euclidean evolution operators are defined as

U
1

E,↵
=

8
>>>><

>>>>:

e
�H

1
Möbius⌧1 ↵ = 0

e
�H

1
SSD⌧1e

�H
1
⌧0 ↵ = 1

e
�H

1
⌧0e

�H
1
SSD⌧1 ↵ = 2

e
�H

1
SCD⌧2e

�H
1
SSD⌧1 ↵ = 3

, Ũ
1

E,↵
=

8
>>>><

>>>>:

e
H

1
Möbius⌧1 ↵ = 0

e
H

1
⌧0e

H
1
SSD⌧1 ↵ = 1

e
H

1
SSD⌧1e

H
1
⌧0 ↵ = 2

e
H

1
SSD⌧1e

H
1
SCD⌧2 ↵ = 3

. (2.10)

Divide the system into the subsystem V and V , the complement to it, and then define the

reduce Euclidean density operators for V as ⇢E,↵;V = trV⇢E,↵. Let A, B, and A [ B denote
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(c) The relativistic

propagation of the B.H.-like
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Figure 7: A sketch of the emergence and the time-evolution of the two B.H.-like excitations.

illustrate the t0-dependence of IA,B for various t1. In (A) and (C), in the large t1-regime, the

t0-dependence of is approximated by

For (A) IA,B ⇡
(

c⇡lA

3✏
for (n + 1)L � Y1 > t0 > nL � Y2

0 for (n + 1)L � Y2 > t0 > (n + 1)L � Y1,

,

For (C) IA,B ⇡

8
>><

>>:

0 for (n + 1) L � Y1 > t0 > nL � Y2

c⇡lA

3✏
for nL + Y1 > t0 > (n + 1) L � Y1

0 for (n + 1)L � Y2 > t0 > nL + Y1

.

(5.6)

The dashed lines in Fig. 8 illustrate this asymptotic behavior. In (A) and (C), for the large

t1-regime, the t0-dependence of IA,B is periodic with L. In (A) and (C), there are the t0-

regimes where both B.H.-like excitations are in B, while in (B), there are no t0-regimes where

both B.H.-like excitations are in B. In the t0-regimes where both B.H.-like excitations are

in B, IA,B is approximated by c⇡lA

3✏
.

5.2.2 Double intervals

Now, let us look closely at the t0-dependence of IA,B when B is given by a union of symmetric

double intervals, B1 and B2, that are defined by

B1 =

⇢
x

����L > L � Y1 > x > L � Y2 >
L

2

�
, B2 =

⇢
x

����
L

2
> Y1 > x > Y2 > 0

�
, (5.7)

where L

2
> Y1 > Y2 > 0. In Fig. 9, the positions of the edges of the subsystems are

Y1 > Y2 > X2 > X1 > 0. In this case, the value of IA,B with the small t1 is practically zero.
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illustrate the t0-dependence of IA,B for various t1. In (A) and (C), in the large t1-regime, the

t0-dependence of is approximated by
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The dashed lines in Fig. 8 illustrate this asymptotic behavior. In (A) and (C), for the large

t1-regime, the t0-dependence of IA,B is periodic with L. In (A) and (C), there are the t0-

regimes where both B.H.-like excitations are in B, while in (B), there are no t0-regimes where

both B.H.-like excitations are in B. In the t0-regimes where both B.H.-like excitations are

in B, IA,B is approximated by c⇡lA

3✏
.

5.2.2 Double intervals

Now, let us look closely at the t0-dependence of IA,B when B is given by a union of symmetric

double intervals, B1 and B2, that are defined by

B1 =

⇢
x

����L > L � Y1 > x > L � Y2 >
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where L

2
> Y1 > Y2 > 0. In Fig. 9, the positions of the edges of the subsystems are

Y1 > Y2 > X2 > X1 > 0. In this case, the value of IA,B with the small t1 is practically zero.

21

|Ψ(t)⟩ = e−itH1
inh |TFD⟩ .x = X1

f , IA,B = SA + SB − SA∪B

|Ψ(t0, t1)⟩ =
(
e−it0H1

0 ⊗ 1H2

)(
e−it1H1

SSD ⊗ 1H2

) 1√
tre−2ϵH0

∑

a

e
−ϵ
2 (H1

0+H2
0) |a⟩H1

⊗ |a⟩H2

ds2 = −dt2 + dx2 ds2 = −f 2(x)dt2 + dx2

dx

dt
= f(x)

dx

dt
(x ≈ 0) ≈ 0 t0 ≫ O(L) IA,B ≈ 0

IA,Bi=1,2 ≥ 0, IB1,B2 ≥ 0.

(0.4)
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Let us divide          into      ,      , and the complement to them.
denotes the subsystem of       . 

square of N 2 guarantees that hTFD|TFDi = 1. Then, we unitarily evolve with Möbius/SS

deformed Hamiltonian. The time evolution operator acting on this thermofield double state

is defined as

UMöbius/SSD = e
�it1H

1
Möbius/SSD ⌦ 12, (2.4)

where H
1

Möbius/SSD
and 12 denote the Möbius/SS deformed Hamiltonian acting on H1, and

identity operator on H2, respectively.

System.2: We start from an excited state which is defined as

| (t0)i =
⇣
e

�iH
1
0 t0 ⌦ 12

⌘
|TFDi , (2.5)

and then evolve it with the SSD Hamiltonian acting on only H1. Under this evolution, the

system is in the state given by

| (t1, t0)i =
⇣
e

�iH
1
SSDt1 ⌦ 12

⌘
| (t0)i . (2.6)

System.3: Let us start from an excited state defined as

|�(t1)i =
⇣
e

�iH
1
SSDt1 ⌦ 12

⌘
|TFDi , (2.7)

and then evolve it with the un-deformed Hamiltonian acting on only H1. Under this evolu-

tion, the system is in the state given by

|�(t1, t0)i =
⇣
e

�iH
1
0 t0 ⌦ 12

⌘
|�(t1)i . (2.8)

2.3 Entanglement entropies in the twist operator formalism

To employ the path-integral formalism suited to analytic computation, let us define Euclidean

density operators as

⇢E,↵=0,1,2,3 = N 2

E
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e
�✏(Ea+Eb)

⇣
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|ai hb|
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, (2.9)

where the Euclidean normalization constant N �2

E
= tre�2✏H guarantees that tr⇢E,↵ = 1.

These density operators may be the analytic-continued ones in imaginary time corresponding

to the ones defined in Section 2.2. The Euclidean evolution operators are defined as
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Divide the system into the subsystem V and V , the complement to it, and then define the

reduce Euclidean density operators for V as ⇢E,↵;V = trV⇢E,↵. Let A, B, and A [ B denote
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Figure 7: A sketch of the emergence and the time-evolution of the two B.H.-like excitations.

illustrate the t0-dependence of IA,B for various t1. In (A) and (C), in the large t1-regime, the

t0-dependence of is approximated by

For (A) IA,B ⇡
(

c⇡lA

3✏
for (n + 1)L � Y1 > t0 > nL � Y2

0 for (n + 1)L � Y2 > t0 > (n + 1)L � Y1,

,

For (C) IA,B ⇡
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for nL + Y1 > t0 > (n + 1) L � Y1

0 for (n + 1)L � Y2 > t0 > nL + Y1

.

(5.6)

The dashed lines in Fig. 8 illustrate this asymptotic behavior. In (A) and (C), for the large

t1-regime, the t0-dependence of IA,B is periodic with L. In (A) and (C), there are the t0-

regimes where both B.H.-like excitations are in B, while in (B), there are no t0-regimes where

both B.H.-like excitations are in B. In the t0-regimes where both B.H.-like excitations are

in B, IA,B is approximated by c⇡lA

3✏
.

5.2.2 Double intervals

Now, let us look closely at the t0-dependence of IA,B when B is given by a union of symmetric

double intervals, B1 and B2, that are defined by

B1 =

⇢
x

����L > L � Y1 > x > L � Y2 >
L

2

�
, B2 =

⇢
x

����
L

2
> Y1 > x > Y2 > 0

�
, (5.7)

where L

2
> Y1 > Y2 > 0. In Fig. 9, the positions of the edges of the subsystems are

Y1 > Y2 > X2 > X1 > 0. In this case, the value of IA,B with the small t1 is practically zero.
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The dashed lines in Fig. 8 illustrate this asymptotic behavior. In (A) and (C), for the large

t1-regime, the t0-dependence of IA,B is periodic with L. In (A) and (C), there are the t0-

regimes where both B.H.-like excitations are in B, while in (B), there are no t0-regimes where
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Y1 > Y2 > X2 > X1 > 0. In this case, the value of IA,B with the small t1 is practically zero.
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1.2 Results on present paper

• Setup.1:

– Bipartite (operator) mutual information: Let us take the subsystems, A and B1,

to be the sub-regions of H2 and H1, respectively. Then, define the mutual infor-

mation as the linear combination of entanglement entropies associated with A, B1

, and A [ B1,

IA,B1 = SA + SB1 � SA[B1 , (1.1)

where A [ B denotes the union of A and B. For A including x = X
1

f
, IA,B1

decreases with t1, upto t1,⇤, and then increases with tt1 , saturating at the value

that is proportional to the number of Bell pairs shared in A and B at t1 = 0.

Here, t1,⇤ may depend on the sizes of A and B1, the system size, and �.

– Tripartite (operator) mutual information: Let us divide H1 into B1 and B2. Take

A and B1 to be subsystems of H2 and H1 including x = X
1

f
, and then define the

tripartite (operator) mutual information as

IA,B1,B2 = IA,B1 + IA,B2 � IA,B1[B2 . (1.2)

For large t1, IA,B1,B2 vanishes. A possible interpretation for this t1-dependence

of IA,B1,B2 is that the Bell pairs initially shared by A and B1 still remains in the

large t1 region.

• Setup.2:

– Bipartite (operator) mutual information: Let us take A and B1 to be the sub-

regions of H2 and H1 including x = X
1

f
, respectively. For large t0, IA,B1 at t1 = 0

vanishes, and then increases with t1, saturating at the value that is proportional

to he number of Bell pairs shared in A and B at t0 = 0 and t1 = 0. One possible

interpretation for this behavior of IA,B1 is that these Bell pairs scrambled under

the evolution by H0 is retrieved from A [ B1 under the SSD time-evolution.

– Tripartite (operator) mutual information: During the evolution by H0, IA,B1,B2

decreasing, saturating at the negative value that is proportional to the number of

Bell pairs initially shared in A and B1. Subsequently, the system unitarily evolves

according to the equation of motion given by HSSD. During this time-evolution,

IA,B1,B2 increases with t1, saturating at zero.

We can see from the behaviors of IA,B and IA,B1,B2 that one can retrieves the Bell pairs

scrambled by H0 during the evolution by HSSD.

• Setup.3:

– Bipartite (operator) mutual information: Let us take A and B1 to be the sub-

regions of H2 and H1, respectively.
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Here, we present the non-universal piece of the entanglement entropy for the single interval

in the coarse-grained region. In this region, the gravity dual of the system on the torus is

BTZ black hole [5]. Therefore, in the von Neumann limit when n ! 1, the non-universal

piece is given by the geodesic length in BTZ black hole [6, 7]. Let V denote the subsystem,

and also v1 and v2 denote the endpoints of V . Here, v1 > v2. The non-universal piece of

entanglement entropy for the reduced density matrix associated with V is holographically

given by

lim
n!1

1

1 � n
log

⌦
�n

�
w

New,↵

v1,✏
, w

New,↵

v1,✏

�
�n

�
w

New,↵

v2,✏
, w

New,↵

v2,✏

�↵
2✏

⇡ c

3
log

✓
2✏

⇡

◆

+

8
>>>>><

>>>>>:

Min
h

c

6
log

��sin
�

⇡

2✏
(wNew,↵

v1,✏
� w

New,↵

v2,✏
± iL)

���2, c

6
log

��sin
�

⇡

2✏
(wNew,↵

v1,✏
� w

New,↵

v2,✏
)
���2 + c⇡L

6✏

i

if x = X
1

f
= 0 2 V

Min
h

c

6
log

��sin
�

⇡

2✏
(wNew

v1,✏
� w

New

v2,✏
± iL)

���2 + c⇡L

6✏
,

c

6
log

��sin
�

⇡

2✏
(wNew

v1,✏
� w

New

v2,✏
)
���2

i

if x = X
1

f
= 0 /2 V

.

(2.16)

Double intervals
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where Sdis is determined by the length of geodesic that connects the endpoints of intervals at
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• Setup.1:

– Bipartite (operator) mutual information: Let us take the subsystems, A and B1,

to be the sub-regions of H2 and H1, respectively. Then, define the mutual infor-

mation as the linear combination of entanglement entropies associated with A, B1

, and A [ B1,

IA,B1 = SA + SB1 � SA[B1 , (1.1)

where A [ B denotes the union of A and B. For A including x = X
1

f
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decreases with t1, upto t1,⇤, and then increases with tt1 , saturating at the value

that is proportional to the number of Bell pairs shared in A and B at t1 = 0.

Here, t1,⇤ may depend on the sizes of A and B1, the system size, and �.
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, and then define the

tripartite (operator) mutual information as

IA,B1,B2 = IA,B1 + IA,B2 � IA,B1[B2 . (1.2)

For large t1, IA,B1,B2 vanishes. A possible interpretation for this t1-dependence

of IA,B1,B2 is that the Bell pairs initially shared by A and B1 still remains in the

large t1 region.

• Setup.2:

– Bipartite (operator) mutual information: Let us take A and B1 to be the sub-
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vanishes, and then increases with t1, saturating at the value that is proportional

to he number of Bell pairs shared in A and B at t0 = 0 and t1 = 0. One possible

interpretation for this behavior of IA,B1 is that these Bell pairs scrambled under

the evolution by H0 is retrieved from A [ B1 under the SSD time-evolution.

– Tripartite (operator) mutual information: During the evolution by H0, IA,B1,B2

decreasing, saturating at the negative value that is proportional to the number of

Bell pairs initially shared in A and B1. Subsequently, the system unitarily evolves

according to the equation of motion given by HSSD. During this time-evolution,

IA,B1,B2 increases with t1, saturating at zero.

We can see from the behaviors of IA,B and IA,B1,B2 that one can retrieves the Bell pairs

scrambled by H0 during the evolution by HSSD.

• Setup.3:

– Bipartite (operator) mutual information: Let us take A and B1 to be the sub-
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Figure 7: A sketch of the emergence and the time-evolution of the two B.H.-like excitations.

illustrate the t0-dependence of IA,B for various t1. In (A) and (C), in the large t1-regime, the

t0-dependence of is approximated by
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The dashed lines in Fig. 8 illustrate this asymptotic behavior. In (A) and (C), for the large

t1-regime, the t0-dependence of IA,B is periodic with L. In (A) and (C), there are the t0-

regimes where both B.H.-like excitations are in B, while in (B), there are no t0-regimes where

both B.H.-like excitations are in B. In the t0-regimes where both B.H.-like excitations are

in B, IA,B is approximated by c⇡lA

3✏
.

5.2.2 Double intervals

Now, let us look closely at the t0-dependence of IA,B when B is given by a union of symmetric

double intervals, B1 and B2, that are defined by

B1 =
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, (5.7)

where L

2
> Y1 > Y2 > 0. In Fig. 9, the positions of the edges of the subsystems are

Y1 > Y2 > X2 > X1 > 0. In this case, the value of IA,B with the small t1 is practically zero.
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The dashed lines in Fig. 8 illustrate this asymptotic behavior. In (A) and (C), for the large

t1-regime, the t0-dependence of IA,B is periodic with L. In (A) and (C), there are the t0-

regimes where both B.H.-like excitations are in B, while in (B), there are no t0-regimes where

both B.H.-like excitations are in B. In the t0-regimes where both B.H.-like excitations are

in B, IA,B is approximated by c⇡lA
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5.2.2 Double intervals

Now, let us look closely at the t0-dependence of IA,B when B is given by a union of symmetric
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where L
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> Y1 > Y2 > 0. In Fig. 9, the positions of the edges of the subsystems are

Y1 > Y2 > X2 > X1 > 0. In this case, the value of IA,B with the small t1 is practically zero.
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The dashed lines in Fig. 8 illustrate this asymptotic behavior. In (A) and (C), for the large

t1-regime, the t0-dependence of IA,B is periodic with L. In (A) and (C), there are the t0-

regimes where both B.H.-like excitations are in B, while in (B), there are no t0-regimes where

both B.H.-like excitations are in B. In the t0-regimes where both B.H.-like excitations are

in B, IA,B is approximated by c⇡lA
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Y1 > Y2 > X2 > X1 > 0. In this case, the value of IA,B with the small t1 is practically zero.
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Summary 3: Genuine tripartite entanglement

In 2d holographic CFT,



Let us divide          into      ,      , and the complement to them.
denotes the subsystem of       . 

square of N 2 guarantees that hTFD|TFDi = 1. Then, we unitarily evolve with Möbius/SS

deformed Hamiltonian. The time evolution operator acting on this thermofield double state

is defined as

UMöbius/SSD = e
�it1H

1
Möbius/SSD ⌦ 12, (2.4)

where H
1

Möbius/SSD
and 12 denote the Möbius/SS deformed Hamiltonian acting on H1, and

identity operator on H2, respectively.

System.2: We start from an excited state which is defined as

| (t0)i =
⇣
e

�iH
1
0 t0 ⌦ 12

⌘
|TFDi , (2.5)

and then evolve it with the SSD Hamiltonian acting on only H1. Under this evolution, the

system is in the state given by

| (t1, t0)i =
⇣
e

�iH
1
SSDt1 ⌦ 12

⌘
| (t0)i . (2.6)

System.3: Let us start from an excited state defined as

|�(t1)i =
⇣
e

�iH
1
SSDt1 ⌦ 12

⌘
|TFDi , (2.7)

and then evolve it with the un-deformed Hamiltonian acting on only H1. Under this evolu-

tion, the system is in the state given by

|�(t1, t0)i =
⇣
e

�iH
1
0 t0 ⌦ 12

⌘
|�(t1)i . (2.8)

2.3 Entanglement entropies in the twist operator formalism

To employ the path-integral formalism suited to analytic computation, let us define Euclidean

density operators as

⇢E,↵=0,1,2,3 = N 2

E

X

a,b

e
�✏(Ea+Eb)

⇣
U

1

E,↵=0,1,2,3
|ai hb|

1
Ũ

1

E↵=0,1,2,3
⌦ |a⇤i hb⇤|

2

⌘
, (2.9)

where the Euclidean normalization constant N �2

E
= tre�2✏H guarantees that tr⇢E,↵ = 1.

These density operators may be the analytic-continued ones in imaginary time corresponding

to the ones defined in Section 2.2. The Euclidean evolution operators are defined as

U
1

E,↵
=

8
>>>><

>>>>:

e
�H

1
Möbius⌧1 ↵ = 0

e
�H

1
SSD⌧1e

�H
1
⌧0 ↵ = 1

e
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1
⌧0e

�H
1
SSD⌧1 ↵ = 2

e
�H
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�H
1
SSD⌧1 ↵ = 3

, Ũ
1

E,↵
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8
>>>><

>>>>:

e
H

1
Möbius⌧1 ↵ = 0

e
H

1
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H
1
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e
H

1
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H
1
⌧0 ↵ = 2

e
H

1
SSD⌧1e

H
1
SCD⌧2 ↵ = 3

. (2.10)

Divide the system into the subsystem V and V , the complement to it, and then define the

reduce Euclidean density operators for V as ⇢E,↵;V = trV⇢E,↵. Let A, B, and A [ B denote
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illustrate the t0-dependence of IA,B for various t1. In (A) and (C), in the large t1-regime, the

t0-dependence of is approximated by
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The dashed lines in Fig. 8 illustrate this asymptotic behavior. In (A) and (C), for the large

t1-regime, the t0-dependence of IA,B is periodic with L. In (A) and (C), there are the t0-

regimes where both B.H.-like excitations are in B, while in (B), there are no t0-regimes where

both B.H.-like excitations are in B. In the t0-regimes where both B.H.-like excitations are

in B, IA,B is approximated by c⇡lA

3✏
.

5.2.2 Double intervals

Now, let us look closely at the t0-dependence of IA,B when B is given by a union of symmetric

double intervals, B1 and B2, that are defined by

B1 =

⇢
x

����L > L � Y1 > x > L � Y2 >
L

2
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, B2 =

⇢
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2
> Y1 > x > Y2 > 0
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, (5.7)

where L

2
> Y1 > Y2 > 0. In Fig. 9, the positions of the edges of the subsystems are

Y1 > Y2 > X2 > X1 > 0. In this case, the value of IA,B with the small t1 is practically zero.

21

Contents

1 Parts 1

1 Parts

qi

2,L
,qi

1,L
,qi+1

1,L
,qi+k

1,L
,qi+l

1,L
H1 H2,x = X1

f
(1.1)

References

1

Contents

1 Parts 1

1 Parts

qi

2,L
,qi

1,L
,qi+1

1,L
,qi+k

1,L
,qi+l

1,L
H1 H2,x = X1

f
(1.1)

References

1

Contents

1 Parts 1

1 Parts

qi

2,L
,qi

1,L
,qi+1

1,L
,qi+k

1,L
,qi+l

1,L
H1 H2, x = X

1

f
(1.1)

References

1

(a) The propagation of

quasi-particles on H1.

B.H.-like excitations

Contents

1 Parts 1

1 Parts

qi

2,L
,qi

1,L
,qi+1

1,L
,qi+k

1,L
,qi+l

1,L
H1 H2,x = X1

f
(1.1)

References

1

(b) The emergence of

B.H.-like excitations.

Contents

1 Parts 1

1 Parts

qi

2,L
,qi

1,L
,qi+1

1,L
,qi+k

1,L
,qi+l

1,L
H1 H2,x = X1

f
(1.1)

References

1

(c) The relativistic

propagation of the B.H.-like

excitations.

Figure 7: A sketch of the emergence and the time-evolution of the two B.H.-like excitations.

illustrate the t0-dependence of IA,B for various t1. In (A) and (C), in the large t1-regime, the

t0-dependence of is approximated by

For (A) IA,B ⇡
(

c⇡lA

3✏
for (n + 1)L � Y1 > t0 > nL � Y2

0 for (n + 1)L � Y2 > t0 > (n + 1)L � Y1,

,

For (C) IA,B ⇡

8
>><

>>:

0 for (n + 1) L � Y1 > t0 > nL � Y2

c⇡lA

3✏
for nL + Y1 > t0 > (n + 1) L � Y1

0 for (n + 1)L � Y2 > t0 > nL + Y1

.

(5.6)

The dashed lines in Fig. 8 illustrate this asymptotic behavior. In (A) and (C), for the large

t1-regime, the t0-dependence of IA,B is periodic with L. In (A) and (C), there are the t0-

regimes where both B.H.-like excitations are in B, while in (B), there are no t0-regimes where

both B.H.-like excitations are in B. In the t0-regimes where both B.H.-like excitations are
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Now, let us look closely at the t0-dependence of IA,B when B is given by a union of symmetric

double intervals, B1 and B2, that are defined by
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where L

2
> Y1 > Y2 > 0. In Fig. 9, the positions of the edges of the subsystems are

Y1 > Y2 > X2 > X1 > 0. In this case, the value of IA,B with the small t1 is practically zero.
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1.2 Results on present paper

• Setup.1:

– Bipartite (operator) mutual information: Let us take the subsystems, A and B1,

to be the sub-regions of H2 and H1, respectively. Then, define the mutual infor-

mation as the linear combination of entanglement entropies associated with A, B1

, and A [ B1,

IA,B1 = SA + SB1 � SA[B1 , (1.1)

where A [ B denotes the union of A and B. For A including x = X
1

f
, IA,B1

decreases with t1, upto t1,⇤, and then increases with tt1 , saturating at the value

that is proportional to the number of Bell pairs shared in A and B at t1 = 0.

Here, t1,⇤ may depend on the sizes of A and B1, the system size, and �.

– Tripartite (operator) mutual information: Let us divide H1 into B1 and B2. Take

A and B1 to be subsystems of H2 and H1 including x = X
1

f
, and then define the

tripartite (operator) mutual information as

IA,B1,B2 = IA,B1 + IA,B2 � IA,B1[B2 . (1.2)

For large t1, IA,B1,B2 vanishes. A possible interpretation for this t1-dependence

of IA,B1,B2 is that the Bell pairs initially shared by A and B1 still remains in the

large t1 region.

• Setup.2:

– Bipartite (operator) mutual information: Let us take A and B1 to be the sub-

regions of H2 and H1 including x = X
1

f
, respectively. For large t0, IA,B1 at t1 = 0

vanishes, and then increases with t1, saturating at the value that is proportional

to he number of Bell pairs shared in A and B at t0 = 0 and t1 = 0. One possible

interpretation for this behavior of IA,B1 is that these Bell pairs scrambled under

the evolution by H0 is retrieved from A [ B1 under the SSD time-evolution.

– Tripartite (operator) mutual information: During the evolution by H0, IA,B1,B2

decreasing, saturating at the negative value that is proportional to the number of

Bell pairs initially shared in A and B1. Subsequently, the system unitarily evolves

according to the equation of motion given by HSSD. During this time-evolution,

IA,B1,B2 increases with t1, saturating at zero.

We can see from the behaviors of IA,B and IA,B1,B2 that one can retrieves the Bell pairs

scrambled by H0 during the evolution by HSSD.

• Setup.3:

– Bipartite (operator) mutual information: Let us take A and B1 to be the sub-

regions of H2 and H1, respectively.
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Single interval

Here, we present the non-universal piece of the entanglement entropy for the single interval

in the coarse-grained region. In this region, the gravity dual of the system on the torus is

BTZ black hole [5]. Therefore, in the von Neumann limit when n ! 1, the non-universal

piece is given by the geodesic length in BTZ black hole [6, 7]. Let V denote the subsystem,
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entanglement entropy for the reduced density matrix associated with V is holographically

given by
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Double intervals

Let us turn to the analysis on the non-universal piece of the entanglement entropy for the

double intervals. The entanglement entropy of the states considered in this paper has to

satisfy two conditions: (1) If V is the total Hilbert space, V = H1[H2, then the entanglement

entropy for V is zero; (2) If V is H1 or H2, the one for V is thermal entropy, SV=Hi=1,2 =

Sthermal. The non-universal piece satisfying these conditions is given by [8]3
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where Sdis is determined by the length of geodesic that connects the endpoints of intervals at

the same Euclidean time slices, while Scon is determined by that of intervals at the di↵erent

Euclidean time-slices. The some details of Sdis and Scon are reported in Appendix B.1.
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– Bipartite (operator) mutual information: Let us take the subsystems, A and B1,

to be the sub-regions of H2 and H1, respectively. Then, define the mutual infor-

mation as the linear combination of entanglement entropies associated with A, B1
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IA,B1 = SA + SB1 � SA[B1 , (1.1)

where A [ B denotes the union of A and B. For A including x = X
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, IA,B1

decreases with t1, upto t1,⇤, and then increases with tt1 , saturating at the value

that is proportional to the number of Bell pairs shared in A and B at t1 = 0.

Here, t1,⇤ may depend on the sizes of A and B1, the system size, and �.
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, and then define the

tripartite (operator) mutual information as

IA,B1,B2 = IA,B1 + IA,B2 � IA,B1[B2 . (1.2)

For large t1, IA,B1,B2 vanishes. A possible interpretation for this t1-dependence

of IA,B1,B2 is that the Bell pairs initially shared by A and B1 still remains in the

large t1 region.

• Setup.2:

– Bipartite (operator) mutual information: Let us take A and B1 to be the sub-

regions of H2 and H1 including x = X
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, respectively. For large t0, IA,B1 at t1 = 0

vanishes, and then increases with t1, saturating at the value that is proportional

to he number of Bell pairs shared in A and B at t0 = 0 and t1 = 0. One possible

interpretation for this behavior of IA,B1 is that these Bell pairs scrambled under

the evolution by H0 is retrieved from A [ B1 under the SSD time-evolution.

– Tripartite (operator) mutual information: During the evolution by H0, IA,B1,B2

decreasing, saturating at the negative value that is proportional to the number of

Bell pairs initially shared in A and B1. Subsequently, the system unitarily evolves

according to the equation of motion given by HSSD. During this time-evolution,

IA,B1,B2 increases with t1, saturating at zero.

We can see from the behaviors of IA,B and IA,B1,B2 that one can retrieves the Bell pairs

scrambled by H0 during the evolution by HSSD.

• Setup.3:

– Bipartite (operator) mutual information: Let us take A and B1 to be the sub-

regions of H2 and H1, respectively.
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Figure 7: A sketch of the emergence and the time-evolution of the two B.H.-like excitations.

illustrate the t0-dependence of IA,B for various t1. In (A) and (C), in the large t1-regime, the

t0-dependence of is approximated by

For (A) IA,B ⇡
(
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3✏
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.

(5.6)

The dashed lines in Fig. 8 illustrate this asymptotic behavior. In (A) and (C), for the large

t1-regime, the t0-dependence of IA,B is periodic with L. In (A) and (C), there are the t0-

regimes where both B.H.-like excitations are in B, while in (B), there are no t0-regimes where

both B.H.-like excitations are in B. In the t0-regimes where both B.H.-like excitations are

in B, IA,B is approximated by c⇡lA

3✏
.

5.2.2 Double intervals

Now, let us look closely at the t0-dependence of IA,B when B is given by a union of symmetric

double intervals, B1 and B2, that are defined by

B1 =

⇢
x

����L > L � Y1 > x > L � Y2 >
L

2

�
, B2 =

⇢
x
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L

2
> Y1 > x > Y2 > 0
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, (5.7)

where L

2
> Y1 > Y2 > 0. In Fig. 9, the positions of the edges of the subsystems are

Y1 > Y2 > X2 > X1 > 0. In this case, the value of IA,B with the small t1 is practically zero.
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The dashed lines in Fig. 8 illustrate this asymptotic behavior. In (A) and (C), for the large

t1-regime, the t0-dependence of IA,B is periodic with L. In (A) and (C), there are the t0-

regimes where both B.H.-like excitations are in B, while in (B), there are no t0-regimes where

both B.H.-like excitations are in B. In the t0-regimes where both B.H.-like excitations are
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3✏
.
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where L
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> Y1 > Y2 > 0. In Fig. 9, the positions of the edges of the subsystems are

Y1 > Y2 > X2 > X1 > 0. In this case, the value of IA,B with the small t1 is practically zero.
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The dashed lines in Fig. 8 illustrate this asymptotic behavior. In (A) and (C), for the large

t1-regime, the t0-dependence of IA,B is periodic with L. In (A) and (C), there are the t0-

regimes where both B.H.-like excitations are in B, while in (B), there are no t0-regimes where
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Summary 3: Genuine tripartite entanglement

In 2d holographic CFT,
In 2d holographic CFTs, 
the strong scrambling effect 
completely delocalize 
the quasiparticles in      .
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is defined as
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| (t0)i =
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Divide the system into the subsystem V and V , the complement to it, and then define the

reduce Euclidean density operators for V as ⇢E,↵;V = trV⇢E,↵. Let A, B, and A [ B denote
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Figure 7: A sketch of the emergence and the time-evolution of the two B.H.-like excitations.

illustrate the t0-dependence of IA,B for various t1. In (A) and (C), in the large t1-regime, the

t0-dependence of is approximated by

For (A) IA,B ⇡
(

c⇡lA

3✏
for (n + 1)L � Y1 > t0 > nL � Y2
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(5.6)

The dashed lines in Fig. 8 illustrate this asymptotic behavior. In (A) and (C), for the large

t1-regime, the t0-dependence of IA,B is periodic with L. In (A) and (C), there are the t0-

regimes where both B.H.-like excitations are in B, while in (B), there are no t0-regimes where

both B.H.-like excitations are in B. In the t0-regimes where both B.H.-like excitations are

in B, IA,B is approximated by c⇡lA

3✏
.

5.2.2 Double intervals

Now, let us look closely at the t0-dependence of IA,B when B is given by a union of symmetric

double intervals, B1 and B2, that are defined by

B1 =

⇢
x

����L > L � Y1 > x > L � Y2 >
L

2

�
, B2 =

⇢
x

����
L

2
> Y1 > x > Y2 > 0

�
, (5.7)

where L

2
> Y1 > Y2 > 0. In Fig. 9, the positions of the edges of the subsystems are

Y1 > Y2 > X2 > X1 > 0. In this case, the value of IA,B with the small t1 is practically zero.
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Y1 > Y2 > X2 > X1 > 0. In this case, the value of IA,B with the small t1 is practically zero.
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1.2 Results on present paper

• Setup.1:

– Bipartite (operator) mutual information: Let us take the subsystems, A and B1,

to be the sub-regions of H2 and H1, respectively. Then, define the mutual infor-

mation as the linear combination of entanglement entropies associated with A, B1

, and A [ B1,

IA,B1 = SA + SB1 � SA[B1 , (1.1)

where A [ B denotes the union of A and B. For A including x = X
1

f
, IA,B1

decreases with t1, upto t1,⇤, and then increases with tt1 , saturating at the value

that is proportional to the number of Bell pairs shared in A and B at t1 = 0.

Here, t1,⇤ may depend on the sizes of A and B1, the system size, and �.

– Tripartite (operator) mutual information: Let us divide H1 into B1 and B2. Take

A and B1 to be subsystems of H2 and H1 including x = X
1

f
, and then define the

tripartite (operator) mutual information as

IA,B1,B2 = IA,B1 + IA,B2 � IA,B1[B2 . (1.2)

For large t1, IA,B1,B2 vanishes. A possible interpretation for this t1-dependence

of IA,B1,B2 is that the Bell pairs initially shared by A and B1 still remains in the

large t1 region.

• Setup.2:

– Bipartite (operator) mutual information: Let us take A and B1 to be the sub-

regions of H2 and H1 including x = X
1

f
, respectively. For large t0, IA,B1 at t1 = 0

vanishes, and then increases with t1, saturating at the value that is proportional

to he number of Bell pairs shared in A and B at t0 = 0 and t1 = 0. One possible

interpretation for this behavior of IA,B1 is that these Bell pairs scrambled under

the evolution by H0 is retrieved from A [ B1 under the SSD time-evolution.

– Tripartite (operator) mutual information: During the evolution by H0, IA,B1,B2

decreasing, saturating at the negative value that is proportional to the number of

Bell pairs initially shared in A and B1. Subsequently, the system unitarily evolves

according to the equation of motion given by HSSD. During this time-evolution,

IA,B1,B2 increases with t1, saturating at zero.

We can see from the behaviors of IA,B and IA,B1,B2 that one can retrieves the Bell pairs

scrambled by H0 during the evolution by HSSD.

• Setup.3:

– Bipartite (operator) mutual information: Let us take A and B1 to be the sub-

regions of H2 and H1, respectively.

3

Single interval

Here, we present the non-universal piece of the entanglement entropy for the single interval

in the coarse-grained region. In this region, the gravity dual of the system on the torus is

BTZ black hole [5]. Therefore, in the von Neumann limit when n ! 1, the non-universal

piece is given by the geodesic length in BTZ black hole [6, 7]. Let V denote the subsystem,

and also v1 and v2 denote the endpoints of V . Here, v1 > v2. The non-universal piece of

entanglement entropy for the reduced density matrix associated with V is holographically

given by
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(2.16)

Double intervals

Let us turn to the analysis on the non-universal piece of the entanglement entropy for the

double intervals. The entanglement entropy of the states considered in this paper has to

satisfy two conditions: (1) If V is the total Hilbert space, V = H1[H2, then the entanglement

entropy for V is zero; (2) If V is H1 or H2, the one for V is thermal entropy, SV=Hi=1,2 =

Sthermal. The non-universal piece satisfying these conditions is given by [8]3

lim
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(2.17)

where Sdis is determined by the length of geodesic that connects the endpoints of intervals at

the same Euclidean time slices, while Scon is determined by that of intervals at the di↵erent

Euclidean time-slices. The some details of Sdis and Scon are reported in Appendix B.1.

The temporal and spatial locations, ⌧
New

x,✏,↵
and X

New

x,✏,↵
, of endpoints are defined as
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= Im
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Figure 7: A sketch of the emergence and the time-evolution of the two B.H.-like excitations.

illustrate the t0-dependence of IA,B for various t1. In (A) and (C), in the large t1-regime, the

t0-dependence of is approximated by
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The dashed lines in Fig. 8 illustrate this asymptotic behavior. In (A) and (C), for the large

t1-regime, the t0-dependence of IA,B is periodic with L. In (A) and (C), there are the t0-

regimes where both B.H.-like excitations are in B, while in (B), there are no t0-regimes where

both B.H.-like excitations are in B. In the t0-regimes where both B.H.-like excitations are

in B, IA,B is approximated by c⇡lA

3✏
.

5.2.2 Double intervals

Now, let us look closely at the t0-dependence of IA,B when B is given by a union of symmetric

double intervals, B1 and B2, that are defined by

B1 =

⇢
x

����L > L � Y1 > x > L � Y2 >
L

2

�
, B2 =

⇢
x

����
L

2
> Y1 > x > Y2 > 0

�
, (5.7)

where L

2
> Y1 > Y2 > 0. In Fig. 9, the positions of the edges of the subsystems are

Y1 > Y2 > X2 > X1 > 0. In this case, the value of IA,B with the small t1 is practically zero.
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How about the mutual information between A and              ?    

eiHMöbius/SSDt1σn(wX , wX)e
−iHMöbius/SSDt1 =

∣∣∣∣
dwNew

X

dwx

∣∣∣∣
2hn

σn

(
wNew

X , wNew
X

)

(wX , wX) = (iX,−iX).

XNew
X =

wNew
X − wNew

X

2i
, X = X1

f = 0, X = X2
f =

L

2
,

SB = − c

12
log

[
∏

i=1,2

∣∣∣∣
dwNew

Yi

dwYi
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2
]
+ lim

n→1

1

1− n
log

〈
σn

(
wNew

Y1
, wNew

Y1

)
σn

(
wNew

Y2
, wNew

Y2

)〉
2ϵ

O(1) ≪ O(1/ϵ)

H1
SSD + 12 ≈ cπ

6ϵ

[
L−

(
XNew

Y1
−XNew

Y2

)]

IA,B = SA + SB − SA∪B
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1
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〉
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)
|TFD⟩ . IA,B ≈ 0

lV=A,B, PC,V=A,B SA∪B, ρA∪B Parameters ≫ ϵ
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12ϵ
, qi1,L qi2,L

t0 ≫ O(L).
L

2
> lA, lB, lA + lB > 0

− trAρA log ρA, SB ≈ cπL

6ϵ
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x = Xf
1 , X
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=
wNew
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Yi=1,2

2i
IA,B = SA + SB − SA∪B, IA,B ≈ 0, B1 ∪B2

(0.2)
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Summary 3: Genuine tripartite entanglement



Let us divide          into      ,      , and the complement to them.
denotes the subsystem of       . 

square of N 2 guarantees that hTFD|TFDi = 1. Then, we unitarily evolve with Möbius/SS

deformed Hamiltonian. The time evolution operator acting on this thermofield double state

is defined as

UMöbius/SSD = e
�it1H

1
Möbius/SSD ⌦ 12, (2.4)

where H
1

Möbius/SSD
and 12 denote the Möbius/SS deformed Hamiltonian acting on H1, and

identity operator on H2, respectively.

System.2: We start from an excited state which is defined as

| (t0)i =
⇣
e

�iH
1
0 t0 ⌦ 12

⌘
|TFDi , (2.5)

and then evolve it with the SSD Hamiltonian acting on only H1. Under this evolution, the

system is in the state given by

| (t1, t0)i =
⇣
e

�iH
1
SSDt1 ⌦ 12

⌘
| (t0)i . (2.6)

System.3: Let us start from an excited state defined as

|�(t1)i =
⇣
e

�iH
1
SSDt1 ⌦ 12

⌘
|TFDi , (2.7)

and then evolve it with the un-deformed Hamiltonian acting on only H1. Under this evolu-

tion, the system is in the state given by

|�(t1, t0)i =
⇣
e

�iH
1
0 t0 ⌦ 12

⌘
|�(t1)i . (2.8)

2.3 Entanglement entropies in the twist operator formalism

To employ the path-integral formalism suited to analytic computation, let us define Euclidean

density operators as

⇢E,↵=0,1,2,3 = N 2

E

X

a,b

e
�✏(Ea+Eb)

⇣
U

1

E,↵=0,1,2,3
|ai hb|

1
Ũ

1

E↵=0,1,2,3
⌦ |a⇤i hb⇤|

2

⌘
, (2.9)

where the Euclidean normalization constant N �2

E
= tre�2✏H guarantees that tr⇢E,↵ = 1.

These density operators may be the analytic-continued ones in imaginary time corresponding

to the ones defined in Section 2.2. The Euclidean evolution operators are defined as

U
1

E,↵
=

8
>>>><

>>>>:

e
�H

1
Möbius⌧1 ↵ = 0

e
�H

1
SSD⌧1e

�H
1
⌧0 ↵ = 1

e
�H

1
⌧0e

�H
1
SSD⌧1 ↵ = 2

e
�H

1
SCD⌧2e

�H
1
SSD⌧1 ↵ = 3

, Ũ
1

E,↵
=

8
>>>><

>>>>:

e
H

1
Möbius⌧1 ↵ = 0

e
H

1
⌧0e

H
1
SSD⌧1 ↵ = 1

e
H

1
SSD⌧1e

H
1
⌧0 ↵ = 2

e
H

1
SSD⌧1e

H
1
SCD⌧2 ↵ = 3

. (2.10)

Divide the system into the subsystem V and V , the complement to it, and then define the

reduce Euclidean density operators for V as ⇢E,↵;V = trV⇢E,↵. Let A, B, and A [ B denote
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Figure 7: A sketch of the emergence and the time-evolution of the two B.H.-like excitations.

illustrate the t0-dependence of IA,B for various t1. In (A) and (C), in the large t1-regime, the

t0-dependence of is approximated by

For (A) IA,B ⇡
(

c⇡lA

3✏
for (n + 1)L � Y1 > t0 > nL � Y2

0 for (n + 1)L � Y2 > t0 > (n + 1)L � Y1,

,

For (C) IA,B ⇡

8
>><

>>:

0 for (n + 1) L � Y1 > t0 > nL � Y2

c⇡lA

3✏
for nL + Y1 > t0 > (n + 1) L � Y1

0 for (n + 1)L � Y2 > t0 > nL + Y1

.

(5.6)

The dashed lines in Fig. 8 illustrate this asymptotic behavior. In (A) and (C), for the large

t1-regime, the t0-dependence of IA,B is periodic with L. In (A) and (C), there are the t0-

regimes where both B.H.-like excitations are in B, while in (B), there are no t0-regimes where

both B.H.-like excitations are in B. In the t0-regimes where both B.H.-like excitations are

in B, IA,B is approximated by c⇡lA

3✏
.

5.2.2 Double intervals

Now, let us look closely at the t0-dependence of IA,B when B is given by a union of symmetric

double intervals, B1 and B2, that are defined by

B1 =

⇢
x

����L > L � Y1 > x > L � Y2 >
L

2

�
, B2 =

⇢
x

����
L

2
> Y1 > x > Y2 > 0

�
, (5.7)

where L

2
> Y1 > Y2 > 0. In Fig. 9, the positions of the edges of the subsystems are

Y1 > Y2 > X2 > X1 > 0. In this case, the value of IA,B with the small t1 is practically zero.
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where L
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> Y1 > Y2 > 0. In Fig. 9, the positions of the edges of the subsystems are

Y1 > Y2 > X2 > X1 > 0. In this case, the value of IA,B with the small t1 is practically zero.
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1.2 Results on present paper

• Setup.1:

– Bipartite (operator) mutual information: Let us take the subsystems, A and B1,

to be the sub-regions of H2 and H1, respectively. Then, define the mutual infor-

mation as the linear combination of entanglement entropies associated with A, B1

, and A [ B1,

IA,B1 = SA + SB1 � SA[B1 , (1.1)

where A [ B denotes the union of A and B. For A including x = X
1

f
, IA,B1

decreases with t1, upto t1,⇤, and then increases with tt1 , saturating at the value

that is proportional to the number of Bell pairs shared in A and B at t1 = 0.

Here, t1,⇤ may depend on the sizes of A and B1, the system size, and �.

– Tripartite (operator) mutual information: Let us divide H1 into B1 and B2. Take

A and B1 to be subsystems of H2 and H1 including x = X
1

f
, and then define the

tripartite (operator) mutual information as

IA,B1,B2 = IA,B1 + IA,B2 � IA,B1[B2 . (1.2)

For large t1, IA,B1,B2 vanishes. A possible interpretation for this t1-dependence

of IA,B1,B2 is that the Bell pairs initially shared by A and B1 still remains in the

large t1 region.

• Setup.2:

– Bipartite (operator) mutual information: Let us take A and B1 to be the sub-

regions of H2 and H1 including x = X
1

f
, respectively. For large t0, IA,B1 at t1 = 0

vanishes, and then increases with t1, saturating at the value that is proportional

to he number of Bell pairs shared in A and B at t0 = 0 and t1 = 0. One possible

interpretation for this behavior of IA,B1 is that these Bell pairs scrambled under

the evolution by H0 is retrieved from A [ B1 under the SSD time-evolution.

– Tripartite (operator) mutual information: During the evolution by H0, IA,B1,B2

decreasing, saturating at the negative value that is proportional to the number of

Bell pairs initially shared in A and B1. Subsequently, the system unitarily evolves

according to the equation of motion given by HSSD. During this time-evolution,

IA,B1,B2 increases with t1, saturating at zero.

We can see from the behaviors of IA,B and IA,B1,B2 that one can retrieves the Bell pairs

scrambled by H0 during the evolution by HSSD.

• Setup.3:

– Bipartite (operator) mutual information: Let us take A and B1 to be the sub-

regions of H2 and H1, respectively.

3

Single interval

Here, we present the non-universal piece of the entanglement entropy for the single interval

in the coarse-grained region. In this region, the gravity dual of the system on the torus is

BTZ black hole [5]. Therefore, in the von Neumann limit when n ! 1, the non-universal

piece is given by the geodesic length in BTZ black hole [6, 7]. Let V denote the subsystem,

and also v1 and v2 denote the endpoints of V . Here, v1 > v2. The non-universal piece of

entanglement entropy for the reduced density matrix associated with V is holographically

given by
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(2.16)

Double intervals

Let us turn to the analysis on the non-universal piece of the entanglement entropy for the

double intervals. The entanglement entropy of the states considered in this paper has to

satisfy two conditions: (1) If V is the total Hilbert space, V = H1[H2, then the entanglement

entropy for V is zero; (2) If V is H1 or H2, the one for V is thermal entropy, SV=Hi=1,2 =

Sthermal. The non-universal piece satisfying these conditions is given by [8]3
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where Sdis is determined by the length of geodesic that connects the endpoints of intervals at

the same Euclidean time slices, while Scon is determined by that of intervals at the di↵erent

Euclidean time-slices. The some details of Sdis and Scon are reported in Appendix B.1.

The temporal and spatial locations, ⌧
New

x,✏,↵
and X

New

x,✏,↵
, of endpoints are defined as
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1.2 Results on present paper

• Setup.1:

– Bipartite (operator) mutual information: Let us take the subsystems, A and B1,

to be the sub-regions of H2 and H1, respectively. Then, define the mutual infor-

mation as the linear combination of entanglement entropies associated with A, B1

, and A [ B1,

IA,B1 = SA + SB1 � SA[B1 , (1.1)

where A [ B denotes the union of A and B. For A including x = X
1

f
, IA,B1

decreases with t1, upto t1,⇤, and then increases with tt1 , saturating at the value

that is proportional to the number of Bell pairs shared in A and B at t1 = 0.

Here, t1,⇤ may depend on the sizes of A and B1, the system size, and �.

– Tripartite (operator) mutual information: Let us divide H1 into B1 and B2. Take

A and B1 to be subsystems of H2 and H1 including x = X
1

f
, and then define the

tripartite (operator) mutual information as

IA,B1,B2 = IA,B1 + IA,B2 � IA,B1[B2 . (1.2)

For large t1, IA,B1,B2 vanishes. A possible interpretation for this t1-dependence

of IA,B1,B2 is that the Bell pairs initially shared by A and B1 still remains in the

large t1 region.

• Setup.2:

– Bipartite (operator) mutual information: Let us take A and B1 to be the sub-

regions of H2 and H1 including x = X
1

f
, respectively. For large t0, IA,B1 at t1 = 0

vanishes, and then increases with t1, saturating at the value that is proportional

to he number of Bell pairs shared in A and B at t0 = 0 and t1 = 0. One possible

interpretation for this behavior of IA,B1 is that these Bell pairs scrambled under

the evolution by H0 is retrieved from A [ B1 under the SSD time-evolution.

– Tripartite (operator) mutual information: During the evolution by H0, IA,B1,B2

decreasing, saturating at the negative value that is proportional to the number of

Bell pairs initially shared in A and B1. Subsequently, the system unitarily evolves

according to the equation of motion given by HSSD. During this time-evolution,

IA,B1,B2 increases with t1, saturating at zero.

We can see from the behaviors of IA,B and IA,B1,B2 that one can retrieves the Bell pairs

scrambled by H0 during the evolution by HSSD.

• Setup.3:

– Bipartite (operator) mutual information: Let us take A and B1 to be the sub-

regions of H2 and H1, respectively.
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Figure 7: A sketch of the emergence and the time-evolution of the two B.H.-like excitations.

illustrate the t0-dependence of IA,B for various t1. In (A) and (C), in the large t1-regime, the

t0-dependence of is approximated by

For (A) IA,B ⇡
(

c⇡lA

3✏
for (n + 1)L � Y1 > t0 > nL � Y2

0 for (n + 1)L � Y2 > t0 > (n + 1)L � Y1,

,

For (C) IA,B ⇡

8
>><

>>:

0 for (n + 1) L � Y1 > t0 > nL � Y2

c⇡lA

3✏
for nL + Y1 > t0 > (n + 1) L � Y1

0 for (n + 1)L � Y2 > t0 > nL + Y1

.

(5.6)

The dashed lines in Fig. 8 illustrate this asymptotic behavior. In (A) and (C), for the large

t1-regime, the t0-dependence of IA,B is periodic with L. In (A) and (C), there are the t0-

regimes where both B.H.-like excitations are in B, while in (B), there are no t0-regimes where

both B.H.-like excitations are in B. In the t0-regimes where both B.H.-like excitations are

in B, IA,B is approximated by c⇡lA

3✏
.

5.2.2 Double intervals

Now, let us look closely at the t0-dependence of IA,B when B is given by a union of symmetric

double intervals, B1 and B2, that are defined by

B1 =

⇢
x

����L > L � Y1 > x > L � Y2 >
L

2

�
, B2 =

⇢
x

����
L

2
> Y1 > x > Y2 > 0

�
, (5.7)

where L

2
> Y1 > Y2 > 0. In Fig. 9, the positions of the edges of the subsystems are

Y1 > Y2 > X2 > X1 > 0. In this case, the value of IA,B with the small t1 is practically zero.
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Figure 7: A sketch of the emergence and the time-evolution of the two B.H.-like excitations.

illustrate the t0-dependence of IA,B for various t1. In (A) and (C), in the large t1-regime, the

t0-dependence of is approximated by
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The dashed lines in Fig. 8 illustrate this asymptotic behavior. In (A) and (C), for the large

t1-regime, the t0-dependence of IA,B is periodic with L. In (A) and (C), there are the t0-

regimes where both B.H.-like excitations are in B, while in (B), there are no t0-regimes where

both B.H.-like excitations are in B. In the t0-regimes where both B.H.-like excitations are

in B, IA,B is approximated by c⇡lA

3✏
.

5.2.2 Double intervals

Now, let us look closely at the t0-dependence of IA,B when B is given by a union of symmetric

double intervals, B1 and B2, that are defined by

B1 =

⇢
x

����L > L � Y1 > x > L � Y2 >
L

2

�
, B2 =

⇢
x
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L

2
> Y1 > x > Y2 > 0
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, (5.7)

where L

2
> Y1 > Y2 > 0. In Fig. 9, the positions of the edges of the subsystems are

Y1 > Y2 > X2 > X1 > 0. In this case, the value of IA,B with the small t1 is practically zero.
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illustrate the t0-dependence of IA,B for various t1. In (A) and (C), in the large t1-regime, the

t0-dependence of is approximated by
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(5.6)

The dashed lines in Fig. 8 illustrate this asymptotic behavior. In (A) and (C), for the large

t1-regime, the t0-dependence of IA,B is periodic with L. In (A) and (C), there are the t0-

regimes where both B.H.-like excitations are in B, while in (B), there are no t0-regimes where

both B.H.-like excitations are in B. In the t0-regimes where both B.H.-like excitations are

in B, IA,B is approximated by c⇡lA

3✏
.

5.2.2 Double intervals

Now, let us look closely at the t0-dependence of IA,B when B is given by a union of symmetric

double intervals, B1 and B2, that are defined by

B1 =

⇢
x

����L > L � Y1 > x > L � Y2 >
L

2

�
, B2 =

⇢
x

����
L

2
> Y1 > x > Y2 > 0
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, (5.7)

where L

2
> Y1 > Y2 > 0. In Fig. 9, the positions of the edges of the subsystems are

Y1 > Y2 > X2 > X1 > 0. In this case, the value of IA,B with the small t1 is practically zero.
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B does not include x=0 or x=L/2, then mutual 
information is approximately zero.

(a) IA,B with the small t1 in

(A).

(b) IA,B with the large t1 in

(A).

(c) IA,B with the large t1 in

(C).

Figure 8: The t0-dependence of IA,B of (2.8) for various t1 as the function of t0. For simplicity,

we take lA to be the same as lB. In (a), we show the t0-dependence of IA,B with t1 = 10, 1000

for (A). In (b), the solid line illustrates that of IA,B with t1 = 106 for (A), and the dashed

line illustrates the asymptotic behavior in (5.6). In (c), the solid line illustrates that of IA,B

with t1 = 106 for (C), and the dashed line illustrates the asymptotic behavior in (5.6).

The t0-dependence of IA,B with the large t1 is periodic with L. The asymptotic t0-dependence

of IA,B=B1[B2 in the large t1 limit is given by

IA,B1[B2 ⇡

8
>>>><

>>>>:

0 nL + Y2 > t0 > nL � Y2

c⇡lA

3✏
nL + Y1 > t0 > nL + Y2

0 (n + 1)L � Y1 > t0 > nL + Y1

c⇡lA

3✏
(n + 1)L � Y2 > t0 > (n + 1)L � Y1

. (5.8)

In this case, there are the t0-regimes where both the black-hole-like excitations can exist in

B = B1 [ B2. In these t0-regimes, the value of IA,B=B1[B2 is approximated by c⇡lA

3✏
.

5.3 Tripartite mutual information

Now, we consider the t0-dependence of TMI in the large t1-regime. Define local TMI for

(5.7) as

IA,B1,B2 = IA,B1 + IA,B2 � IA,B1[B2 , (5.9)

where A denotes the subsystem of H2. In the large t1-regime, IA,Bi=1,2 is approximated

by zero, while the t0-dependence of IA,B=B1[B2 is given by (5.8). The value of IA,B1,B2 in

(5.9) in the large t1-regime is zero in the t0-regimes where nL + Y2 > t0 > nL � Y2 or

(n + 1)L � Y1 > t0 > nL + Y1, while it is approximated by � c⇡lA

3✏
in the t0-regimes where

nL + Y1 > t0 > nL + Y2 or (n + 1)L � Y2 > t0 > (n + 1)L � Y1. Now, define global TMI as

IA,B,B3 = IA,B + IA,B3 � IA,B[B3 . (5.10)

This global TMI is stationary constant value and zero. One possible interpretation for the

t0-dependence of local and global TMI is that when two B.H.-like excitations are in B, the

Bell pairs initially shared by A and H1 may be locally-hidden in B, while there may be no

Bell pairs locally-hidden in H1.
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There are time-regimes 
where a non-local correlation 
shared by three parties exists.

Summary 3: Genuine tripartite entanglement



Let us divide          into      ,      , and the complement to them.
denotes the subsystem of       . 

square of N 2 guarantees that hTFD|TFDi = 1. Then, we unitarily evolve with Möbius/SS

deformed Hamiltonian. The time evolution operator acting on this thermofield double state

is defined as

UMöbius/SSD = e
�it1H

1
Möbius/SSD ⌦ 12, (2.4)

where H
1

Möbius/SSD
and 12 denote the Möbius/SS deformed Hamiltonian acting on H1, and

identity operator on H2, respectively.

System.2: We start from an excited state which is defined as

| (t0)i =
⇣
e

�iH
1
0 t0 ⌦ 12

⌘
|TFDi , (2.5)

and then evolve it with the SSD Hamiltonian acting on only H1. Under this evolution, the

system is in the state given by

| (t1, t0)i =
⇣
e

�iH
1
SSDt1 ⌦ 12

⌘
| (t0)i . (2.6)

System.3: Let us start from an excited state defined as

|�(t1)i =
⇣
e

�iH
1
SSDt1 ⌦ 12

⌘
|TFDi , (2.7)

and then evolve it with the un-deformed Hamiltonian acting on only H1. Under this evolu-

tion, the system is in the state given by

|�(t1, t0)i =
⇣
e

�iH
1
0 t0 ⌦ 12

⌘
|�(t1)i . (2.8)

2.3 Entanglement entropies in the twist operator formalism

To employ the path-integral formalism suited to analytic computation, let us define Euclidean

density operators as

⇢E,↵=0,1,2,3 = N 2

E

X

a,b

e
�✏(Ea+Eb)

⇣
U

1

E,↵=0,1,2,3
|ai hb|

1
Ũ

1

E↵=0,1,2,3
⌦ |a⇤i hb⇤|

2

⌘
, (2.9)

where the Euclidean normalization constant N �2

E
= tre�2✏H guarantees that tr⇢E,↵ = 1.

These density operators may be the analytic-continued ones in imaginary time corresponding

to the ones defined in Section 2.2. The Euclidean evolution operators are defined as

U
1

E,↵
=

8
>>>><

>>>>:

e
�H

1
Möbius⌧1 ↵ = 0

e
�H

1
SSD⌧1e

�H
1
⌧0 ↵ = 1

e
�H

1
⌧0e

�H
1
SSD⌧1 ↵ = 2

e
�H

1
SCD⌧2e

�H
1
SSD⌧1 ↵ = 3

, Ũ
1

E,↵
=

8
>>>><

>>>>:

e
H

1
Möbius⌧1 ↵ = 0

e
H

1
⌧0e

H
1
SSD⌧1 ↵ = 1

e
H

1
SSD⌧1e

H
1
⌧0 ↵ = 2

e
H

1
SSD⌧1e

H
1
SCD⌧2 ↵ = 3

. (2.10)

Divide the system into the subsystem V and V , the complement to it, and then define the

reduce Euclidean density operators for V as ⇢E,↵;V = trV⇢E,↵. Let A, B, and A [ B denote
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illustrate the t0-dependence of IA,B for various t1. In (A) and (C), in the large t1-regime, the
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The dashed lines in Fig. 8 illustrate this asymptotic behavior. In (A) and (C), for the large

t1-regime, the t0-dependence of IA,B is periodic with L. In (A) and (C), there are the t0-

regimes where both B.H.-like excitations are in B, while in (B), there are no t0-regimes where

both B.H.-like excitations are in B. In the t0-regimes where both B.H.-like excitations are

in B, IA,B is approximated by c⇡lA

3✏
.

5.2.2 Double intervals

Now, let us look closely at the t0-dependence of IA,B when B is given by a union of symmetric

double intervals, B1 and B2, that are defined by

B1 =

⇢
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����L > L � Y1 > x > L � Y2 >
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2
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⇢
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where L

2
> Y1 > Y2 > 0. In Fig. 9, the positions of the edges of the subsystems are

Y1 > Y2 > X2 > X1 > 0. In this case, the value of IA,B with the small t1 is practically zero.
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The dashed lines in Fig. 8 illustrate this asymptotic behavior. In (A) and (C), for the large
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where L
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> Y1 > Y2 > 0. In Fig. 9, the positions of the edges of the subsystems are

Y1 > Y2 > X2 > X1 > 0. In this case, the value of IA,B with the small t1 is practically zero.
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1.2 Results on present paper

• Setup.1:

– Bipartite (operator) mutual information: Let us take the subsystems, A and B1,

to be the sub-regions of H2 and H1, respectively. Then, define the mutual infor-

mation as the linear combination of entanglement entropies associated with A, B1

, and A [ B1,

IA,B1 = SA + SB1 � SA[B1 , (1.1)

where A [ B denotes the union of A and B. For A including x = X
1

f
, IA,B1

decreases with t1, upto t1,⇤, and then increases with tt1 , saturating at the value

that is proportional to the number of Bell pairs shared in A and B at t1 = 0.

Here, t1,⇤ may depend on the sizes of A and B1, the system size, and �.

– Tripartite (operator) mutual information: Let us divide H1 into B1 and B2. Take

A and B1 to be subsystems of H2 and H1 including x = X
1

f
, and then define the

tripartite (operator) mutual information as

IA,B1,B2 = IA,B1 + IA,B2 � IA,B1[B2 . (1.2)

For large t1, IA,B1,B2 vanishes. A possible interpretation for this t1-dependence

of IA,B1,B2 is that the Bell pairs initially shared by A and B1 still remains in the

large t1 region.

• Setup.2:

– Bipartite (operator) mutual information: Let us take A and B1 to be the sub-

regions of H2 and H1 including x = X
1

f
, respectively. For large t0, IA,B1 at t1 = 0

vanishes, and then increases with t1, saturating at the value that is proportional

to he number of Bell pairs shared in A and B at t0 = 0 and t1 = 0. One possible

interpretation for this behavior of IA,B1 is that these Bell pairs scrambled under

the evolution by H0 is retrieved from A [ B1 under the SSD time-evolution.

– Tripartite (operator) mutual information: During the evolution by H0, IA,B1,B2

decreasing, saturating at the negative value that is proportional to the number of

Bell pairs initially shared in A and B1. Subsequently, the system unitarily evolves

according to the equation of motion given by HSSD. During this time-evolution,

IA,B1,B2 increases with t1, saturating at zero.

We can see from the behaviors of IA,B and IA,B1,B2 that one can retrieves the Bell pairs

scrambled by H0 during the evolution by HSSD.

• Setup.3:

– Bipartite (operator) mutual information: Let us take A and B1 to be the sub-

regions of H2 and H1, respectively.
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Here, we present the non-universal piece of the entanglement entropy for the single interval
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Double intervals

Let us turn to the analysis on the non-universal piece of the entanglement entropy for the

double intervals. The entanglement entropy of the states considered in this paper has to

satisfy two conditions: (1) If V is the total Hilbert space, V = H1[H2, then the entanglement

entropy for V is zero; (2) If V is H1 or H2, the one for V is thermal entropy, SV=Hi=1,2 =

Sthermal. The non-universal piece satisfying these conditions is given by [8]3
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where Sdis is determined by the length of geodesic that connects the endpoints of intervals at

the same Euclidean time slices, while Scon is determined by that of intervals at the di↵erent

Euclidean time-slices. The some details of Sdis and Scon are reported in Appendix B.1.
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to be the sub-regions of H2 and H1, respectively. Then, define the mutual infor-

mation as the linear combination of entanglement entropies associated with A, B1
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where A [ B denotes the union of A and B. For A including x = X
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decreases with t1, upto t1,⇤, and then increases with tt1 , saturating at the value
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Here, t1,⇤ may depend on the sizes of A and B1, the system size, and �.
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, and then define the

tripartite (operator) mutual information as
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For large t1, IA,B1,B2 vanishes. A possible interpretation for this t1-dependence

of IA,B1,B2 is that the Bell pairs initially shared by A and B1 still remains in the

large t1 region.

• Setup.2:

– Bipartite (operator) mutual information: Let us take A and B1 to be the sub-

regions of H2 and H1 including x = X
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, respectively. For large t0, IA,B1 at t1 = 0

vanishes, and then increases with t1, saturating at the value that is proportional

to he number of Bell pairs shared in A and B at t0 = 0 and t1 = 0. One possible

interpretation for this behavior of IA,B1 is that these Bell pairs scrambled under

the evolution by H0 is retrieved from A [ B1 under the SSD time-evolution.

– Tripartite (operator) mutual information: During the evolution by H0, IA,B1,B2

decreasing, saturating at the negative value that is proportional to the number of

Bell pairs initially shared in A and B1. Subsequently, the system unitarily evolves

according to the equation of motion given by HSSD. During this time-evolution,

IA,B1,B2 increases with t1, saturating at zero.

We can see from the behaviors of IA,B and IA,B1,B2 that one can retrieves the Bell pairs

scrambled by H0 during the evolution by HSSD.

• Setup.3:

– Bipartite (operator) mutual information: Let us take A and B1 to be the sub-
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Figure 7: A sketch of the emergence and the time-evolution of the two B.H.-like excitations.

illustrate the t0-dependence of IA,B for various t1. In (A) and (C), in the large t1-regime, the

t0-dependence of is approximated by
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The dashed lines in Fig. 8 illustrate this asymptotic behavior. In (A) and (C), for the large

t1-regime, the t0-dependence of IA,B is periodic with L. In (A) and (C), there are the t0-

regimes where both B.H.-like excitations are in B, while in (B), there are no t0-regimes where

both B.H.-like excitations are in B. In the t0-regimes where both B.H.-like excitations are

in B, IA,B is approximated by c⇡lA

3✏
.

5.2.2 Double intervals

Now, let us look closely at the t0-dependence of IA,B when B is given by a union of symmetric

double intervals, B1 and B2, that are defined by

B1 =

⇢
x

����L > L � Y1 > x > L � Y2 >
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2
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, B2 =

⇢
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> Y1 > x > Y2 > 0
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, (5.7)

where L

2
> Y1 > Y2 > 0. In Fig. 9, the positions of the edges of the subsystems are

Y1 > Y2 > X2 > X1 > 0. In this case, the value of IA,B with the small t1 is practically zero.
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The dashed lines in Fig. 8 illustrate this asymptotic behavior. In (A) and (C), for the large

t1-regime, the t0-dependence of IA,B is periodic with L. In (A) and (C), there are the t0-
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t1-regime, the t0-dependence of IA,B is periodic with L. In (A) and (C), there are the t0-
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Now, let us look closely at the t0-dependence of IA,B when B is given by a union of symmetric

double intervals, B1 and B2, that are defined by

B1 =

⇢
x

����L > L � Y1 > x > L � Y2 >
L

2

�
, B2 =

⇢
x

����
L

2
> Y1 > x > Y2 > 0

�
, (5.7)

where L

2
> Y1 > Y2 > 0. In Fig. 9, the positions of the edges of the subsystems are

Y1 > Y2 > X2 > X1 > 0. In this case, the value of IA,B with the small t1 is practically zero.
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B does not include x=0 or x=L/2, then mutual 
information is approximately zero.

(a) IA,B with the small t1 in

(A).

(b) IA,B with the large t1 in

(A).

(c) IA,B with the large t1 in

(C).

Figure 8: The t0-dependence of IA,B of (2.8) for various t1 as the function of t0. For simplicity,

we take lA to be the same as lB. In (a), we show the t0-dependence of IA,B with t1 = 10, 1000

for (A). In (b), the solid line illustrates that of IA,B with t1 = 106 for (A), and the dashed

line illustrates the asymptotic behavior in (5.6). In (c), the solid line illustrates that of IA,B

with t1 = 106 for (C), and the dashed line illustrates the asymptotic behavior in (5.6).

The t0-dependence of IA,B with the large t1 is periodic with L. The asymptotic t0-dependence

of IA,B=B1[B2 in the large t1 limit is given by

IA,B1[B2 ⇡

8
>>>><

>>>>:

0 nL + Y2 > t0 > nL � Y2

c⇡lA

3✏
nL + Y1 > t0 > nL + Y2

0 (n + 1)L � Y1 > t0 > nL + Y1

c⇡lA

3✏
(n + 1)L � Y2 > t0 > (n + 1)L � Y1

. (5.8)

In this case, there are the t0-regimes where both the black-hole-like excitations can exist in

B = B1 [ B2. In these t0-regimes, the value of IA,B=B1[B2 is approximated by c⇡lA

3✏
.

5.3 Tripartite mutual information

Now, we consider the t0-dependence of TMI in the large t1-regime. Define local TMI for

(5.7) as

IA,B1,B2 = IA,B1 + IA,B2 � IA,B1[B2 , (5.9)

where A denotes the subsystem of H2. In the large t1-regime, IA,Bi=1,2 is approximated

by zero, while the t0-dependence of IA,B=B1[B2 is given by (5.8). The value of IA,B1,B2 in

(5.9) in the large t1-regime is zero in the t0-regimes where nL + Y2 > t0 > nL � Y2 or

(n + 1)L � Y1 > t0 > nL + Y1, while it is approximated by � c⇡lA

3✏
in the t0-regimes where

nL + Y1 > t0 > nL + Y2 or (n + 1)L � Y2 > t0 > (n + 1)L � Y1. Now, define global TMI as

IA,B,B3 = IA,B + IA,B3 � IA,B[B3 . (5.10)

This global TMI is stationary constant value and zero. One possible interpretation for the

t0-dependence of local and global TMI is that when two B.H.-like excitations are in B, the

Bell pairs initially shared by A and H1 may be locally-hidden in B, while there may be no

Bell pairs locally-hidden in H1.
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Figure 10: The BMI IA,B1[B2 in the large t1 regime as a function of t0. The solid line

illustrates the t1-dependence of IA,B1[B2 for t1 = 102
L. In this figure, lB = lB1 + lB2 ,

lB1 = lB2 , PC,B1 = 3L

4
, and PC,B1 = L

4
. The center of A is x = X

f

1
. The dashed line illustrates

the t0-dependence of IA,B1[B2 in (5.5).

5.2.2 Double intervals

Let us now consider the case when B is given by a union of symmetric double intervals, B1

and B2, that are defined as

B1 =

⇢
x

����L > L � Y1 > x > L � Y2 >
L

2

�
, B2 =

⇢
x

����
L

2
> Y1 > x > Y2 > 0

�
, (5.4)

where L

2
> Y1 > Y2 > 0. In Fig. 10, we take Y1 > Y2 > X1 > X2 > 0. In this case, for

small t1, IA,B=B1[B2 is practically zero, while for the large t1, the t0-dependence of IA,B is

approximated by the following periodic function of t0 with L:

IA,B=B1[B2 ⇡

8
>>>><

>>>>:

0 nL + Y2 > t0 > nL � Y2

c⇡lA

3✏
nL + Y1 > t0 > nL + Y2

0 (n + 1)L � Y1 > t0 > nL + Y1

c⇡lA

3✏
(n + 1)L � Y2 > t0 > (n + 1)L � Y1

. (5.5)

In this case, there are t0 regimes where both the B.H.-like excitations are in B = B1 [ B2.

In these t0 regimes, the IA,B1[B2 is approximated by c⇡lA

3✏
.

5.3 Tripartite mutual information

Now, we consider the t0 dependence of TMI in the large t1 regime. Define local TMI for (5.4)

as

IA,B1,B2 = IA,B1 + IA,B2 � IA,B1[B2 , (5.6)

where A denotes the subsystem of H2. In the large t1 regime, IA,Bi=1,2 is approximated by

zero, while the t0-dependence of IA,B1[B2 is given by (5.5). The value of IA,B1,B2 in (5.6) in

the large t1 regime is zero for nL+Y2 > t0 > nL�Y2 or (n+ 1)L�Y1 > t0 > nL+Y1, while
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Summary 3: Genuine tripartite entanglement

There are time-regimes 
where a non-local correlation 
shared by three parties exists.
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1.2 Results on present paper

• Setup.1:

– Bipartite (operator) mutual information: Let us take the subsystems, A and B1,

to be the sub-regions of H2 and H1, respectively. Then, define the mutual infor-

mation as the linear combination of entanglement entropies associated with A, B1

, and A [ B1,

IA,B1 = SA + SB1 � SA[B1 , (1.1)

where A [ B denotes the union of A and B. For A including x = X
1

f
, IA,B1

decreases with t1, upto t1,⇤, and then increases with tt1 , saturating at the value

that is proportional to the number of Bell pairs shared in A and B at t1 = 0.

Here, t1,⇤ may depend on the sizes of A and B1, the system size, and �.

– Tripartite (operator) mutual information: Let us divide H1 into B1 and B2. Take

A and B1 to be subsystems of H2 and H1 including x = X
1

f
, and then define the

tripartite (operator) mutual information as

IA,B1,B2 = IA,B1 + IA,B2 � IA,B1[B2 . (1.2)

For large t1, IA,B1,B2 vanishes. A possible interpretation for this t1-dependence

of IA,B1,B2 is that the Bell pairs initially shared by A and B1 still remains in the

large t1 region.

• Setup.2:

– Bipartite (operator) mutual information: Let us take A and B1 to be the sub-

regions of H2 and H1 including x = X
1

f
, respectively. For large t0, IA,B1 at t1 = 0

vanishes, and then increases with t1, saturating at the value that is proportional

to he number of Bell pairs shared in A and B at t0 = 0 and t1 = 0. One possible

interpretation for this behavior of IA,B1 is that these Bell pairs scrambled under

the evolution by H0 is retrieved from A [ B1 under the SSD time-evolution.

– Tripartite (operator) mutual information: During the evolution by H0, IA,B1,B2

decreasing, saturating at the negative value that is proportional to the number of

Bell pairs initially shared in A and B1. Subsequently, the system unitarily evolves

according to the equation of motion given by HSSD. During this time-evolution,

IA,B1,B2 increases with t1, saturating at zero.

We can see from the behaviors of IA,B and IA,B1,B2 that one can retrieves the Bell pairs

scrambled by H0 during the evolution by HSSD.

• Setup.3:

– Bipartite (operator) mutual information: Let us take A and B1 to be the sub-

regions of H2 and H1, respectively.
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Summary 3: Quasiparticle picture 
The system considered  is in:|Ψ(t)⟩ = e−itH1

inh |TFD⟩ .x = X1
f , IA,B = SA + SB − SA∪B

|Ψ(t0, t1)⟩ =
(
e−it0H1

0 ⊗ 1H2

)(
e−it1H1

SSD ⊗ 1H2

) 1√
tre−2ϵH0

∑

a

e
−ϵ
2 (H1

0+H2
0) |a⟩H1

⊗ |a⟩H2

(0.4)

4

During the SSD time evolution, 
quasiparticles on     move to the 
fixed point and accumulate there.

During the uniform time evolution, 
the groups of quasiparticles move
left and right at the speed of light. 

square of N 2 guarantees that hTFD|TFDi = 1. Then, we unitarily evolve with Möbius/SS

deformed Hamiltonian. The time evolution operator acting on this thermofield double state

is defined as

UMöbius/SSD = e
�it1H

1
Möbius/SSD ⌦ 12, (2.4)

where H
1

Möbius/SSD
and 12 denote the Möbius/SS deformed Hamiltonian acting on H1, and

identity operator on H2, respectively.

System.2: We start from an excited state which is defined as

| (t0)i =
⇣
e

�iH
1
0 t0 ⌦ 12

⌘
|TFDi , (2.5)

and then evolve it with the SSD Hamiltonian acting on only H1. Under this evolution, the

system is in the state given by

| (t1, t0)i =
⇣
e

�iH
1
SSDt1 ⌦ 12

⌘
| (t0)i . (2.6)

System.3: Let us start from an excited state defined as

|�(t1)i =
⇣
e

�iH
1
SSDt1 ⌦ 12

⌘
|TFDi , (2.7)

and then evolve it with the un-deformed Hamiltonian acting on only H1. Under this evolu-

tion, the system is in the state given by

|�(t1, t0)i =
⇣
e

�iH
1
0 t0 ⌦ 12

⌘
|�(t1)i . (2.8)

2.3 Entanglement entropies in the twist operator formalism

To employ the path-integral formalism suited to analytic computation, let us define Euclidean

density operators as

⇢E,↵=0,1,2,3 = N 2

E

X

a,b

e
�✏(Ea+Eb)

⇣
U

1

E,↵=0,1,2,3
|ai hb|

1
Ũ

1

E↵=0,1,2,3
⌦ |a⇤i hb⇤|

2

⌘
, (2.9)

where the Euclidean normalization constant N �2

E
= tre�2✏H guarantees that tr⇢E,↵ = 1.

These density operators may be the analytic-continued ones in imaginary time corresponding

to the ones defined in Section 2.2. The Euclidean evolution operators are defined as

U
1

E,↵
=

8
>>>><

>>>>:

e
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1
Möbius⌧1 ↵ = 0
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Divide the system into the subsystem V and V , the complement to it, and then define the

reduce Euclidean density operators for V as ⇢E,↵;V = trV⇢E,↵. Let A, B, and A [ B denote
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In 2d free fermion and holographic CFT,  
there are the time intervals where the all 
quasiparticles on       are in      
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IA,Bi=1,2 ≥ 0, IB1,B2 ≥ 0.IA,B1∪B2 ≥ 0

(0.4)

4

|Ψ(t)⟩ = e−itH1
inh |TFD⟩ .x = X1

f , IA,B = SA + SB − SA∪B

|Ψ(t0, t1)⟩ =
(
e−it0H1

0 ⊗ 1H2

)(
e−it1H1

SSD ⊗ 1H2

) 1√
tre−2ϵH0

∑

a

e
−ϵ
2 (H1

0+H2
0) |a⟩H1

⊗ |a⟩H2

ds2 = −dt2 + dx2 ds2 = −f 2(x)dt2 + dx2

dx

dt
= f(x)

dx

dt
(x ≈ 0) ≈ 0 t0 ≫ O(L) IA,B ≈ 0

IA,Bi=1,2 ≥ 0, IB1,B2 ≥ 0.IA,B1∪B2 ≥ 0

(0.4)

4

square of N 2 guarantees that hTFD|TFDi = 1. Then, we unitarily evolve with Möbius/SS
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where the Euclidean normalization constant N �2

E
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Divide the system into the subsystem V and V , the complement to it, and then define the

reduce Euclidean density operators for V as ⇢E,↵;V = trV⇢E,↵. Let A, B, and A [ B denote
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In these time intervals,



Result 3: Tripartite entanglement
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Figure 7: A sketch of the emergence and the time-evolution of the two B.H.-like excitations.

illustrate the t0-dependence of IA,B for various t1. In (A) and (C), in the large t1-regime, the

t0-dependence of is approximated by

For (A) IA,B ⇡
(

c⇡lA
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(5.6)

The dashed lines in Fig. 8 illustrate this asymptotic behavior. In (A) and (C), for the large

t1-regime, the t0-dependence of IA,B is periodic with L. In (A) and (C), there are the t0-

regimes where both B.H.-like excitations are in B, while in (B), there are no t0-regimes where

both B.H.-like excitations are in B. In the t0-regimes where both B.H.-like excitations are

in B, IA,B is approximated by c⇡lA

3✏
.

5.2.2 Double intervals

Now, let us look closely at the t0-dependence of IA,B when B is given by a union of symmetric

double intervals, B1 and B2, that are defined by

B1 =

⇢
x

����L > L � Y1 > x > L � Y2 >
L

2

�
, B2 =

⇢
x

����
L

2
> Y1 > x > Y2 > 0

�
, (5.7)

where L

2
> Y1 > Y2 > 0. In Fig. 9, the positions of the edges of the subsystems are

Y1 > Y2 > X2 > X1 > 0. In this case, the value of IA,B with the small t1 is practically zero.
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The dashed lines in Fig. 8 illustrate this asymptotic behavior. In (A) and (C), for the large

t1-regime, the t0-dependence of IA,B is periodic with L. In (A) and (C), there are the t0-

regimes where both B.H.-like excitations are in B, while in (B), there are no t0-regimes where

both B.H.-like excitations are in B. In the t0-regimes where both B.H.-like excitations are

in B, IA,B is approximated by c⇡lA

3✏
.

5.2.2 Double intervals

Now, let us look closely at the t0-dependence of IA,B when B is given by a union of symmetric

double intervals, B1 and B2, that are defined by

B1 =

⇢
x

����L > L � Y1 > x > L � Y2 >
L

2

�
, B2 =

⇢
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2
> Y1 > x > Y2 > 0
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, (5.7)

where L

2
> Y1 > Y2 > 0. In Fig. 9, the positions of the edges of the subsystems are

Y1 > Y2 > X2 > X1 > 0. In this case, the value of IA,B with the small t1 is practically zero.
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1.2 Results on present paper

• Setup.1:

– Bipartite (operator) mutual information: Let us take the subsystems, A and B1,

to be the sub-regions of H2 and H1, respectively. Then, define the mutual infor-

mation as the linear combination of entanglement entropies associated with A, B1

, and A [ B1,

IA,B1 = SA + SB1 � SA[B1 , (1.1)

where A [ B denotes the union of A and B. For A including x = X
1

f
, IA,B1

decreases with t1, upto t1,⇤, and then increases with tt1 , saturating at the value

that is proportional to the number of Bell pairs shared in A and B at t1 = 0.

Here, t1,⇤ may depend on the sizes of A and B1, the system size, and �.

– Tripartite (operator) mutual information: Let us divide H1 into B1 and B2. Take

A and B1 to be subsystems of H2 and H1 including x = X
1

f
, and then define the

tripartite (operator) mutual information as

IA,B1,B2 = IA,B1 + IA,B2 � IA,B1[B2 . (1.2)

For large t1, IA,B1,B2 vanishes. A possible interpretation for this t1-dependence

of IA,B1,B2 is that the Bell pairs initially shared by A and B1 still remains in the

large t1 region.

• Setup.2:

– Bipartite (operator) mutual information: Let us take A and B1 to be the sub-

regions of H2 and H1 including x = X
1

f
, respectively. For large t0, IA,B1 at t1 = 0

vanishes, and then increases with t1, saturating at the value that is proportional

to he number of Bell pairs shared in A and B at t0 = 0 and t1 = 0. One possible

interpretation for this behavior of IA,B1 is that these Bell pairs scrambled under

the evolution by H0 is retrieved from A [ B1 under the SSD time-evolution.

– Tripartite (operator) mutual information: During the evolution by H0, IA,B1,B2

decreasing, saturating at the negative value that is proportional to the number of

Bell pairs initially shared in A and B1. Subsequently, the system unitarily evolves

according to the equation of motion given by HSSD. During this time-evolution,

IA,B1,B2 increases with t1, saturating at zero.

We can see from the behaviors of IA,B and IA,B1,B2 that one can retrieves the Bell pairs

scrambled by H0 during the evolution by HSSD.

• Setup.3:

– Bipartite (operator) mutual information: Let us take A and B1 to be the sub-

regions of H2 and H1, respectively.

3

Single interval

Here, we present the non-universal piece of the entanglement entropy for the single interval

in the coarse-grained region. In this region, the gravity dual of the system on the torus is

BTZ black hole [5]. Therefore, in the von Neumann limit when n ! 1, the non-universal

piece is given by the geodesic length in BTZ black hole [6, 7]. Let V denote the subsystem,

and also v1 and v2 denote the endpoints of V . Here, v1 > v2. The non-universal piece of

entanglement entropy for the reduced density matrix associated with V is holographically

given by

lim
n!1
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log
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>>>>><
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i
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f
= 0 /2 V

.

(2.16)

Double intervals

Let us turn to the analysis on the non-universal piece of the entanglement entropy for the

double intervals. The entanglement entropy of the states considered in this paper has to

satisfy two conditions: (1) If V is the total Hilbert space, V = H1[H2, then the entanglement

entropy for V is zero; (2) If V is H1 or H2, the one for V is thermal entropy, SV=Hi=1,2 =

Sthermal. The non-universal piece satisfying these conditions is given by [8]3

lim
n!1

1

1 � n
log

⌦
�n

�
w

New
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, w
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�
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�
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, w
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�
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↵
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⇡ 2c

3
log

✓
2✏

⇡

◆
+ Min [Sdis, Scon] ,

(2.17)

where Sdis is determined by the length of geodesic that connects the endpoints of intervals at

the same Euclidean time slices, while Scon is determined by that of intervals at the di↵erent

Euclidean time-slices. The some details of Sdis and Scon are reported in Appendix B.1.

The temporal and spatial locations, ⌧
New

x,✏,↵
and X

New

x,✏,↵
, of endpoints are defined as

⌧
New

x,✏,↵
= Im

"
w

New

x,✏,↵
+ w

New

x,✏,↵

2

#
, X

New

x,✏,↵
=

w
New
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� w
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2i
. (2.18)
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Figure 7: A sketch of the emergence and the time-evolution of the two B.H.-like excitations.

illustrate the t0-dependence of IA,B for various t1. In (A) and (C), in the large t1-regime, the

t0-dependence of is approximated by

For (A) IA,B ⇡
(

c⇡lA

3✏
for (n + 1)L � Y1 > t0 > nL � Y2

0 for (n + 1)L � Y2 > t0 > (n + 1)L � Y1,

,

For (C) IA,B ⇡
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0 for (n + 1) L � Y1 > t0 > nL � Y2

c⇡lA

3✏
for nL + Y1 > t0 > (n + 1) L � Y1

0 for (n + 1)L � Y2 > t0 > nL + Y1

.

(5.6)

The dashed lines in Fig. 8 illustrate this asymptotic behavior. In (A) and (C), for the large

t1-regime, the t0-dependence of IA,B is periodic with L. In (A) and (C), there are the t0-

regimes where both B.H.-like excitations are in B, while in (B), there are no t0-regimes where

both B.H.-like excitations are in B. In the t0-regimes where both B.H.-like excitations are

in B, IA,B is approximated by c⇡lA

3✏
.

5.2.2 Double intervals

Now, let us look closely at the t0-dependence of IA,B when B is given by a union of symmetric

double intervals, B1 and B2, that are defined by

B1 =

⇢
x

����L > L � Y1 > x > L � Y2 >
L

2

�
, B2 =

⇢
x

����
L

2
> Y1 > x > Y2 > 0

�
, (5.7)

where L

2
> Y1 > Y2 > 0. In Fig. 9, the positions of the edges of the subsystems are

Y1 > Y2 > X2 > X1 > 0. In this case, the value of IA,B with the small t1 is practically zero.
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Figure 7: A sketch of the emergence and the time-evolution of the two B.H.-like excitations.

illustrate the t0-dependence of IA,B for various t1. In (A) and (C), in the large t1-regime, the

t0-dependence of is approximated by
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(5.6)

The dashed lines in Fig. 8 illustrate this asymptotic behavior. In (A) and (C), for the large

t1-regime, the t0-dependence of IA,B is periodic with L. In (A) and (C), there are the t0-

regimes where both B.H.-like excitations are in B, while in (B), there are no t0-regimes where

both B.H.-like excitations are in B. In the t0-regimes where both B.H.-like excitations are

in B, IA,B is approximated by c⇡lA

3✏
.

5.2.2 Double intervals

Now, let us look closely at the t0-dependence of IA,B when B is given by a union of symmetric

double intervals, B1 and B2, that are defined by

B1 =

⇢
x

����L > L � Y1 > x > L � Y2 >
L

2
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⇢
x

����
L

2
> Y1 > x > Y2 > 0
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, (5.7)

where L

2
> Y1 > Y2 > 0. In Fig. 9, the positions of the edges of the subsystems are

Y1 > Y2 > X2 > X1 > 0. In this case, the value of IA,B with the small t1 is practically zero.
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illustrate the t0-dependence of IA,B for various t1. In (A) and (C), in the large t1-regime, the

t0-dependence of is approximated by
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(5.6)

The dashed lines in Fig. 8 illustrate this asymptotic behavior. In (A) and (C), for the large

t1-regime, the t0-dependence of IA,B is periodic with L. In (A) and (C), there are the t0-

regimes where both B.H.-like excitations are in B, while in (B), there are no t0-regimes where

both B.H.-like excitations are in B. In the t0-regimes where both B.H.-like excitations are

in B, IA,B is approximated by c⇡lA

3✏
.

5.2.2 Double intervals

Now, let us look closely at the t0-dependence of IA,B when B is given by a union of symmetric

double intervals, B1 and B2, that are defined by

B1 =

⇢
x

����L > L � Y1 > x > L � Y2 >
L

2

�
, B2 =

⇢
x
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> Y1 > x > Y2 > 0
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, (5.7)

where L

2
> Y1 > Y2 > 0. In Fig. 9, the positions of the edges of the subsystems are

Y1 > Y2 > X2 > X1 > 0. In this case, the value of IA,B with the small t1 is practically zero.
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(a) IA,B with the small t1 in

(A).

(b) IA,B with the large t1 in

(A).

(c) IA,B with the large t1 in

(C).

Figure 8: The t0-dependence of IA,B of (2.8) for various t1 as the function of t0. For simplicity,

we take lA to be the same as lB. In (a), we show the t0-dependence of IA,B with t1 = 10, 1000

for (A). In (b), the solid line illustrates that of IA,B with t1 = 106 for (A), and the dashed

line illustrates the asymptotic behavior in (5.6). In (c), the solid line illustrates that of IA,B

with t1 = 106 for (C), and the dashed line illustrates the asymptotic behavior in (5.6).

The t0-dependence of IA,B with the large t1 is periodic with L. The asymptotic t0-dependence

of IA,B=B1[B2 in the large t1 limit is given by

IA,B1[B2 ⇡

8
>>>><

>>>>:

0 nL + Y2 > t0 > nL � Y2

c⇡lA

3✏
nL + Y1 > t0 > nL + Y2

0 (n + 1)L � Y1 > t0 > nL + Y1

c⇡lA

3✏
(n + 1)L � Y2 > t0 > (n + 1)L � Y1

. (5.8)

In this case, there are the t0-regimes where both the black-hole-like excitations can exist in

B = B1 [ B2. In these t0-regimes, the value of IA,B=B1[B2 is approximated by c⇡lA

3✏
.

5.3 Tripartite mutual information

Now, we consider the t0-dependence of TMI in the large t1-regime. Define local TMI for

(5.7) as

IA,B1,B2 = IA,B1 + IA,B2 � IA,B1[B2 , (5.9)

where A denotes the subsystem of H2. In the large t1-regime, IA,Bi=1,2 is approximated

by zero, while the t0-dependence of IA,B=B1[B2 is given by (5.8). The value of IA,B1,B2 in

(5.9) in the large t1-regime is zero in the t0-regimes where nL + Y2 > t0 > nL � Y2 or

(n + 1)L � Y1 > t0 > nL + Y1, while it is approximated by � c⇡lA

3✏
in the t0-regimes where

nL + Y1 > t0 > nL + Y2 or (n + 1)L � Y2 > t0 > (n + 1)L � Y1. Now, define global TMI as

IA,B,B3 = IA,B + IA,B3 � IA,B[B3 . (5.10)

This global TMI is stationary constant value and zero. One possible interpretation for the

t0-dependence of local and global TMI is that when two B.H.-like excitations are in B, the

Bell pairs initially shared by A and H1 may be locally-hidden in B, while there may be no

Bell pairs locally-hidden in H1.

22

There are time-regimes 
where a non-local correlation 
shared by three parties exist.

Summary 3: Genuine tripartite entanglement

In 2d free fermion (no or weakly scrambling system.),

|Ψ(t)⟩ = e−itH1
inh |TFD⟩ .x = X1

f , IA,B = SA + SB − SA∪B

|Ψ(t0, t1)⟩ =
(
e−it0H1

0 ⊗ 1H2

)(
e−it1H1

SSD ⊗ 1H2

) 1√
tre−2ϵH0

∑

a

e
−ϵ
2 (H1

0+H2
0) |a⟩H1

⊗ |a⟩H2

ds2 = −dt2 + dx2 ds2 = −f 2(x)dt2 + dx2

dx

dt
= f(x)

dx

dt
(x ≈ 0) ≈ 0 t0 ≫ O(L) IA,B ≈ 0

IA,Bi=1,2 ≥ 0, IB1,B2 ≥ 0.

(0.4)
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Result 3: Tripartite entanglement

square of N 2 guarantees that hTFD|TFDi = 1. Then, we unitarily evolve with Möbius/SS

deformed Hamiltonian. The time evolution operator acting on this thermofield double state

is defined as

UMöbius/SSD = e
�it1H

1
Möbius/SSD ⌦ 12, (2.4)

where H
1

Möbius/SSD
and 12 denote the Möbius/SS deformed Hamiltonian acting on H1, and

identity operator on H2, respectively.

System.2: We start from an excited state which is defined as

| (t0)i =
⇣
e

�iH
1
0 t0 ⌦ 12

⌘
|TFDi , (2.5)

and then evolve it with the SSD Hamiltonian acting on only H1. Under this evolution, the

system is in the state given by

| (t1, t0)i =
⇣
e

�iH
1
SSDt1 ⌦ 12

⌘
| (t0)i . (2.6)

System.3: Let us start from an excited state defined as

|�(t1)i =
⇣
e

�iH
1
SSDt1 ⌦ 12

⌘
|TFDi , (2.7)

and then evolve it with the un-deformed Hamiltonian acting on only H1. Under this evolu-

tion, the system is in the state given by

|�(t1, t0)i =
⇣
e

�iH
1
0 t0 ⌦ 12
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|�(t1)i . (2.8)

2.3 Entanglement entropies in the twist operator formalism

To employ the path-integral formalism suited to analytic computation, let us define Euclidean

density operators as
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where the Euclidean normalization constant N �2

E
= tre�2✏H guarantees that tr⇢E,↵ = 1.

These density operators may be the analytic-continued ones in imaginary time corresponding

to the ones defined in Section 2.2. The Euclidean evolution operators are defined as
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Divide the system into the subsystem V and V , the complement to it, and then define the

reduce Euclidean density operators for V as ⇢E,↵;V = trV⇢E,↵. Let A, B, and A [ B denote
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UMöbius/SSD = e
�it1H

1
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Figure 7: A sketch of the emergence and the time-evolution of the two B.H.-like excitations.

illustrate the t0-dependence of IA,B for various t1. In (A) and (C), in the large t1-regime, the

t0-dependence of is approximated by

For (A) IA,B ⇡
(

c⇡lA

3✏
for (n + 1)L � Y1 > t0 > nL � Y2

0 for (n + 1)L � Y2 > t0 > (n + 1)L � Y1,

,

For (C) IA,B ⇡

8
>><

>>:

0 for (n + 1) L � Y1 > t0 > nL � Y2

c⇡lA

3✏
for nL + Y1 > t0 > (n + 1) L � Y1

0 for (n + 1)L � Y2 > t0 > nL + Y1

.

(5.6)

The dashed lines in Fig. 8 illustrate this asymptotic behavior. In (A) and (C), for the large

t1-regime, the t0-dependence of IA,B is periodic with L. In (A) and (C), there are the t0-

regimes where both B.H.-like excitations are in B, while in (B), there are no t0-regimes where

both B.H.-like excitations are in B. In the t0-regimes where both B.H.-like excitations are

in B, IA,B is approximated by c⇡lA

3✏
.

5.2.2 Double intervals

Now, let us look closely at the t0-dependence of IA,B when B is given by a union of symmetric

double intervals, B1 and B2, that are defined by

B1 =

⇢
x

����L > L � Y1 > x > L � Y2 >
L

2

�
, B2 =

⇢
x

����
L

2
> Y1 > x > Y2 > 0

�
, (5.7)

where L

2
> Y1 > Y2 > 0. In Fig. 9, the positions of the edges of the subsystems are

Y1 > Y2 > X2 > X1 > 0. In this case, the value of IA,B with the small t1 is practically zero.
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regimes where both B.H.-like excitations are in B, while in (B), there are no t0-regimes where

both B.H.-like excitations are in B. In the t0-regimes where both B.H.-like excitations are

in B, IA,B is approximated by c⇡lA

3✏
.

5.2.2 Double intervals

Now, let us look closely at the t0-dependence of IA,B when B is given by a union of symmetric

double intervals, B1 and B2, that are defined by

B1 =

⇢
x

����L > L � Y1 > x > L � Y2 >
L

2

�
, B2 =

⇢
x

����
L

2
> Y1 > x > Y2 > 0

�
, (5.7)

where L
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> Y1 > Y2 > 0. In Fig. 9, the positions of the edges of the subsystems are

Y1 > Y2 > X2 > X1 > 0. In this case, the value of IA,B with the small t1 is practically zero.
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1.2 Results on present paper

• Setup.1:

– Bipartite (operator) mutual information: Let us take the subsystems, A and B1,

to be the sub-regions of H2 and H1, respectively. Then, define the mutual infor-

mation as the linear combination of entanglement entropies associated with A, B1

, and A [ B1,

IA,B1 = SA + SB1 � SA[B1 , (1.1)

where A [ B denotes the union of A and B. For A including x = X
1

f
, IA,B1

decreases with t1, upto t1,⇤, and then increases with tt1 , saturating at the value

that is proportional to the number of Bell pairs shared in A and B at t1 = 0.

Here, t1,⇤ may depend on the sizes of A and B1, the system size, and �.

– Tripartite (operator) mutual information: Let us divide H1 into B1 and B2. Take

A and B1 to be subsystems of H2 and H1 including x = X
1

f
, and then define the

tripartite (operator) mutual information as

IA,B1,B2 = IA,B1 + IA,B2 � IA,B1[B2 . (1.2)

For large t1, IA,B1,B2 vanishes. A possible interpretation for this t1-dependence

of IA,B1,B2 is that the Bell pairs initially shared by A and B1 still remains in the

large t1 region.

• Setup.2:

– Bipartite (operator) mutual information: Let us take A and B1 to be the sub-

regions of H2 and H1 including x = X
1

f
, respectively. For large t0, IA,B1 at t1 = 0

vanishes, and then increases with t1, saturating at the value that is proportional

to he number of Bell pairs shared in A and B at t0 = 0 and t1 = 0. One possible

interpretation for this behavior of IA,B1 is that these Bell pairs scrambled under

the evolution by H0 is retrieved from A [ B1 under the SSD time-evolution.

– Tripartite (operator) mutual information: During the evolution by H0, IA,B1,B2

decreasing, saturating at the negative value that is proportional to the number of

Bell pairs initially shared in A and B1. Subsequently, the system unitarily evolves

according to the equation of motion given by HSSD. During this time-evolution,

IA,B1,B2 increases with t1, saturating at zero.

We can see from the behaviors of IA,B and IA,B1,B2 that one can retrieves the Bell pairs

scrambled by H0 during the evolution by HSSD.

• Setup.3:

– Bipartite (operator) mutual information: Let us take A and B1 to be the sub-

regions of H2 and H1, respectively.

3

Single interval

Here, we present the non-universal piece of the entanglement entropy for the single interval

in the coarse-grained region. In this region, the gravity dual of the system on the torus is

BTZ black hole [5]. Therefore, in the von Neumann limit when n ! 1, the non-universal

piece is given by the geodesic length in BTZ black hole [6, 7]. Let V denote the subsystem,

and also v1 and v2 denote the endpoints of V . Here, v1 > v2. The non-universal piece of

entanglement entropy for the reduced density matrix associated with V is holographically

given by

lim
n!1

1
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log

⌦
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>>>>><
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i
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f
= 0 /2 V

.

(2.16)

Double intervals

Let us turn to the analysis on the non-universal piece of the entanglement entropy for the

double intervals. The entanglement entropy of the states considered in this paper has to

satisfy two conditions: (1) If V is the total Hilbert space, V = H1[H2, then the entanglement

entropy for V is zero; (2) If V is H1 or H2, the one for V is thermal entropy, SV=Hi=1,2 =

Sthermal. The non-universal piece satisfying these conditions is given by [8]3

lim
n!1

1

1 � n
log
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�n

�
w

New
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, w

New
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�
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�
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↵
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⇡ 2c

3
log

✓
2✏

⇡

◆
+ Min [Sdis, Scon] ,

(2.17)

where Sdis is determined by the length of geodesic that connects the endpoints of intervals at

the same Euclidean time slices, while Scon is determined by that of intervals at the di↵erent

Euclidean time-slices. The some details of Sdis and Scon are reported in Appendix B.1.

The temporal and spatial locations, ⌧
New

x,✏,↵
and X

New

x,✏,↵
, of endpoints are defined as

⌧
New

x,✏,↵
= Im

"
w

New

x,✏,↵
+ w

New

x,✏,↵

2

#
, X
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2i
. (2.18)

3Can someone add the references?

10

Contents

1 Parts 1

1 Parts

qi

2,L
,qi

1,L
,qi+1

1,L
,qi+k

1,L
,qi+l

1,L
H1 H2,x = X1

f
(1.1)

References

1

Contents

1 Parts 1

1 Parts

qi

2,L
,qi

1,L
,qi+1

1,L
,qi+k

1,L
,qi+l

1,L
H1 H2,x = X1

f
(1.1)

References

1

Contents

1 Parts 1

1 Parts

qi

2,L
,qi

1,L
,qi+1

1,L
,qi+k

1,L
,qi+l

1,L
H1 H2, x = X

1

f
(1.1)

References

1

(a) The propagation of

quasi-particles on H1.

B.H.-like excitations

Contents

1 Parts 1

1 Parts

qi

2,L
,qi

1,L
,qi+1

1,L
,qi+k

1,L
,qi+l

1,L
H1 H2,x = X1

f
(1.1)

References

1

(b) The emergence of

B.H.-like excitations.

Contents

1 Parts 1

1 Parts

qi

2,L
,qi

1,L
,qi+1

1,L
,qi+k

1,L
,qi+l

1,L
H1 H2,x = X1

f
(1.1)

References

1

(c) The relativistic

propagation of the B.H.-like

excitations.

Figure 7: A sketch of the emergence and the time-evolution of the two B.H.-like excitations.

illustrate the t0-dependence of IA,B for various t1. In (A) and (C), in the large t1-regime, the

t0-dependence of is approximated by

For (A) IA,B ⇡
(

c⇡lA

3✏
for (n + 1)L � Y1 > t0 > nL � Y2

0 for (n + 1)L � Y2 > t0 > (n + 1)L � Y1,

,

For (C) IA,B ⇡

8
>><

>>:

0 for (n + 1) L � Y1 > t0 > nL � Y2

c⇡lA

3✏
for nL + Y1 > t0 > (n + 1) L � Y1

0 for (n + 1)L � Y2 > t0 > nL + Y1

.

(5.6)

The dashed lines in Fig. 8 illustrate this asymptotic behavior. In (A) and (C), for the large

t1-regime, the t0-dependence of IA,B is periodic with L. In (A) and (C), there are the t0-

regimes where both B.H.-like excitations are in B, while in (B), there are no t0-regimes where

both B.H.-like excitations are in B. In the t0-regimes where both B.H.-like excitations are
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Figure 7: A sketch of the emergence and the time-evolution of the two B.H.-like excitations.

illustrate the t0-dependence of IA,B for various t1. In (A) and (C), in the large t1-regime, the

t0-dependence of is approximated by

For (A) IA,B ⇡
(

c⇡lA
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0 for (n + 1)L � Y2 > t0 > (n + 1)L � Y1,
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The dashed lines in Fig. 8 illustrate this asymptotic behavior. In (A) and (C), for the large

t1-regime, the t0-dependence of IA,B is periodic with L. In (A) and (C), there are the t0-

regimes where both B.H.-like excitations are in B, while in (B), there are no t0-regimes where

both B.H.-like excitations are in B. In the t0-regimes where both B.H.-like excitations are

in B, IA,B is approximated by c⇡lA

3✏
.

5.2.2 Double intervals

Now, let us look closely at the t0-dependence of IA,B when B is given by a union of symmetric

double intervals, B1 and B2, that are defined by

B1 =

⇢
x

����L > L � Y1 > x > L � Y2 >
L

2

�
, B2 =

⇢
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L

2
> Y1 > x > Y2 > 0

�
, (5.7)

where L

2
> Y1 > Y2 > 0. In Fig. 9, the positions of the edges of the subsystems are

Y1 > Y2 > X2 > X1 > 0. In this case, the value of IA,B with the small t1 is practically zero.
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The dashed lines in Fig. 8 illustrate this asymptotic behavior. In (A) and (C), for the large

t1-regime, the t0-dependence of IA,B is periodic with L. In (A) and (C), there are the t0-

regimes where both B.H.-like excitations are in B, while in (B), there are no t0-regimes where

both B.H.-like excitations are in B. In the t0-regimes where both B.H.-like excitations are

in B, IA,B is approximated by c⇡lA
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where L
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Y1 > Y2 > X2 > X1 > 0. In this case, the value of IA,B with the small t1 is practically zero.
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(a) IA,B with the small t1 in

(A).

(b) IA,B with the large t1 in

(A).

(c) IA,B with the large t1 in

(C).

Figure 8: The t0-dependence of IA,B of (2.8) for various t1 as the function of t0. For simplicity,

we take lA to be the same as lB. In (a), we show the t0-dependence of IA,B with t1 = 10, 1000

for (A). In (b), the solid line illustrates that of IA,B with t1 = 106 for (A), and the dashed

line illustrates the asymptotic behavior in (5.6). In (c), the solid line illustrates that of IA,B

with t1 = 106 for (C), and the dashed line illustrates the asymptotic behavior in (5.6).

The t0-dependence of IA,B with the large t1 is periodic with L. The asymptotic t0-dependence

of IA,B=B1[B2 in the large t1 limit is given by

IA,B1[B2 ⇡

8
>>>><

>>>>:

0 nL + Y2 > t0 > nL � Y2

c⇡lA

3✏
nL + Y1 > t0 > nL + Y2

0 (n + 1)L � Y1 > t0 > nL + Y1

c⇡lA

3✏
(n + 1)L � Y2 > t0 > (n + 1)L � Y1

. (5.8)

In this case, there are the t0-regimes where both the black-hole-like excitations can exist in

B = B1 [ B2. In these t0-regimes, the value of IA,B=B1[B2 is approximated by c⇡lA

3✏
.

5.3 Tripartite mutual information

Now, we consider the t0-dependence of TMI in the large t1-regime. Define local TMI for

(5.7) as

IA,B1,B2 = IA,B1 + IA,B2 � IA,B1[B2 , (5.9)

where A denotes the subsystem of H2. In the large t1-regime, IA,Bi=1,2 is approximated

by zero, while the t0-dependence of IA,B=B1[B2 is given by (5.8). The value of IA,B1,B2 in

(5.9) in the large t1-regime is zero in the t0-regimes where nL + Y2 > t0 > nL � Y2 or

(n + 1)L � Y1 > t0 > nL + Y1, while it is approximated by � c⇡lA

3✏
in the t0-regimes where

nL + Y1 > t0 > nL + Y2 or (n + 1)L � Y2 > t0 > (n + 1)L � Y1. Now, define global TMI as

IA,B,B3 = IA,B + IA,B3 � IA,B[B3 . (5.10)

This global TMI is stationary constant value and zero. One possible interpretation for the

t0-dependence of local and global TMI is that when two B.H.-like excitations are in B, the

Bell pairs initially shared by A and H1 may be locally-hidden in B, while there may be no

Bell pairs locally-hidden in H1.
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Summary 3: Genuine tripartite entanglement

In 2d holographic CFT (strong scrambling system.),



Result 3: Tripartite entanglement

square of N 2 guarantees that hTFD|TFDi = 1. Then, we unitarily evolve with Möbius/SS

deformed Hamiltonian. The time evolution operator acting on this thermofield double state

is defined as

UMöbius/SSD = e
�it1H

1
Möbius/SSD ⌦ 12, (2.4)

where H
1

Möbius/SSD
and 12 denote the Möbius/SS deformed Hamiltonian acting on H1, and

identity operator on H2, respectively.

System.2: We start from an excited state which is defined as

| (t0)i =
⇣
e

�iH
1
0 t0 ⌦ 12

⌘
|TFDi , (2.5)

and then evolve it with the SSD Hamiltonian acting on only H1. Under this evolution, the

system is in the state given by

| (t1, t0)i =
⇣
e

�iH
1
SSDt1 ⌦ 12

⌘
| (t0)i . (2.6)

System.3: Let us start from an excited state defined as

|�(t1)i =
⇣
e

�iH
1
SSDt1 ⌦ 12

⌘
|TFDi , (2.7)

and then evolve it with the un-deformed Hamiltonian acting on only H1. Under this evolu-

tion, the system is in the state given by

|�(t1, t0)i =
⇣
e

�iH
1
0 t0 ⌦ 12

⌘
|�(t1)i . (2.8)

2.3 Entanglement entropies in the twist operator formalism

To employ the path-integral formalism suited to analytic computation, let us define Euclidean

density operators as

⇢E,↵=0,1,2,3 = N 2

E

X

a,b

e
�✏(Ea+Eb)

⇣
U

1

E,↵=0,1,2,3
|ai hb|

1
Ũ

1

E↵=0,1,2,3
⌦ |a⇤i hb⇤|

2

⌘
, (2.9)

where the Euclidean normalization constant N �2

E
= tre�2✏H guarantees that tr⇢E,↵ = 1.

These density operators may be the analytic-continued ones in imaginary time corresponding

to the ones defined in Section 2.2. The Euclidean evolution operators are defined as

U
1

E,↵
=

8
>>>><

>>>>:

e
�H

1
Möbius⌧1 ↵ = 0

e
�H

1
SSD⌧1e

�H
1
⌧0 ↵ = 1

e
�H

1
⌧0e

�H
1
SSD⌧1 ↵ = 2

e
�H

1
SCD⌧2e

�H
1
SSD⌧1 ↵ = 3

, Ũ
1

E,↵
=

8
>>>><

>>>>:

e
H

1
Möbius⌧1 ↵ = 0

e
H

1
⌧0e

H
1
SSD⌧1 ↵ = 1

e
H

1
SSD⌧1e

H
1
⌧0 ↵ = 2

e
H

1
SSD⌧1e

H
1
SCD⌧2 ↵ = 3

. (2.10)

Divide the system into the subsystem V and V , the complement to it, and then define the

reduce Euclidean density operators for V as ⇢E,↵;V = trV⇢E,↵. Let A, B, and A [ B denote

7

square of N 2 guarantees that hTFD|TFDi = 1. Then, we unitarily evolve with Möbius/SS
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Ũ

1

E↵=0,1,2,3
⌦ |a⇤i hb⇤|

2

⌘
, (2.9)

where the Euclidean normalization constant N �2

E
= tre�2✏H guarantees that tr⇢E,↵ = 1.

These density operators may be the analytic-continued ones in imaginary time corresponding

to the ones defined in Section 2.2. The Euclidean evolution operators are defined as

U
1

E,↵
=

8
>>>><

>>>>:

e
�H

1
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Figure 7: A sketch of the emergence and the time-evolution of the two B.H.-like excitations.

illustrate the t0-dependence of IA,B for various t1. In (A) and (C), in the large t1-regime, the

t0-dependence of is approximated by

For (A) IA,B ⇡
(

c⇡lA

3✏
for (n + 1)L � Y1 > t0 > nL � Y2

0 for (n + 1)L � Y2 > t0 > (n + 1)L � Y1,

,

For (C) IA,B ⇡

8
>><

>>:

0 for (n + 1) L � Y1 > t0 > nL � Y2

c⇡lA

3✏
for nL + Y1 > t0 > (n + 1) L � Y1

0 for (n + 1)L � Y2 > t0 > nL + Y1

.

(5.6)

The dashed lines in Fig. 8 illustrate this asymptotic behavior. In (A) and (C), for the large

t1-regime, the t0-dependence of IA,B is periodic with L. In (A) and (C), there are the t0-

regimes where both B.H.-like excitations are in B, while in (B), there are no t0-regimes where

both B.H.-like excitations are in B. In the t0-regimes where both B.H.-like excitations are

in B, IA,B is approximated by c⇡lA

3✏
.

5.2.2 Double intervals

Now, let us look closely at the t0-dependence of IA,B when B is given by a union of symmetric

double intervals, B1 and B2, that are defined by

B1 =

⇢
x

����L > L � Y1 > x > L � Y2 >
L

2

�
, B2 =

⇢
x

����
L

2
> Y1 > x > Y2 > 0

�
, (5.7)

where L

2
> Y1 > Y2 > 0. In Fig. 9, the positions of the edges of the subsystems are

Y1 > Y2 > X2 > X1 > 0. In this case, the value of IA,B with the small t1 is practically zero.
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The dashed lines in Fig. 8 illustrate this asymptotic behavior. In (A) and (C), for the large

t1-regime, the t0-dependence of IA,B is periodic with L. In (A) and (C), there are the t0-
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> Y1 > Y2 > 0. In Fig. 9, the positions of the edges of the subsystems are

Y1 > Y2 > X2 > X1 > 0. In this case, the value of IA,B with the small t1 is practically zero.
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1.2 Results on present paper

• Setup.1:

– Bipartite (operator) mutual information: Let us take the subsystems, A and B1,

to be the sub-regions of H2 and H1, respectively. Then, define the mutual infor-

mation as the linear combination of entanglement entropies associated with A, B1

, and A [ B1,

IA,B1 = SA + SB1 � SA[B1 , (1.1)

where A [ B denotes the union of A and B. For A including x = X
1

f
, IA,B1

decreases with t1, upto t1,⇤, and then increases with tt1 , saturating at the value

that is proportional to the number of Bell pairs shared in A and B at t1 = 0.

Here, t1,⇤ may depend on the sizes of A and B1, the system size, and �.

– Tripartite (operator) mutual information: Let us divide H1 into B1 and B2. Take

A and B1 to be subsystems of H2 and H1 including x = X
1

f
, and then define the

tripartite (operator) mutual information as

IA,B1,B2 = IA,B1 + IA,B2 � IA,B1[B2 . (1.2)

For large t1, IA,B1,B2 vanishes. A possible interpretation for this t1-dependence

of IA,B1,B2 is that the Bell pairs initially shared by A and B1 still remains in the

large t1 region.

• Setup.2:

– Bipartite (operator) mutual information: Let us take A and B1 to be the sub-

regions of H2 and H1 including x = X
1

f
, respectively. For large t0, IA,B1 at t1 = 0

vanishes, and then increases with t1, saturating at the value that is proportional

to he number of Bell pairs shared in A and B at t0 = 0 and t1 = 0. One possible
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– Bipartite (operator) mutual information: Let us take A and B1 to be the sub-

regions of H2 and H1, respectively.
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Single interval
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Double intervals
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where Sdis is determined by the length of geodesic that connects the endpoints of intervals at
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The temporal and spatial locations, ⌧
New

x,✏,↵
and X

New

x,✏,↵
, of endpoints are defined as

⌧
New

x,✏,↵
= Im

"
w

New

x,✏,↵
+ w

New

x,✏,↵

2

#
, X

New

x,✏,↵
=

w
New

x,✏,↵
� w

New

x,✏,↵

2i
. (2.18)

3Can someone add the references?

10

Contents

1 Parts 1

1 Parts

qi

2,L
,qi

1,L
,qi+1

1,L
,qi+k

1,L
,qi+l

1,L
H1 H2,x = X1

f
(1.1)

References

1

Contents

1 Parts 1

1 Parts

qi

2,L
,qi

1,L
,qi+1

1,L
,qi+k

1,L
,qi+l

1,L
H1 H2,x = X1

f
(1.1)

References

1

Contents

1 Parts 1

1 Parts

qi

2,L
,qi

1,L
,qi+1

1,L
,qi+k

1,L
,qi+l

1,L
H1 H2, x = X

1

f
(1.1)

References

1

(a) The propagation of

quasi-particles on H1.

B.H.-like excitations

Contents

1 Parts 1

1 Parts

qi

2,L
,qi

1,L
,qi+1

1,L
,qi+k

1,L
,qi+l

1,L
H1 H2,x = X1

f
(1.1)

References

1

(b) The emergence of

B.H.-like excitations.

Contents

1 Parts 1

1 Parts

qi

2,L
,qi

1,L
,qi+1

1,L
,qi+k

1,L
,qi+l

1,L
H1 H2,x = X1

f
(1.1)

References

1

(c) The relativistic

propagation of the B.H.-like

excitations.

Figure 7: A sketch of the emergence and the time-evolution of the two B.H.-like excitations.

illustrate the t0-dependence of IA,B for various t1. In (A) and (C), in the large t1-regime, the

t0-dependence of is approximated by
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(5.6)

The dashed lines in Fig. 8 illustrate this asymptotic behavior. In (A) and (C), for the large

t1-regime, the t0-dependence of IA,B is periodic with L. In (A) and (C), there are the t0-

regimes where both B.H.-like excitations are in B, while in (B), there are no t0-regimes where

both B.H.-like excitations are in B. In the t0-regimes where both B.H.-like excitations are

in B, IA,B is approximated by c⇡lA

3✏
.

5.2.2 Double intervals

Now, let us look closely at the t0-dependence of IA,B when B is given by a union of symmetric

double intervals, B1 and B2, that are defined by

B1 =

⇢
x

����L > L � Y1 > x > L � Y2 >
L

2

�
, B2 =

⇢
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����
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2
> Y1 > x > Y2 > 0

�
, (5.7)

where L

2
> Y1 > Y2 > 0. In Fig. 9, the positions of the edges of the subsystems are

Y1 > Y2 > X2 > X1 > 0. In this case, the value of IA,B with the small t1 is practically zero.
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• There are no correlations 
shared by the two parties.

Key property of this atypical state

• There are a correlation 
shared by the three parties.

Summary 3: Genuine tripartite entanglement

In 2d holographic CFT (strong scrambling system.)
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1 The setup considered

The system considered in this paper is in the thermal state with inhomogeneous Hamiltonian,

⇢ =
e
��Hq�Möbius

tre��Hq�Möbius
, (1.1)

where � is the inverse temperature, and the inhomogeneous Hamiltonian, Hq�Möbius, is defined

as
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h
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where the system is on the spatial circle with the period, L, ✓ is a real parameter, and q is

a positive integer. The Hamiltonian density is modulated by a envelop function defined by

f(x, ✓) = 1� tanh 2✓
⇣
1� 2 sin2

⇣
q⇡x

L

⌘⌘
. (1.3)

Since f(x, ✓ = 0) = 1, Hq�Möbius with ✓ = 0 reduces to uniform Hamiltonian,

H =

Z
L

0

dx(T (x) + T (x)) =
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where L
z

0 and L
z

0 are Virasoro generators. The envelop function can be considered as the

e↵ect of the curved background,

ds
2 = �f

2(x, ✓)dt2 + dx
2
, (1.5)

where ✓ is the parameter determing the geometrical structure of the background. As in [1]

curvature of this geometry is give by
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1 The setup considered

The system considered in this paper is in the thermal state with inhomogeneous Hamiltonian,

⇢ =
e
��Hq�Möbius

tre��Hq�Möbius
, (1.1)

where � is the inverse temperature, and the inhomogeneous Hamiltonian, Hq�Möbius, is defined

as

Hq�Möbius =

Z
L

0

dx

h
1� tanh 2✓

⇣
1� 2 sin2

⇣
q⇡x

L

⌘⌘i
(T (x) + T (x)), (1.2)

where the system is on the spatial circle with the period, L, ✓ is a real parameter, and q is

a positive integer. The Hamiltonian density is modulated by a envelop function defined by

f(x, ✓) = 1� tanh 2✓
⇣
1� 2 sin2

⇣
q⇡x

L

⌘⌘
. (1.3)

Since f(x, ✓ = 0) = 1, Hq�Möbius with ✓ = 0 reduces to uniform Hamiltonian,

H =

Z
L

0

dx(T (x) + T (x)) =
2⇡

L

h
L

z

0 + L
z

0 �
c

12

i
, (1.4)

where L
z

0 and L
z

0 are Virasoro generators. The envelop function can be considered as the

e↵ect of the curved background,

ds
2 = �f

2(x, ✓)dt2 + dx
2
, (1.5)

where ✓ is the parameter determing the geometrical structure of the background. As in [1]

curvature of this geometry is give by

R = �
2@2

x
f(x, ✓)

f(x, ✓)
=

8⇡2
q
2 tanh(2✓) cos

�
2⇡qx
L

�

L2
�
tanh(2✓) cos

�
2⇡qx
L

�
� 1

� . (1.6)
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as
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as
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Hq�Möbius =

Z
L

0

dx

h
1� tanh 2✓

⇣
1� 2 sin2

⇣
q⇡x

L

⌘⌘i
(T (x) + T (x)), (1.2)

where the system is on the spatial circle with the period, L, ✓ is a real parameter, and q is

a positive integer. The Hamiltonian density is modulated by a envelop function defined by

f(x, ✓) = 1� tanh 2✓
⇣
1� 2 sin2

⇣
q⇡x

L

⌘⌘
. (1.3)
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Thermal entropy exhibits phase transition with 
respect to    .   
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as
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This may be induced by the entanglement phase 
transition (growth) induced by spacetime.
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We will explain the details of 

Summary 2 

and

Summary 4.



Mobius/SS deformation
The definition of Mobius and sine-square deformed Hamiltonians are

, 

where h(x) is Hamiltonian density of undeformed one:                    .

The envelop functions considered are
.

2 Preliminary

In this section, let us describe the systems, the inhomogenously-deformed Hamiltonians, and

the measures of entanglement considered in this paper.

2.1 Inhomogeneously-deformed Hamiltonians

Before describing the systems considered, let us define the inhomogeneously-deformed Hamil-

tonians considered in this paper. These Hamiltonians is defines as ones where the Hamilto-

nian density is modified by the envelop function of spatial location x:

HInho =

Z
L

0

dxf(x)h(x), (2.1)

where h(x) f(x), L denotes the Hamiltonian density, envelop function, and system size.

We impose the periodic boundary condition on these Hamiltonians. The envelop functions

considered in this paper are
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where in the SSD limit when ✓ ! 1, fMöbius(x) reduces to fSSD(x), while in the CSD limit

when ✓ ! �1, fMöbius(x) reduces to fCSD(x). For f(x) = fMöbius(x), f(x) = fSSD(x), and

f(x) = fCSD(x), the inhomogeneously-deformed Hamiltonians are called as Möbius, sine-

square (SS), and cosine-square (CS) deformed Hamiltonians. For x ⇡ 0, the Hamiltonian

density spatially modulated by fSSD(x) is smaller than the un-deformed one, while for x ⇡ L

2
,

it is larger than the un-deformed one. For x ⇡ L

2
, the Hamiltonian density modified by

fCSD(x) is smaller than the un-deformed one, while for x ⇡ 0, it is larger than the un-

deformed one. Therefore, the SSD and CSD may the dynamical properties of Hamiltonian

stronger at x ⇡ 0 or x ⇡ L

2
, respectively, while they may those properties weaker at x ⇡ L

2

or x ⇡ 0, respectively.

2.2 The systems evolved with the inhomogeneously-deformed Hamil-

tonians

Let us now describe the systems evolved with the inhomogeneously-deformed Hamiltonians.

System.1: Let us start from the thermofield double state with finite inverse temperature

�:

|TFDi = N e
� ✏(H1+H

2)
2

X

a

|ai
1
⌦ |ai

2
, (2.3)

where H
i=1,2 and |ai

i=1,2
denote the un-deformed 2d CFT Hamiltonian, and the eigenstate

of them, respectively. MT: The regulator ✏ is half of the inverse temperature, ✏ = �/2. Thus,

this thermofield double state is defined in the doubled Hilbert space, H = H1 ⌦ H2. The
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The evolution of primary operator
The Mobius/SSD Hamiltonians considered  are defined on the spatial 
circle with L, the circumstance.

The evolution of primary operators by these Hamiltonians is given by
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where                                         is the conformal dimension.   
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the subsystems of H2 and H1, and the union of A and B, respectively. Suppose that the

subsystems A and B are defined by a spatial interval from x = X2 to x = X1 on H2 and

the one from x = Y2 to x = Y1 on H1, respectively. Here, X2 < X1 and Y2 < Y1. Then, we

define the reduced density matrices for these subsystems as

⇢E,↵;V =

8
>><

>>:

N 2tr
A

�
e

�2✏H
�

V = A

N 2tr
B

⇣
U

1

E,↵
e

�2✏H
Ũ
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Ã
(|a⇤i hb⇤|

2
) V = A [ B

, (2.11)

where Ã and B̃ denote the complement of H2 to A and the one of H1 to B , respectively. Let

us define Euclidean entanglement entropy associated with ⇢E,↵,V as von Neumann entropy

for this reduced density matrix:

SE,↵;V = �trV (⇢E,↵;V log ⇢E,↵;V) = lim
n!1
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. (2.12)
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is replaced with the 2mV-point functions arising from insertion of the twist and anti-twist
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(2.13)

where h·i
2✏

denote the MT: normalized expectation value on the thermal torus where thermal

and spatial circumstances are 2✏ and L, respectively. The complex coordinate is defined as

(wx, wx) = (ix, �ix), and hn = c(n
2�1)

24n
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1There may be better expression.
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1There may be better expression.
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This simple transformation makes the computation of EE simpler as explained 
later.
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where Ã and B̃ denote the complement of H2 to A and the one of H1 to B , respectively. Let

us define Euclidean entanglement entropy associated with ⇢E,↵,V as von Neumann entropy

for this reduced density matrix:

SE,↵;V = �trV (⇢E,↵;V log ⇢E,↵;V) = lim
n!1

1

1 � n
log trV (⇢E,↵;V)n

. (2.12)

Thus, in the von Neumann limit when n ! 1, the n-th Rényi entropy, S
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1

E,↵
U

1

E,↵
= U

1

E,↵
Ũ
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Further taking the limit t ! 1, e
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be given by ⇢(t) ⇠ e
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2
t
2
/L

2
)HSSD . When the ground state of HSSD is the same as the ground state of H0, which

is guaranteed for CFTs with an additional Kac-Moody symmetry [111], at late enough times, we expect ⇢(t) would
be approximated by the ground state of H0. In the next section, we will confirm this expectation by studying the
von Neumann entropy defined for single intervals. When the intervals do not include x = 0, we will see that the von
Neumann entropy at late enough times is given by entanglement entropy of the ground state.

On the other hand, when the interval includes x = 0, we will see that the von Neumann entropy is not given by
the ground state value, but by the total thermal entropy (once again at late enough times); the above expectation

⇢(t) ⇠ e
�(✏2⇡

2
t
2
/L

2
)HSSD breaks down around the origin x = 0. We defer the detailed discussion for later sections.

However, we note that taking the t ! 1 limit is somewhat subtle around the origin x = 0. We go back to (A3),
and look at the transformed X more closely. Recalling (2⇡/L)L± =

R
dxe

i2⇡x/L
h(x), where h(x) is the Hamiltonian

density, X̃ can be written as X̃ =
R

dx f̃(x)h(x), with the envelope function given by
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⇡
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For a given x, the envelop function in the SSD limit is given by
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. (A6)

For generic x 6= 0, the envelop function is quadratic in t
2, in agreement with the discussion above. On the other hand,

for x = 0, f(x = 0) ! 2⇡

L
and hence we do not have t

2 dependence at late times. This indicates that the density

operator ⇢(t) near the origin should not be approximated as e
�(✏2⇡

2
t
2
/L

2
)HSSD .

Appendix B: Observables in the Heisenberg picture

Instead of the following the time-dependence of the density matrix ⇢(t), the time-dependence of correlation functions
Tr [O1(X1)O2(X2) · · · ⇢(t)] can be followed by using the Heisenberg picture,
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Here, Oi(X) is a (primary) operator located at X on the circle. For a primary operator O at X with conformal
dimension (h, h̄), its Heisenberg evolution can be computed explicitly as
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), (B2)

(a) The SSD time evolution (b) The Möbius time evolution

FIG. 13. A sketch of how the spatial locations of an operator evolve in the Heisenberg picture for (a) the SSD and (b) Möbius
time evolutions. The initial insertion points of the operator are marked by red. The two fixed points X1

f = 0 and X2
f = L/2

are marked by purple. For the Mobius case, do the dashed red circles correspond to the turning point?
During the SSD evolution, for                           ,         doesnʼt 
move. We call them fixed points.
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FIG. 13. A sketch of how the spatial locations of an operator evolve in the Heisenberg picture for (a) the SSD and (b) Möbius
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Preliminary
• Entanglement entropy (EE)

Definition: 

Contents
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By computing two-point function, we can 
compute (Renyi) entanglement entropy.
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Depends on the time evolution
(Euclidean geometry is non-trivial)

Contents

pc

Ψ1
0, Ψ2

0,Ψ
3
0,∣∣Ψi

0

〉
U(t),

∣∣Ψi(t)
〉
= U(t)

∣∣Ψi
0

〉
, lim

t→∞
U(t),

∣∣Ψi
late

〉
= lim

t→∞
U(t)

∣∣Ψi
0

〉
, ρth

trB
[∣∣Ψi

late

〉 〈
Ψi

late

∣∣] ≃ trBe
−βH

|initial state⟩ ≃
1
ϵ∑

α

Cα |α⟩

trA
[∣∣Ψi

late

〉 〈
Ψi

late

∣∣] ≈ trAe
−βH

SA = −trAρA log ρA ≈
{
lA · log d L

2 > lA > 0

(L− lA) · log d(L− lA) L > lA > L
2

L: system size lA:subsystem size d:dimension of local Hilbert space

IA,B ≈ 0 for
L

2
> lA, lB > 0.

ρA∪B ≈ ρA ⊗ ρB ⟨O(X1 ∈ A)O(X2 ∈ B)⟩ ≈ ⟨O(X1 ∈ A)⟩ × ⟨O(X2 ∈ B)⟩

IA,B > 0 for
L

2
> lA, lB > 0.

ρA∪B ̸= ρA ⊗ ρB

SA → Stot

SA = lim
n→1

1

1− n
log trAρ

n
A = −ρA log ρA.

ρA = trAρ

trAρ
2
A =

⟨σ2(X)σ2(Y )⟩ SA = lim
n→1

1

1− n
log ⟨σn(X)σn(Y )⟩

⟨σn(X)σn(Y )⟩ = tr
[
σn(X)σn(Y )UρU †] .

⟨σn(X)σn(Y )⟩ = tr
[
σ̂n(X)σ̂n(Y )ρ

]
.

σ̂n(Y ) = U †σn(Y )U, σ̂n(Y ) = U †σ̂n(Y )U

(0.1)

1

Schrödinger picture:

Contents

pc

Ψ1
0, Ψ2

0,Ψ
3
0,∣∣Ψi

0

〉
U(t),

∣∣Ψi(t)
〉
= U(t)

∣∣Ψi
0

〉
, lim

t→∞
U(t),

∣∣Ψi
late

〉
= lim

t→∞
U(t)

∣∣Ψi
0

〉
, ρth

trB
[∣∣Ψi

late

〉 〈
Ψi

late

∣∣] ≃ trBe
−βH

|initial state⟩ ≃
1
ϵ∑

α

Cα |α⟩

trA
[∣∣Ψi

late

〉 〈
Ψi

late

∣∣] ≈ trAe
−βH

SA = −trAρA log ρA ≈
{
lA · log d L

2 > lA > 0

(L− lA) · log d(L− lA) L > lA > L
2

L: system size lA:subsystem size d:dimension of local Hilbert space

IA,B ≈ 0 for
L

2
> lA, lB > 0.

ρA∪B ≈ ρA ⊗ ρB ⟨O(X1 ∈ A)O(X2 ∈ B)⟩ ≈ ⟨O(X1 ∈ A)⟩ × ⟨O(X2 ∈ B)⟩

IA,B > 0 for
L

2
> lA, lB > 0.

ρA∪B ̸= ρA ⊗ ρB

SA → Stot

SA = lim
n→1

1

1− n
log trAρ

n
A = −ρA log ρA.

ρA = trAρ

trAρ
2
A =

⟨σ2(X)σ2(Y )⟩ SA = lim
n→1

1

1− n
log ⟨σn(X)σn(Y )⟩

⟨σn(X)σn(Y )⟩ = tr
[
σn(X)σn(Y )UρU †] .

⟨σn(X)σn(Y )⟩ = tr
[
σ̂n(X)σ̂n(Y )ρ

]
.

σ̂n(Y ) = U †σn(Y )U, σ̂n(Y ) = U †σ̂n(Y )U

(0.1)

1



How to compute correlator
Suppose that                    is given by

.

Contents

pc

Ψ1
0, Ψ2

0,Ψ
3
0,∣∣Ψi

0

〉
U(t),

∣∣Ψi(t)
〉
= U(t)

∣∣Ψi
0

〉
, lim

t→∞
U(t),

∣∣Ψi
late

〉
= lim

t→∞
U(t)

∣∣Ψi
0

〉
, ρth

trB
[∣∣Ψi

late

〉 〈
Ψi

late

∣∣] ≃ trBe
−βH

|initial state⟩ ≃
1
ϵ∑

α

Cα |α⟩

trA
[∣∣Ψi

late

〉 〈
Ψi

late

∣∣] ≈ trAe
−βH

SA = −trAρA log ρA ≈
{
lA · log d L

2 > lA > 0

(L− lA) · log d(L− lA) L > lA > L
2

L: system size lA:subsystem size d:dimension of local Hilbert space

IA,B ≈ 0 for
L

2
> lA, lB > 0.

ρA∪B ≈ ρA ⊗ ρB ⟨O(X1 ∈ A)O(X2 ∈ B)⟩ ≈ ⟨O(X1 ∈ A)⟩ × ⟨O(X2 ∈ B)⟩

IA,B > 0 for
L

2
> lA, lB > 0.

ρA∪B ̸= ρA ⊗ ρB

SA → Stot

SA = lim
n→1

1

1− n
log trAρ

n
A = −ρA log ρA.

ρA = trAρ

trAρ
2
A =

⟨σ2(X)σ2(Y )⟩ SA = lim
n→1

1

1− n
log ⟨σn(X)σn(Y )⟩

(0.1)

1

Heisenberg picture:
Here,

Contents

pc

Ψ1
0, Ψ2

0,Ψ
3
0,∣∣Ψi

0

〉
U(t),

∣∣Ψi(t)
〉
= U(t)

∣∣Ψi
0

〉
, lim

t→∞
U(t),

∣∣Ψi
late

〉
= lim

t→∞
U(t)

∣∣Ψi
0

〉
, ρth

trB
[∣∣Ψi

late

〉 〈
Ψi

late

∣∣] ≃ trBe
−βH

|initial state⟩ ≃
1
ϵ∑

α

Cα |α⟩

trA
[∣∣Ψi

late

〉 〈
Ψi

late

∣∣] ≈ trAe
−βH

SA = −trAρA log ρA ≈
{
lA · log d L

2 > lA > 0

(L− lA) · log d(L− lA) L > lA > L
2

L: system size lA:subsystem size d:dimension of local Hilbert space

IA,B ≈ 0 for
L

2
> lA, lB > 0.

ρA∪B ≈ ρA ⊗ ρB ⟨O(X1 ∈ A)O(X2 ∈ B)⟩ ≈ ⟨O(X1 ∈ A)⟩ × ⟨O(X2 ∈ B)⟩

IA,B > 0 for
L

2
> lA, lB > 0.

ρA∪B ̸= ρA ⊗ ρB

SA → Stot

SA = lim
n→1

1

1− n
log trAρ

n
A = −ρA log ρA.

ρA = trAρ

trAρ
2
A =

⟨σ2(X)σ2(Y )⟩ SA = lim
n→1

1

1− n
log ⟨σn(X)σn(Y )⟩

⟨σn(X)σn(Y )⟩ = tr
[
σn(X)σn(Y )UρU †] .

⟨σn(X)σn(Y )⟩ = tr
[
σ̂n(X)σ̂n(Y )ρ

]
.

σ̂n(Y ) = U †σn(Y )U, σ̂n(Y ) = U †σ̂n(Y )U

(0.1)

1

Contents

pc

Ψ1
0, Ψ2

0,Ψ
3
0,∣∣Ψi

0

〉
U(t),

∣∣Ψi(t)
〉
= U(t)

∣∣Ψi
0

〉
, lim

t→∞
U(t),

∣∣Ψi
late

〉
= lim

t→∞
U(t)

∣∣Ψi
0

〉
, ρth

trB
[∣∣Ψi

late

〉 〈
Ψi

late

∣∣] ≃ trBe
−βH

|initial state⟩ ≃
1
ϵ∑

α

Cα |α⟩

trA
[∣∣Ψi

late

〉 〈
Ψi

late

∣∣] ≈ trAe
−βH

SA = −trAρA log ρA ≈
{
lA · log d L

2 > lA > 0

(L− lA) · log d(L− lA) L > lA > L
2

L: system size lA:subsystem size d:dimension of local Hilbert space

IA,B ≈ 0 for
L

2
> lA, lB > 0.

ρA∪B ≈ ρA ⊗ ρB ⟨O(X1 ∈ A)O(X2 ∈ B)⟩ ≈ ⟨O(X1 ∈ A)⟩ × ⟨O(X2 ∈ B)⟩

IA,B > 0 for
L

2
> lA, lB > 0.

ρA∪B ̸= ρA ⊗ ρB

SA → Stot

SA = lim
n→1

1

1− n
log trAρ

n
A = −ρA log ρA.

ρA = trAρ

trAρ
2
A =

⟨σ2(X)σ2(Y )⟩ SA = lim
n→1

1

1− n
log ⟨σn(X)σn(Y )⟩

⟨σn(X)σn(Y )⟩ = tr
[
σn(X)σn(Y )UρU †] .

⟨σn(X)σn(Y )⟩ = tr
[
σ̂n(X)σ̂n(Y )ρ

]
.

σ̂n(Y ) = U †σn(Y )U, σ̂n(Y ) = U †σ̂n(Y )U

(0.1)

1

Contents

pc

Ψ1
0, Ψ2

0,Ψ
3
0,∣∣Ψi

0

〉
U(t),

∣∣Ψi(t)
〉
= U(t)

∣∣Ψi
0

〉
, lim

t→∞
U(t),

∣∣Ψi
late

〉
= lim

t→∞
U(t)

∣∣Ψi
0

〉
, ρth

trB
[∣∣Ψi

late

〉 〈
Ψi

late

∣∣] ≃ trBe
−βH

|initial state⟩ ≃
1
ϵ∑

α

Cα |α⟩

trA
[∣∣Ψi

late

〉 〈
Ψi

late

∣∣] ≈ trAe
−βH

SA = −trAρA log ρA ≈
{
lA · log d L

2 > lA > 0

(L− lA) · log d(L− lA) L > lA > L
2

L: system size lA:subsystem size d:dimension of local Hilbert space

IA,B ≈ 0 for
L

2
> lA, lB > 0.

ρA∪B ≈ ρA ⊗ ρB ⟨O(X1 ∈ A)O(X2 ∈ B)⟩ ≈ ⟨O(X1 ∈ A)⟩ × ⟨O(X2 ∈ B)⟩

IA,B > 0 for
L

2
> lA, lB > 0.

ρA∪B ̸= ρA ⊗ ρB

SA → Stot

SA = lim
n→1

1

1− n
log trAρ

n
A = −ρA log ρA.

ρA = trAρ

trAρ
2
A =

⟨σ2(X)σ2(Y )⟩ SA = lim
n→1

1

1− n
log ⟨σn(X)σn(Y )⟩

⟨σn(X)σn(Y )⟩ = tr
[
σn(X)σn(Y )UρU †] .

⟨σn(X)σn(Y )⟩ = tr
[
σ̂n(X)σ̂n(Y )ρ

]
.

σ̂n(Y ) = U †σn(Y )U, σ̂n(Y ) = U †σ̂n(Y )U

(0.1)

1

Depends on the time evolution

Time-independent.
(Euclidean geometry may be simple.)

Two pictures: Schrödinger picture:
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denote the MT: normalized expectation value on the thermal torus where thermal
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1There may be better expression.
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In AdS/CFT correspondence
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In Schrödinger picture, the dual geometry evolves with time, 
while the locations of operators donʼt.  
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In Schrödinger picture, the dual geometry evolves with time, 
while the locations of operators donʼt.  
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Entanglement entropy in the twist operator formalism

As a consequence, 
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(wX , wX) = (iX,−iX).

XNew
X =

wNew
X − wNew

X

2i
, X = X1

f = 0, X = X2
f =

L

2
,

SB = − c

12
log

[
∏

i=1,2

∣∣∣∣
dwNew

Yi

dwYi
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2
]
+ lim

n→1

1

1− n
log

〈
σn
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wNew

Y1
, wNew

Y1

)
σn

(
wNew

Y2
, wNew

Y2

)〉

(0.2)

2

where B is the subsystem of the         .        

2 Preliminary

In this section, let us describe the systems, the inhomogenously-deformed Hamiltonians, and

the measures of entanglement considered in this paper.

2.1 Inhomogeneously-deformed Hamiltonians

Before describing the systems considered, let us define the inhomogeneously-deformed Hamil-

tonians considered in this paper. These Hamiltonians is defines as ones where the Hamilto-

nian density is modified by the envelop function of spatial location x:

HInho =

Z
L

0

dxf(x)h(x), (2.1)

where h(x) f(x), L denotes the Hamiltonian density, envelop function, and system size.

We impose the periodic boundary condition on these Hamiltonians. The envelop functions

considered in this paper are

fMöbius(x) = 1 � tanh 2✓ cos

✓
2⇡x

L

◆
, fSSD(x) = 2 sin2

⇣
⇡x

L

⌘
, fCSD(x) = 2 cos2

⇣
⇡x

L

⌘
, (2.2)

where in the SSD limit when ✓ ! 1, fMöbius(x) reduces to fSSD(x), while in the CSD limit

when ✓ ! �1, fMöbius(x) reduces to fCSD(x). For f(x) = fMöbius(x), f(x) = fSSD(x), and

f(x) = fCSD(x), the inhomogeneously-deformed Hamiltonians are called as Möbius, sine-

square (SS), and cosine-square (CS) deformed Hamiltonians. For x ⇡ 0, the Hamiltonian

density spatially modulated by fSSD(x) is smaller than the un-deformed one, while for x ⇡ L

2
,

it is larger than the un-deformed one. For x ⇡ L

2
, the Hamiltonian density modified by

fCSD(x) is smaller than the un-deformed one, while for x ⇡ 0, it is larger than the un-

deformed one. Therefore, the SSD and CSD may the dynamical properties of Hamiltonian

stronger at x ⇡ 0 or x ⇡ L

2
, respectively, while they may those properties weaker at x ⇡ L

2

or x ⇡ 0, respectively.

2.2 The systems evolved with the inhomogeneously-deformed Hamil-

tonians

Let us now describe the systems evolved with the inhomogeneously-deformed Hamiltonians.

System.1: Let us start from the thermofield double state with finite inverse temperature

�:

|TFDi = N e
� ✏(H1+H

2)
2

X

a

|ai
1
⌦ |ai

2
, (2.3)

where H
i=1,2 and |ai

i=1,2
denote the un-deformed 2d CFT Hamiltonian, and the eigenstate

of them, respectively. MT: The regulator ✏ is half of the inverse temperature, ✏ = �/2. Thus,

this thermofield double state is defined in the doubled Hilbert space, H = H1 ⌦ H2. The

6



Entanglement entropy in the twist operator formalism

As a consequence, 
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Note
The parameter region considered in this talk is

The system in |�(t1 � 1)i does not evolve to a typical state under the evolution by

the uniform Hamiltonian.

1.3 One interpretation of scrambling in 2d Holographic CFT

Let us now turn to the possible interpretation for the evolution of entanglement and non-

local correlation. Call the two-dimensional conformal field theory having the gravity dual

as 2d holographic CFT. After we evolve the system with some Hamiltonian, the thermofield

double state in the small ✏ limit may be approximated by the state consisting of product of

Bell pairs,

|TFDi ⇡ ⇧x̃ |Bell; x̃i
L

|Bell; x̃i
R

, (1.7)

where x̃ is defined as x

✏
, and |Bell; x̃i

L,R
denote the Bell pairs consisting of quasi-particles

at x of H1 and H2, respectively. Under the unitary time-evolution, |Bell; x̃i
L

and |Bell; x̃i
R
,

correspond to the left- and right-moving particles, respectively. The entanglement entropy for

trHi=L,R;x |Bell; x̃i hBell; x̃| is O(c). Here Hi=L,R;x̃ denotes the trace-out of the local Hilbert

space at x̃ of Hi=L,R. Starting from this state, we evolve it with H
1

SSD
⌦ 12 and H

1

0
⌦

12 associated with 2d holographic CFT. Under the evolution by these Hamiltonians, the

entanglement entropy for a single interval follows the propagation of quasi-particle. For

H
1

0
⌦ 12, quasi-particles on H1 propagates leftward and rightward at the speed of light.

Therefore, the distribution of quasi-particles is stationary and uniform. Let us consider a

single Bell pair consisting of q1 and q2, the quasi-particles on H1 and H2, respectively. Due

to the scrambling e↵ect of H
1

0
for 2d holographic CFT, q1, a single quasi-particle on H1 is

delocalized, and then is non-locally hidden in the group of quasi-particles that expands to

whole H1. To retrieve the single Bell pair consisting of q1 and q2, we have to be able to

access whole H1. Under the evolution by H
1

SSD
⌦ 12, quasi-particles propagate to x = X

1

f
,

and accumulate there. In this case, to retrieve the single Bell pair, we only need to be able

to access the region near X
f

1
on H1.

1.4 Note that

Here, we describe the parameter region considered in this paper. Let V̂ denote the subsystem

consisting of the spatial intervals, and then let L̂, l̂V , â, ✏̂, and t̂ denote a system size, a

subsystem size, a lattice spacing, a regularization parameter that guarantees the norm of

states considered in in this paper is one, and the times associated to some Hamiltonian

considered. Here, ⇤̂s denote the dimensionfull parameters, and ⇤ is the dimensionless ones

defined as ⇤̂
â
. In the following, we will use only dimensionless parameters. The parameter

region considered is

L � lV , t � ✏ � 1. (1.8)

We call this region as the coarse-grained limit. From now on, we consider the entanglement

dynamics in this coarse-grained limit.

5

where these parameters are dimensionless and their unit 
is the lattice spacing. 
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As a consequence, 
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where B is the subsystem of the         .        

2 Preliminary

In this section, let us describe the systems, the inhomogenously-deformed Hamiltonians, and

the measures of entanglement considered in this paper.

2.1 Inhomogeneously-deformed Hamiltonians

Before describing the systems considered, let us define the inhomogeneously-deformed Hamil-

tonians considered in this paper. These Hamiltonians is defines as ones where the Hamilto-

nian density is modified by the envelop function of spatial location x:

HInho =

Z
L

0

dxf(x)h(x), (2.1)

where h(x) f(x), L denotes the Hamiltonian density, envelop function, and system size.

We impose the periodic boundary condition on these Hamiltonians. The envelop functions

considered in this paper are

fMöbius(x) = 1 � tanh 2✓ cos

✓
2⇡x

L

◆
, fSSD(x) = 2 sin2

⇣
⇡x

L

⌘
, fCSD(x) = 2 cos2

⇣
⇡x

L

⌘
, (2.2)

where in the SSD limit when ✓ ! 1, fMöbius(x) reduces to fSSD(x), while in the CSD limit

when ✓ ! �1, fMöbius(x) reduces to fCSD(x). For f(x) = fMöbius(x), f(x) = fSSD(x), and

f(x) = fCSD(x), the inhomogeneously-deformed Hamiltonians are called as Möbius, sine-

square (SS), and cosine-square (CS) deformed Hamiltonians. For x ⇡ 0, the Hamiltonian

density spatially modulated by fSSD(x) is smaller than the un-deformed one, while for x ⇡ L

2
,

it is larger than the un-deformed one. For x ⇡ L

2
, the Hamiltonian density modified by

fCSD(x) is smaller than the un-deformed one, while for x ⇡ 0, it is larger than the un-

deformed one. Therefore, the SSD and CSD may the dynamical properties of Hamiltonian

stronger at x ⇡ 0 or x ⇡ L

2
, respectively, while they may those properties weaker at x ⇡ L

2

or x ⇡ 0, respectively.

2.2 The systems evolved with the inhomogeneously-deformed Hamil-

tonians

Let us now describe the systems evolved with the inhomogeneously-deformed Hamiltonians.

System.1: Let us start from the thermofield double state with finite inverse temperature

�:

|TFDi = N e
� ✏(H1+H

2)
2

X

a

|ai
1
⌦ |ai

2
, (2.3)

where H
i=1,2 and |ai

i=1,2
denote the un-deformed 2d CFT Hamiltonian, and the eigenstate

of them, respectively. MT: The regulator ✏ is half of the inverse temperature, ✏ = �/2. Thus,

this thermofield double state is defined in the doubled Hilbert space, H = H1 ⌦ H2. The

6
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−iHMöbius/SSDt1 =

∣∣∣∣
dwNew

X

dwx

∣∣∣∣
2hn

σn

(
wNew

X , wNew
X

)

(wX , wX) = (iX,−iX).

XNew
X =

wNew
X − wNew

X

2i
, X = X1

f = 0, X = X2
f =

L

2
,

SB = − c

12
log

[
∏

i=1,2

∣∣∣∣
dwNew

Yi

dwYi

∣∣∣∣
2
]
+ lim

n→1

1

1− n
log
〈
σn

(
wNew

Y1
, wNew

Y1

)
σn

(
wNew

Y2
, wNew

Y2

)〉
2ϵ

O(1) ≪ O(1/ϵ)

H1
SSD + 12 ≈ cπ

6ϵ

[
L−

(
XNew

Y1
−XNew

Y2

)]

IA,B = SA + SB − SA∪B

= lim
n→1

1

1− n
log
〈
σn

(
wNew

Y1
, wNew

Y1

)
σn

(
wNew

Y2
, wNew

Y2

)〉
2ϵ
+ lim

n→1

1

1− n
log ⟨σn (wX1 , wX1) σn (wX2 , wX2)⟩2ϵ

− lim
n→1

1

1− n
log
〈
σn

(
wNew

Y1
, wNew

Y1

)
σn

(
wNew

Y2
, wNew

Y2

)
σn (wX1 , wX1) σn (wX2 , wX2)

〉

|φ(t1)⟩ =
(
e−it1HSSD + 12

)
|TFD⟩ . IA,B ≈ 0

lV=A,B, PC,V=A,B SA∪B, ρA∪B Parameters ≫ ϵ

O (c) Hi=1,2, |Bell⟩ = 1

2

∑

i=↑,↓

|i⟩1 ⊗ |i⟩2 H1 vL,R = ±2 sin2

(
πX

L

)
x̃ |Bell; x̃⟩ = 1

√
q

q∏

i=1

|i; x̃⟩1 |i; x̃⟩2 ,

Hi=1,2 SB ≈ cπL

12ϵ
, qi1,L qi2,L

t0 ≫ O(L).
L

2
> lA, lB, lA + lB > 0

− trAρA log ρA, SB ≈ cπL

6ϵ
SB → Stot,H1,SB/c

x = Xf
1 , X

New
Yi=1,2

=
wNew

Yi=1,2
− wNew

Yi=1,2

2i
IA,B = SA + SB − SA∪B, IA,B ≈ 0, B1 ∪B2

e0×H = 1 =
∑

i1=↑,↓

· · ·
∑

iL=↑,↓

|i1, · · · , iL⟩ ⟨i1, · · · , iL| , |TFD⟩ =
L∏

k=1

(
1√
2

∑

ik=↑,↓

|ik⟩1 |ik⟩2

)

t− t0 = ∓

⎡

⎣ L

2π tan
(

π(X1)
L

) − L

2π tan
(

π(X0)
L

)

⎤

⎦

∂ρL,R
∂t1

= ±∂ (ρL,RvL,R)

∂x
O(1/ϵ) O(1)vgroup =

dwdispersion relation

dk

≈
t≫1

c

3
log

⎡

⎣ L3

4π3t2

sin
[
π(Y1−Y2)

L

]

sin
[
π(Y1)
L

]
sin
[
π(Y2)
L

]

⎤

⎦ c

3
log

⎡

⎣
(2πt)2 sin

[
π(Y1)
L

]
sin
[
π(Y2)
L

]

L2

⎤

⎦

SB ≈ c

3
log

[
L

π
sin

(
π(Y1 − Y2)

L

)]
IA,B

SA ∝ 8 + SB ∝ 7− SA∪B ∝ 7IA,B ∝ 2× 4, IA,B = 0

(0.2)

2
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be approximated by the ground state of H0. In the next section, we will confirm this expectation by studying the
von Neumann entropy defined for single intervals. When the intervals do not include x = 0, we will see that the von
Neumann entropy at late enough times is given by entanglement entropy of the ground state.

On the other hand, when the interval includes x = 0, we will see that the von Neumann entropy is not given by
the ground state value, but by the total thermal entropy (once again at late enough times); the above expectation
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For generic x 6= 0, the envelop function is quadratic in t
2, in agreement with the discussion above. On the other hand,
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Appendix B: Observables in the Heisenberg picture

Instead of the following the time-dependence of the density matrix ⇢(t), the time-dependence of correlation functions
Tr [O1(X1)O2(X2) · · · ⇢(t)] can be followed by using the Heisenberg picture,
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Here, Oi(X) is a (primary) operator located at X on the circle. For a primary operator O at X with conformal
dimension (h, h̄), its Heisenberg evolution can be computed explicitly as
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(a) The SSD time evolution (b) The Möbius time evolution

FIG. 13. A sketch of how the spatial locations of an operator evolve in the Heisenberg picture for (a) the SSD and (b) Möbius
time evolutions. The initial insertion points of the operator are marked by red. The two fixed points X1

f = 0 and X2
f = L/2

are marked by purple. For the Mobius case, do the dashed red circles correspond to the turning point?
During the SSD evolution, the operators move to .             
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−iHMöbius/SSDt1 =

∣∣∣∣
dwNew

X

dwx

∣∣∣∣
2hn

σn

(
wNew

X , wNew
X

)

(wX , wX) = (iX,−iX).

XNew
X =

wNew
X − wNew

X

2i
, X = X1

f = 0, X = X2
f =

L

2

(0.2)

2



Define the spatial position as                                  . 
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FIG. 2. The time evolution of von Neumann entropy after the Möbius (second column) and SSD (third column) quench for
the subsystems centered around x = X1

f (second row), x = X2
f (third row). The total system size is L = 100000 and the

subsystem size is 2X = 6000 while the regulator has been set to ✏ = 10. The continuous curves correspond to the holographic
entanglement entropy while the dotted lines are the entanglement entropy prediction from the quasiparticle picture.

II. TIME-DEPENDENCE OF VON NEUMANN
ENTROPY AND BLACK HOLE-LIKE

EXCITATION

The quantum dynamics can be studied by two dif-
ferent pictures – the Schrödinger and Heisenberg pic-
tures. Adopting the Schrödinger picture, let us begin
by computing the time-dependent density matrix explic-
itly. In CFT, the regular and Möbius Hamiltonians form
an sl(2, R) algebra. (Some details are presented in Ap-
pendix A.) By making use of this algebraic structure,
when ✓ < +1, the time-dependence of the density ma-
trix can be computed explicitly as ⇢(t) = Z

�1
e
�2✏H0(t),

where

H0(t) +
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c
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(H+ � H�). (6)

From here, we immediately observe that the system ex-
hibits eternal oscillation. The periodicity of the oscilla-
tion is

2⇡

⌦
= L cosh 2✓. (7)

The oscillatory behavior after the Möbius quench can
be understood from the discrete energy spectrum of the
Möbius Hamiltonian with the level spacing given by ⇠
⌦ [29, 30]. One may then wish to take the SSD limit
✓ ! 1, but it turns out this is a bit subtle: At the
fixed point x ⇠ X

1

f
, the limits t ! 1 and ✓ ! 1 do

not commute. We will come back to the Schrödinger
picture analysis later when we analyze the holographic
dual description. For now, we switch to the Heisenberg
picture, which turns out to be more convenient to study
the dynamics for generic ✓.

Instead of following the time-dependence of the density
matrix ⇢(t), we can follow the time-dependence of corre-
lation functions Tr [O1(X1)O2(X2) · · · ⇢(t)] adopting the
Heisenberg picture. In our problem, the time-evolution
in the Heisenberg picture can be tracked by using a con-
formal map (maps). This allows us to study the time-
dependence of various observables, including von Neu-
mann entropy (mutual information) (The details of com-
putation are reported in Supplementary Material B. ).
This formalism applies to CFT of any kind. For pre-
sentational simplicity, in the following, we will focus on
a CFT with a gravity dual (holographic CFT). We also
studied free fermion CFT where the Rényi entropy can
be computed via bosonization [51]. We will comment on
the theory-dependence (i.e., holographic v.s. free fermion
CFTs) when necessary.

Let us first look at the von Neumann entropy for sub-
regions. Since there is no translation symmetry in our

EE decreases
with time.
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FIG. 2. The time evolution of von Neumann entropy after the Möbius (second column) and SSD (third column) quench for
the subsystems centered around x = X1

f (second row), x = X2
f (third row). The total system size is L = 100000 and the

subsystem size is 2X = 6000 while the regulator has been set to ✏ = 10. The continuous curves correspond to the holographic
entanglement entropy while the dotted lines are the entanglement entropy prediction from the quasiparticle picture.

II. TIME-DEPENDENCE OF VON NEUMANN
ENTROPY AND BLACK HOLE-LIKE

EXCITATION

The quantum dynamics can be studied by two dif-
ferent pictures – the Schrödinger and Heisenberg pic-
tures. Adopting the Schrödinger picture, let us begin
by computing the time-dependent density matrix explic-
itly. In CFT, the regular and Möbius Hamiltonians form
an sl(2, R) algebra. (Some details are presented in Ap-
pendix A.) By making use of this algebraic structure,
when ✓ < +1, the time-dependence of the density ma-
trix can be computed explicitly as ⇢(t) = Z

�1
e
�2✏H0(t),

where
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From here, we immediately observe that the system ex-
hibits eternal oscillation. The periodicity of the oscilla-
tion is

2⇡

⌦
= L cosh 2✓. (7)

The oscillatory behavior after the Möbius quench can
be understood from the discrete energy spectrum of the
Möbius Hamiltonian with the level spacing given by ⇠
⌦ [29, 30]. One may then wish to take the SSD limit
✓ ! 1, but it turns out this is a bit subtle: At the
fixed point x ⇠ X

1

f
, the limits t ! 1 and ✓ ! 1 do

not commute. We will come back to the Schrödinger
picture analysis later when we analyze the holographic
dual description. For now, we switch to the Heisenberg
picture, which turns out to be more convenient to study
the dynamics for generic ✓.

Instead of following the time-dependence of the density
matrix ⇢(t), we can follow the time-dependence of corre-
lation functions Tr [O1(X1)O2(X2) · · · ⇢(t)] adopting the
Heisenberg picture. In our problem, the time-evolution
in the Heisenberg picture can be tracked by using a con-
formal map (maps). This allows us to study the time-
dependence of various observables, including von Neu-
mann entropy (mutual information) (The details of com-
putation are reported in Supplementary Material B. ).
This formalism applies to CFT of any kind. For pre-
sentational simplicity, in the following, we will focus on
a CFT with a gravity dual (holographic CFT). We also
studied free fermion CFT where the Rényi entropy can
be computed via bosonization [51]. We will comment on
the theory-dependence (i.e., holographic v.s. free fermion
CFTs) when necessary.

Let us first look at the von Neumann entropy for sub-
regions. Since there is no translation symmetry in our
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and        ,respectively. 
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where h(x) f(x), L denotes the Hamiltonian density, envelop function, and system size.
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2 ,

it is larger than the un-deformed one. For x ⇡ L

2 , the Hamiltonian density modified by

fCSD(x) is smaller than the un-deformed one, while for x ⇡ 0, it is larger than the un-

deformed one. Therefore, the SSD and CSD may the dynamical properties of Hamiltonian

stronger at x ⇡ 0 or x ⇡ L

2 , respectively, while they may those properties weaker at x ⇡ L
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or x ⇡ 0, respectively.

2.2 The systems evolved with the inhomogeneously-deformed Hamil-
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Let us now describe the systems evolved with the inhomogeneously-deformed Hamiltonians.

System.1: Let us start from the thermofield double state of the finite inverse temperature
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of them, respectively. Thus, this thermofield double state is defined in the doubled Hilbert
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where in the SSD limit when ✓ ! 1, fMöbius(x) reduces to fSSD(x), while in the CSD limit
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where in the SSD limit when ✓ ! 1, fMöbius(x) reduces to fSSD(x), while in the CSD limit
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square (SS), and cosine-square (CS) deformed Hamiltonians. For x ⇡ 0, the Hamiltonian

density spatially modulated by fSSD(x) is smaller than the un-deformed one, while for x ⇡ L

2 ,

it is larger than the un-deformed one. For x ⇡ L

2 , the Hamiltonian density modified by

fCSD(x) is smaller than the un-deformed one, while for x ⇡ 0, it is larger than the un-

deformed one. Therefore, the SSD and CSD may the dynamical properties of Hamiltonian

stronger at x ⇡ 0 or x ⇡ L

2 , respectively, while they may those properties weaker at x ⇡ L

2

or x ⇡ 0, respectively.

2.2 The systems evolved with the inhomogeneously-deformed Hamil-

tonians

Let us now describe the systems evolved with the inhomogeneously-deformed Hamiltonians.

System.1: Let us start from the thermofield double state of the finite inverse temperature

�:

|TFDi = N e
�

✏(H1+H
2)

2

X

a

|ai1 ⌦ |ai2 , (2.3)

where H
i=1,2 and |ai

i=1,2 denote the un-deformed 2d CFT Hamiltonian, and the eigenstate

of them, respectively. Thus, this thermofield double state is defined in the doubled Hilbert

space, H = H1⌦H2. The square of N 2 guarantees that hTFD|TFDi = 1. Then, we unitarily
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Möbius/SSD ⌦ 12, (2.4)

where H
1
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Möbius/SSD and 12 denote the Möbius/SS deformed Hamiltonian acting on H1, and

identity operator on H2, respectively.

System.2: We start from an excited state which is defined as

| (t0)i =
⇣
e
�iH

1
0 t0 ⌦ 12

⌘
|TFDi , (2.5)

and then evolve it with the SSD Hamiltonian acting on only H1. Under this evolution, the

system is in the state given by

| (t1, t0)i =
⇣
e
�iH

1
SSDt1 ⌦ 12

⌘
| (t0)i . (2.6)

6

Contents

1 Parts 1

1 Parts

qi
2,L,q

i
1,L,q

i+1
1,L ,q

i+k
1,L ,q

i+l
1,L H1 H2, x = X1

f (1.1)

References

1

SA
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We start from thermofield double state,
then evolve the system with the 2d holographic Hamiltonian, 

For the time-regime,                     ,  
should be completely destroyed.
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2.3 Entanglement entropies in the twist operator formalism
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eiHMöbius/SSDt1σn(wX , wX)e
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1

E,↵
=

8
>>>><

>>>>:

e
H

1
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eiHMöbius/SSDt1σn(wX , wX)e
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square of N 2 guarantees that hTFD|TFDi = 1. Then, we unitarily evolve with Möbius/SS

deformed Hamiltonian. The time evolution operator acting on this thermofield double state

is defined as

UMöbius/SSD = e
�it1H

1
Möbius/SSD ⌦ 12, (2.4)

where H
1

Möbius/SSD
and 12 denote the Möbius/SS deformed Hamiltonian acting on H1, and

identity operator on H2, respectively.

System.2: We start from an excited state which is defined as

| (t0)i =
⇣
e

�iH
1
0 t0 ⌦ 12

⌘
|TFDi , (2.5)

and then evolve it with the SSD Hamiltonian acting on only H1. Under this evolution, the

system is in the state given by

| (t1, t0)i =
⇣
e

�iH
1
SSDt1 ⌦ 12

⌘
| (t0)i . (2.6)

System.3: Let us start from an excited state defined as

|�(t1)i =
⇣
e

�iH
1
SSDt1 ⌦ 12

⌘
|TFDi , (2.7)

and then evolve it with the un-deformed Hamiltonian acting on only H1. Under this evolu-

tion, the system is in the state given by

|�(t1, t0)i =
⇣
e

�iH
1
0 t0 ⌦ 12

⌘
|�(t1)i . (2.8)

2.3 Entanglement entropies in the twist operator formalism

To employ the path-integral formalism suited to analytic computation, let us define Euclidean

density operators as

⇢E,↵=0,1,2,3 = N 2

E

X

a,b

e
�✏(Ea+Eb)

⇣
U

1

E,↵=0,1,2,3
|ai hb|

1
Ũ

1

E↵=0,1,2,3
⌦ |a⇤i hb⇤|

2

⌘
, (2.9)

where the Euclidean normalization constant N �2

E
= tre�2✏H guarantees that tr⇢E,↵ = 1.

These density operators may be the analytic-continued ones in imaginary time corresponding

to the ones defined in Section 2.2. The Euclidean evolution operators are defined as

U
1

E,↵
=

8
>>>><

>>>>:

e
�H

1
Möbius⌧1 ↵ = 0

e
�H

1
SSD⌧1e

�H
1
⌧0 ↵ = 1

e
�H

1
⌧0e

�H
1
SSD⌧1 ↵ = 2

e
�H

1
SCD⌧2e

�H
1
SSD⌧1 ↵ = 3

, Ũ
1

E,↵
=

8
>>>><

>>>>:

e
H

1
Möbius⌧1 ↵ = 0

e
H

1
⌧0e

H
1
SSD⌧1 ↵ = 1

e
H

1
SSD⌧1e

H
1
⌧0 ↵ = 2

e
H

1
SSD⌧1e

H
1
SCD⌧2 ↵ = 3

. (2.10)

Divide the system into the subsystem V and V , the complement to it, and then define the

reduce Euclidean density operators for V as ⇢E,↵;V = trV⇢E,↵. Let A, B, and A [ B denote
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1 The setup considered

The system considered in this paper is in the thermal state with inhomogeneous Hamiltonian,

⇢ =
e
��Hq�Möbius

tre��Hq�Möbius
, (1.1)

where � is the inverse temperature, and the inhomogeneous Hamiltonian, Hq�Möbius, is defined

as

Hq�Möbius =

Z
L

0

dx

h
1� tanh 2✓

⇣
1� 2 sin2

⇣
q⇡x

L

⌘⌘i
(T (x) + T (x)), (1.2)

where the system is on the spatial circle with the period, L, ✓ is a real parameter, and q is

a positive integer. The Hamiltonian density is modulated by a envelop function defined by

f(x, ✓) = 1� tanh 2✓
⇣
1� 2 sin2

⇣
q⇡x

L

⌘⌘
. (1.3)

Since f(x, ✓ = 0) = 1, Hq�Möbius with ✓ = 0 reduces to uniform Hamiltonian,

H =

Z
L

0

dx(T (x) + T (x)) =
2⇡

L

h
L

z

0 + L
z

0 �
c

12

i
, (1.4)

where L
z

0 and L
z

0 are Virasoro generators. The envelop function can be considered as the

e↵ect of the curved background,

ds
2 = �f

2(x, ✓)dt2 + dx
2
, (1.5)

where ✓ is the parameter determing the geometrical structure of the background. As in [1]

curvature of this geometry is give by

R = �
2@2

x
f(x, ✓)

f(x, ✓)
=

8⇡2
q
2 tanh(2✓) cos

�
2⇡qx
L

�

L2
�
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�
2⇡qx
L

�
� 1

� . (1.6)
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(q is an integer.)
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Since f(x, ✓ = 0) = 1, Hq�Möbius with ✓ = 0 reduces to uniform Hamiltonian,

H =

Z
L

0

dx(T (x) + T (x)) =
2⇡

L

h
L

z

0 + L
z

0 �
c

12

i
, (1.4)

where L
z

0 and L
z

0 are Virasoro generators. The envelop function can be considered as the

e↵ect of the curved background,

ds
2 = �f

2(x, ✓)dt2 + dx
2
, (1.5)

where ✓ is the parameter determing the geometrical structure of the background. As in [1]

curvature of this geometry is give by

R = �
2@2

x
f(x, ✓)

f(x, ✓)
=

8⇡2
q
2 tanh(2✓) cos

�
2⇡qx
L

�

L2
�
tanh(2✓) cos

�
2⇡qx
L

�
� 1

� . (1.6)

1

Contents

1 The setup considered 1

1.1 2d holographic CFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1 Thermal entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Operator entanglement and thermofield double state 4

2.1 Operator entanglement entropy for the single and double intervals . . . . . 5

2.2 Two-dimensional holographic conformal field theory (2d HCFT) . . . . . . . 6

2.2.1 ✓-dependence of entanglement structure . . . . . . . . . . . . . . . . 8

3 E↵ective Hamiltonian 9

A Complex coordinate 9

1 The setup considered

The system considered in this paper is in the thermal state with inhomogeneous Hamiltonian,

⇢ =
e
��Hq�Möbius
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Our thermal state:
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For           (flat), entropy is                  .
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Hq�Möbius =

Z
L

0

dx

h
1� tanh 2✓

⇣
1� 2 sin2

⇣
q⇡x

L

⌘⌘i
(T (x) + T (x)), (1.2)

where the system is on the spatial circle with the period, L, ✓ is a real parameter, and q is

a positive integer. The Hamiltonian density is modulated by a envelop function defined by

f(x, ✓) = 1� tanh 2✓
⇣
1� 2 sin2

⇣
q⇡x

L

⌘⌘
. (1.3)
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HMöbius =

∫ L

0
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1 The setup considered

The system considered in this paper is in the thermal state with inhomogeneous Hamiltonian,

⇢ =
e
��Hq�Möbius
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, (1.1)

where � is the inverse temperature, and the inhomogeneous Hamiltonian, Hq�Möbius, is defined
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where the system is on the spatial circle with the period, L, ✓ is a real parameter, and q is

a positive integer. The Hamiltonian density is modulated by a envelop function defined by

f(x, ✓) = 1� tanh 2✓
⇣
1� 2 sin2

⇣
q⇡x

L

⌘⌘
. (1.3)

Since f(x, ✓ = 0) = 1, Hq�Möbius with ✓ = 0 reduces to uniform Hamiltonian,
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where L
z

0 and L
z

0 are Virasoro generators. The envelop function can be considered as the
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Hawking-Page transition is induced by spacetime.



Our thermal state:
We assume               (low temp.).
Here, A doesnʼt include x=0,L/4,L/2,3L/4.
B includes x=L/2.
In the large   limit, the behavior of 
entanglement entropy is
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Möbius(x, θ)dt

2 + dx2

R(x, θ) =
8π2 tanh 2θ cos

(
2πx
L

)

L2
(
tanh 2θ cos

(
2πx
L

)
− 1
) ,

L

2
> lA + lB > 0

1 ≫ ϵ
∫ L

0

dx
√
− det g(T (x) + T (x)), R(θ, x) = −2∂2

xf(θ, x)

f(θ, x)
=

8π2q2 tanh (2θ) cos
(
2πqx
L

)

L2
(
tanh (2θ) cos

(
2πqx
L

)
− 1
) , L/β < 1, θ = 0

θ = 0, S ≈ O(1)

S ≈
{
O(1) L cosh 2θ/β < 1

Le2θ L cosh 2θ/β > 1
,

SA ≈ c

3
log

[
sin

(
4πlA
L

)]
SB ≈ c · Ccof.Le2θ

β
(0.3)

3

IA,B = 0 t1 − t1,0 = ∓ L

2π

[
1

tan
(
πX1
L

) − 1

tan
(
πX0
L

)
]

vR,L = ±1, t0,1 − t0,0 = ± [X1(t0,1, t1)−X0(t1)]

ρL,R(t1, t0 = t0,0), SB ≈ 2× cπL

12ϵ
, SB ≈ cπL

12ϵ
,

|Ψ(t)⟩ = Ne−iHt |Ψ⟩ . |Ψ⟩ = Ne−ϵH |Boundary state⟩ .
U(t) = e−iHt, SA = −trAρA log ρA, ρA = trAρ, A A.

SA ≈ c

3
log ϵ+

{
πct
6ϵ t < l

2 ,
πcl
12ϵ t > l

2 .
,

trA
(
e−iHt |Ψ⟩ ⟨Ψ| eiHt

)
≈ trAe

−ϵH , SA ≈ lA, SB ≈ lB, SA∪B ≈ (lA + lB), IA,B ≈ 0.

ρA∪B ≈ ρA ⊗ ρB

ρ =
e−2ϵH

tre−2ϵH
, |Ψ⟩ = 1√

tre−2ϵH

∑

a

e−ϵH |a⟩1 ⊗ |a⟩2 , trH1 (|Ψ⟩ ⟨Ψ|) = trH2 (|Ψ⟩ ⟨Ψ|) = ρ

e−iHInh.tρeiHInh.t, e−iH1
Inh.t |Ψ⟩ |Bell, k⟩ = 1√

2
(|↑⟩1 |↑⟩2 + |↓⟩1 |↓⟩2) ,

|TFD⟩ =
L∏

k=1

|Bell, k⟩ , L cosh 2θ.

IThermal
A,B ≈ 0 IVacuumA,B .

ρThermal
A∪B ≈ ρA ⊗ ρB ρA∪B ≈ ρVacuumA∪B ,

O(1) +O(1) ≈ SVacuum
A =

c

3
log

[
L

π
sin

[
π(Y1 − Y2)

L

]]
SThermal
A H1

SA SB SA∪B, IA,B ≈ 0

SA ≈ SVacuum
A , SB ≈ SVacuum

B , SA∪B ≈ SVacuum
A∪B , IA,B ≈ IVacuumA,B , H =

∫ L

0

dxh(x), ⟨·| |·⟩

Sα ̸= lα, IA,B ̸= 0

ρA∪B = ρA ⊗ ρBρA∪B ̸= ρA ⊗ ρB
πe2θ

(
e4θ − 1

)
q sin

(
πq(X1−X2)

L

)
sin
(

πq(2t−X1−X2)
L

)

L
(
e4θ sin2

(
πq(t−X1)

L

)
+ cos2

(
πq(t−X1)

L

))(
e4θ sin2

(
πq(t−X2)

L

)
+ cos2

(
πq(t−X2)

L

))

ds2 = −f 2
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Our thermal state:
We assume               (low temp.).
Here, A doesnʼt include x=0,L/4,L/2,3L/4.
B includes x=L/2.
In the large   limit, the behavior of 
entanglement entropy is
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Möbius(x, θ)dt

2 + dx2

R(x, θ) =
8π2 tanh 2θ cos

(
2πx
L

)

L2
(
tanh 2θ cos

(
2πx
L

)
− 1
) ,

L

2
> lA + lB > 0

1 ≫ ϵ
∫ L

0

dx
√

− det g(T (x) + T (x)), R(θ, x) = −2∂2
xf(θ, x)

f(θ, x)
=

8π2q2 tanh (2θ) cos
(
2πqx
L

)

L2
(
tanh (2θ) cos

(
2πqx
L

)
− 1
) , L/β < 1, θ = 0

θ = 0, S ≈ O(1)

S ≈
{
O(1) L cosh 2θ/β < 1

Le2θ L cosh 2θ/β > 1
,

SA ≈ c

3
log

[
sin

(
4πlA
L

)]
SB ≈ c · Ccof.Le2θ

β
(0.3)

3

IA,B = 0 t1 − t1,0 = ∓ L

2π

[
1

tan
(
πX1
L

) − 1

tan
(
πX0
L

)
]

vR,L = ±1, t0,1 − t0,0 = ± [X1(t0,1, t1)−X0(t1)]

ρL,R(t1, t0 = t0,0), SB ≈ 2× cπL

12ϵ
, SB ≈ cπL

12ϵ
,

|Ψ(t)⟩ = Ne−iHt |Ψ⟩ . |Ψ⟩ = Ne−ϵH |Boundary state⟩ .
U(t) = e−iHt, SA = −trAρA log ρA, ρA = trAρ, A A.

SA ≈ c

3
log ϵ+

{
πct
6ϵ t < l

2 ,
πcl
12ϵ t > l

2 .
,

trA
(
e−iHt |Ψ⟩ ⟨Ψ| eiHt

)
≈ trAe

−ϵH , SA ≈ lA, SB ≈ lB, SA∪B ≈ (lA + lB), IA,B ≈ 0.

ρA∪B ≈ ρA ⊗ ρB

ρ =
e−2ϵH

tre−2ϵH
, |Ψ⟩ = 1√

tre−2ϵH

∑

a

e−ϵH |a⟩1 ⊗ |a⟩2 , trH1 (|Ψ⟩ ⟨Ψ|) = trH2 (|Ψ⟩ ⟨Ψ|) = ρ

e−iHInh.tρeiHInh.t, e−iH1
Inh.t |Ψ⟩ |Bell, k⟩ = 1√

2
(|↑⟩1 |↑⟩2 + |↓⟩1 |↓⟩2) ,

|TFD⟩ =
L∏

k=1

|Bell, k⟩ , L cosh 2θ.

IThermal
A,B ≈ 0 IVacuumA,B .

ρThermal
A∪B ≈ ρA ⊗ ρB ρA∪B ≈ ρVacuumA∪B ,

O(1) +O(1) ≈ SVacuum
A =

c

3
log

[
L

π
sin

[
π(Y1 − Y2)

L

]]
SThermal
A H1

SA SB SA∪B, IA,B ≈ 0

SA ≈ SVacuum
A , SB ≈ SVacuum

B , SA∪B ≈ SVacuum
A∪B , IA,B ≈ IVacuumA,B , H =

∫ L

0

dxh(x), ⟨·| |·⟩

Sα ̸= lα, IA,B ̸= 0

ρA∪B = ρA ⊗ ρBρA∪B ̸= ρA ⊗ ρB
πe2θ

(
e4θ − 1

)
q sin

(
πq(X1−X2)

L

)
sin
(

πq(2t−X1−X2)
L

)

L
(
e4θ sin2

(
πq(t−X1)

L

)
+ cos2

(
πq(t−X1)

L

))(
e4θ sin2

(
πq(t−X2)

L

)
+ cos2

(
πq(t−X2)

L

))

ds2 = −f 2
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Möbius(x, θ)dt

2 + dx2

R(x, θ) =
8π2 tanh 2θ cos

(
2πx
L

)

L2
(
tanh 2θ cos

(
2πx
L

)
− 1
) ,

L

2
> lA + lB > 0

1 ≫ ϵ
∫ L

0

dx
√
− det g(T (x) + T (x)), R(θ, x) = −2∂2

xf(θ, x)

f(θ, x)
=

8π2q2 tanh (2θ) cos
(
2πqx
L

)

L2
(
tanh (2θ) cos

(
2πqx
L

)
− 1
) , L/β < 1, θ = 0

θ = 0, S ≈ O(1)

S ≈
{
O(1) L cosh 2θ/β < 1

Le2θ L cosh 2θ/β > 1
,

SA ≈ c

3
log

[
sin

(
4πlA
L

)]
SB ≈ c · Ccof.Le2θ

β
(0.3)

3

Similar to Vacuum EE 
on the interval of L/4.

Exponential growth with   .   

When the subsystem includes the region 
where curvature is negatively large, 
entanglement entropy grows with    .     

IA,B = 0 t1 − t1,0 = ∓ L

2π

[
1

tan
(
πX1
L

) − 1

tan
(
πX0
L

)
]

vR,L = ±1, t0,1 − t0,0 = ± [X1(t0,1, t1)−X0(t1)]

ρL,R(t1, t0 = t0,0), SB ≈ 2× cπL

12ϵ
, SB ≈ cπL

12ϵ
,

|Ψ(t)⟩ = Ne−iHt |Ψ⟩ . |Ψ⟩ = Ne−ϵH |Boundary state⟩ .
U(t) = e−iHt, SA = −trAρA log ρA, ρA = trAρ, A A.

SA ≈ c

3
log ϵ+

{
πct
6ϵ t < l

2 ,
πcl
12ϵ t > l

2 .
,

trA
(
e−iHt |Ψ⟩ ⟨Ψ| eiHt

)
≈ trAe

−ϵH , SA ≈ lA, SB ≈ lB, SA∪B ≈ (lA + lB), IA,B ≈ 0.

ρA∪B ≈ ρA ⊗ ρB

ρ =
e−2ϵH

tre−2ϵH
, |Ψ⟩ = 1√

tre−2ϵH

∑

a

e−ϵH |a⟩1 ⊗ |a⟩2 , trH1 (|Ψ⟩ ⟨Ψ|) = trH2 (|Ψ⟩ ⟨Ψ|) = ρ

e−iHInh.tρeiHInh.t, e−iH1
Inh.t |Ψ⟩ |Bell, k⟩ = 1√

2
(|↑⟩1 |↑⟩2 + |↓⟩1 |↓⟩2) ,

|TFD⟩ =
L∏

k=1

|Bell, k⟩ , L cosh 2θ.

IThermal
A,B ≈ 0 IVacuumA,B .

ρThermal
A∪B ≈ ρA ⊗ ρB ρA∪B ≈ ρVacuumA∪B ,

O(1) +O(1) ≈ SVacuum
A =

c

3
log

[
L

π
sin

[
π(Y1 − Y2)

L

]]
SThermal
A H1

SA SB SA∪B, IA,B ≈ 0

SA ≈ SVacuum
A , SB ≈ SVacuum

B , SA∪B ≈ SVacuum
A∪B , IA,B ≈ IVacuumA,B , H =

∫ L

0

dxh(x), ⟨·| |·⟩

Sα ̸= lα, IA,B ̸= 0

ρA∪B = ρA ⊗ ρBρA∪B ̸= ρA ⊗ ρB
πe2θ

(
e4θ − 1

)
q sin

(
πq(X1−X2)

L

)
sin
(

πq(2t−X1−X2)
L

)

L
(
e4θ sin2

(
πq(t−X1)

L

)
+ cos2

(
πq(t−X1)

L

))(
e4θ sin2

(
πq(t−X2)

L

)
+ cos2

(
πq(t−X2)

L

))

ds2 = −f 2
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The thermodynamic on the curved spacetime
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Our thermal state:
We assume               (low temp.).
Here, A doesnʼt include x=0,L/4,L/2,3L/4.
B includes x=L/2.
In the large   limit, the behavior of 
entanglement entropy is
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Similar to Vacuum EE 
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When the subsystem includes the region 
where curvature is negatively large, 
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Phase transition may be induced 
by the entanglement phase transition 
in  the region where curvature is 
negatively large.

The thermodynamic on the curved spacetime



Our thermal state:
We assume               (low temp.).
Here, A doesnʼt include x=0,L/4,L/2,3L/4.
B includes x=L/2.
In the large   limit, the behavior of 
entanglement entropy is
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1 The setup considered
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where L
z

0 and L
z

0 are Virasoro generators. The envelop function can be considered as the

e↵ect of the curved background,
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, (1.5)

where ✓ is the parameter determing the geometrical structure of the background. As in [1]
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Similar to Vacuum EE 
on the interval of L/4.
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When the subsystem includes the region 
where curvature is negatively large, 
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Phase transition may be induced 
by the entanglement phase transition 
in  the region where curvature is 
negatively large.

Spacetime (maybe, curvature? or geometry?) generates 
entanglement or induces entanglement phase transition.

The thermodynamic on the curved spacetime



Summaries
• We studied the time dependence and thermodynamic properties of 

entanglement entropy and mutual information in two-dimensional 
inhomogeneous conformal field.

• During the time evolution from the TFD, mutual information can 
revive(non-local correlation retrieval).

• In holographic CFT on the curved spacetime, the phase  transition 
(entanglement phase transition) related to curvature may occurs.



Future directions
• Quantum many body-scars

• Measurement-induced phase transition

• ETH and thermalization on the curved spacetime

• Quantum simulation

• Cosmology

• Experiments
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