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What can a ground state look like?

E.g. 1D spin chain.

for a local lattice Hamiltonian
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𝐻 is gapped: energy gap between ground state and next state.

Not true in higher dimensions!

All gapped 1D ground states “look the same”: like a product state.



Quantum phases of matter

Two gapped systems 𝜓1 , 𝐻1  and ( 𝜓2 , 𝐻2) are 
in the same phase iff
 

Equivalent conditions:

1. Circuits: 𝜓1 = 𝑈 |𝜓2⟩ for a constant-depth, 
local unitary circuit 𝑈.  
“Same entanglement structure.”
 

2. Deformations: ∃ path of gapped Hamiltonians 
from 𝐻1 to 𝐻2.
“No phase transition.”
 

Phases are equivalence classes.

We don’t impose symmetry: “topological phases.”

t1D Circuit

Space of Hamiltonians

𝐻1 𝐻1 



What can gapped ground states look like?

i.e.

Can we classify gapped quantum phases? 

Much is well-understood.
Few solid arguments.



This work

Prove classification of 2D 
bosonic gapped phases 
with gapped boundary?

(work in progress)

Cleaner setup



Summary

Example of non-trivial phase: toric code.  Or: string-net states.

Anyon content described by tensor category.

Conjectured classification:
   States in the same phase ⇔ states have same anyon content.

   1. (⇒) Define circuit-invariant anyon data.  (Most previous work.)

   2. (⇐) Show two states with same anyon data are connected by short circuit.

Baby version: trivial phase ⇔ no anyons.

Our training wheels: states with strict area law. “Entanglement bootstrap.”

Key technical task: convert these states to string-nets with short circuits.

Classify 2D bosonic gapped ground states with gapped boundary?

⇒ Full classification of 2D states with strict area law.



Previous work
Algebraic theory of anyons: 
Levin-Wen, Kitaev, Kitaev-Kong.

Circuit-invariant anyon data: 
Haah, Kato-Naaijkens, Cha-Naaijkens-Nachtergaele, Ogata.

Entanglement bootstrap tools: 
Shi-Kato-Kim, Shi-Kim.

Showing same anyon content implies same phase: little previous work?



An example: the toric code
Qubit on each edge
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Deformable string operator
Unique gapped ground state 𝜓0  on plane.

⟨𝐻𝑖,𝑗⟩

Localized excitation

Excitation not locally detectable far away. 
But globally detectable on distant annulus.



Warm-up: a coarse classification 

Claim: trivial phase ⇔ no anyons.

1. (⇒) O(1)-complexity (“trivial”) ground states cannot support anyons.

2. (⇐) States which cannot support anyons are O(1)-complexity.

First, need better notion of anyons.

Want to ask whether a ground state “supports anyonic excitations,” 
without referring to a parent Hamiltonian.



What are anyons?

𝐴

𝜌0= ground state
𝜌1 = state with single excitation
            localized to 𝐴  𝑅

𝑅

𝑅
“localized to 𝐴” means 𝜌1 looks like 𝜌0 locally outside 𝐴:
𝜌0

𝑅 = 𝜌1
𝑅 ∀ O(1)-sized disks 𝑅 ⊂ ҧ𝐴 .

When 𝜌1 = 𝑈𝐴𝜌0𝑈𝐴
−1 for some 𝑈𝐴, we say: 

the excitation can be “created locally.”

Braid excitation 𝑏 around 𝑎 with unitary 𝑊. 
If 𝑎 can be created locally using 𝑈𝐴 then 𝑊, 𝑈𝐴 = 0, 
so applying 𝑊cannot produce a phase depending on presence of 𝑎.
⇒ anyons cannot be created locally!

Take this as a definition of an anyon, or “topological excitation”:
a localized excitation that cannot be locally created.

𝑎 𝑏𝑊

Note we don’t need to refer to a Hamiltonian.  Just say: state 𝜌0 supports a topological excitation 𝜌1 if […]



Warm-up: a coarse classification 

Claim: trivial phase ⇔ no anyons.
1. (⇒) O(1)-complexity ground states cannot support anyons.

2. (⇐) States without anyons are O(1)-complexity.

𝐴

Proof of (1):
First argue product state 𝜌0 = 00 … ⟨00 … | cannot support anyons.  
Let 𝜌1 be state with single excitation w.r.t 𝜌0, localized to 𝐴. 
So 𝜌1 looks like 0 0  locally outside 𝐴. But then 𝜌1 matches 𝜌0 globally outside 𝐴. 
Then 𝐴 and ҧ𝐴 disentangled, so 𝜓1 = 𝑈𝐴 𝜓0  for some 𝑈𝐴.  Excitation can be 
created locally.

Likewise, take arbitrary trivial state 𝜓0 = 𝑈 0 ⊗𝑛.  Consider state 𝜓1  with 
excitation localized to 𝐴 .  Exercise: show 𝜓1 = 𝑈𝐴+

𝜓0  for some 𝑈𝐴+
. 

So 𝜓0  does not support anyons.



Warm-up: a coarse classification 
Claim: trivial phase ⇔ no anyons.

1. (⇒) O(1)-complexity ground states cannot support anyons.

2. (⇐) States without anyons are O(1)-complexity.

Proof of (2):
Ground state 𝜓0 , does not support anyons.
Take coarse-grained green regions.
Coarse-grained Hamiltonian on green is 2-local.
2-local Hamiltonians have a trivial groundstate, 𝜓1 . 
                             (similar to 1D…) [Bravyi-Vyalyi.] 
𝜓1  is like 𝜓0  with some localized excitations.
𝜓0  doesn’t support anyons, so* excitations of 𝜓1  can be removed with local unitaries.

 
Then 𝜓0  is trivial state. *something swept under rug



A more sophisticated approach to anyons



Information convex set
𝜌 = ground state

Consider all states 𝜎𝐴+
on 𝐴+ that 

“locally look the same as 𝜌,” i.e
look the same as 𝜌 on all O(1)-sized disks 𝑅 ⊂ 𝐴+, 
Tr ത𝑅𝜎𝐴+

= Tr ത𝑅𝜌.

This set of states is convex.  

Erase 𝐴+\ 𝐴 to obtain some convex set of states on 𝐴.
Called the information convex set of 𝐴, denoted Σ 𝐴 .

For 𝜌 = toric code ground state, 
Σ 𝐴 = conv{𝜌𝐴, 𝜌𝐴

𝑒 , 𝜌𝐴
𝑚, 𝜌𝐴

𝑒𝑚}.

𝐴

𝐴+

Annulus 𝐴 ⊂ 𝐴+. 

𝑅

Recovered list of anyons 
from the ground state!



The entanglement bootstrap program

Shi, Kato, & Kim, 2019.

Recovers anyon data from the ground state.

Given state, they obtained: list of anyons, fusion rules, string operators.

Using methods from Levin-Kawagoe 2019, we also can recover the full 
braided tensor category.

Lots of power, at a price:
Requires some assumptions about the state.

What assumptions?



Strict area law

Sufficient to assume entanglement entropy obeys strict area law,

𝑆𝐴 = 𝛼 𝜕𝐴 + 𝛾,

for some constants 𝛼, 𝛾, for all regions 𝐴.  

Unnatural for non-translation-invariant states.  
Empirically: Approximately true for translation-invariant, gapped states.

Imagine coarse-graining lattice first, so it holds with high precision.

𝐴



Entanglement bootstrap (EB) axioms

𝐶 𝐵

𝑆 𝐶 + 𝑆 𝐵𝐶 − 𝑆 𝐵 = 0

𝐶 𝐷

𝑆 𝐵𝐶 + 𝑆 𝐶𝐷 − 𝑆 𝐵 − 𝑆(𝐷) = 0

𝐵

Also sufficient to assume the two entropy equalities below, for all O(1)-
sized regions that have these topologies.

Imagine coarse-graining lattice first, so regions are O(1) but large. 

Equalities follow from strict area law, but do not require it. 

They’re “empirically” true to high accuracy.



Entanglement bootstrap axioms

𝐶

𝐼 𝐴: 𝐶 = 0

𝐶

𝐼 𝐴: 𝐶 𝐵 = 0

𝐵

Equivalent to assuming:

(1) No long-range mutual information, & 

(2) No long-range conditional mutual information. 

These states:

• Have zero correlation length

• Have gapped parent Hamiltonians

• Approximately encompass all gapped ground states 
after sufficient coarse-graining?

𝐴

𝐴



“Gapped boundary”

𝐶
𝐼 𝐴: 𝐶 = 0𝐴 𝐼 𝐴: 𝐶|𝐵 = 0𝐴

𝐶
𝐵

Given a gapped Hamiltonian on the plane, if you place it on a disk with 
boundary, the system may become gapless.

Many possible choices of Hamiltonian terms used at the boundary.
Sometimes, no choice of boundary terms maintains the gap.  

We only consider systems that have “gapped boundary.”

This restriction is baked into our assumptions:

We assume the state still satisfies the EB conditions along the boundary.

boundary boundary

(Shi & Kim, 2021)



Our setup: a “nice” gapped state.

Given pure state |𝜓⟩ on large disk-like region with 
boundary.

Assume:

1. EB conditions hold (zero MI, zero CMI).

2. For every disk-like* subregion 𝑅, there exists 
|𝜓𝑅⟩, with boundary, satisfying EB conditions, 
that matches |𝜓⟩ away from 𝜕𝑅.

3. These |𝜓𝑅⟩ match each other wherever they 
overlap (including along their boundaries).

|𝜓⟩

𝑅1

𝑅2

𝜓𝑅1
, 𝜓𝑅2

 match on           .

𝑅

𝜓 , 𝜓𝑅  match on           .

(Does not require translation-invariance!)

We suggest these assumptions are reasonable for a gapped Hamiltonian with 
gapped boundary terms that can be placed anywhere on the lattice. Do you agree?



Our results
Call states from previous slide “nice” 2D gapped states with gapped 
boundary.

Core result: 
A “nice” state can be transformed to a string-net by a constant-depth unitary 
circuit. 

Corollary: 
Two nice states can be mapped to each other in the bulk iff they have the 
same bulk anyon data (same UMTC).
(Uses Lootens et al. result about Morita-equivalent string-nets.)

Corollary:
Assume any 2D gapped groundstate with gappable boundary can be mapped 
to a nice state by quasi-local flow.  Then the equivalence classes of 2D 
gapped phases with gappable boundary are given by the doubled UMTCs. 
(Uses Ogata’s result about invariance of anyon data under quasi-local flow.) 



Background for proof technique



Information convex set
𝜌 = ground state

Consider all states 𝜎𝐴+
on 𝐴+ that 

“locally look the same as 𝜌,” i.e
look the same as 𝜌 on all O(1)-sized disks 𝑅 ⊂ 𝐴+, 
Tr ത𝑅𝜎𝐴+

= Tr ത𝑅𝜌.

This set of states is convex.  

Erase 𝐴+\ 𝐴 to obtain some convex set of states on 𝐴.
Called the information convex set of 𝐴, denoted Σ 𝐴 .

For 𝜌 = toric code ground state, 
Σ 𝐴 = conv{𝜌𝐴, 𝜌𝐴

𝑒 , 𝜌𝐴
𝑚, 𝜌𝐴

𝑒𝑚}.

𝐴

𝐴+

Annulus 𝐴 ⊂ 𝐴+. 

𝑅

Recovered list of anyons 
from the ground state!



Boundary anyons

Can define information convex set for any region.  

For boundary half-annulus 𝑋,
Σ 𝑋 = conv 𝜌𝐴

𝑎
𝑎

with one sector for each anyon type 𝑎 that lives at the boundary.

Structure of IC only depends on topology of region.

E.g. Σ 𝑋 ≅ Σ 𝑌 .

𝑋

𝑎

𝑋

𝑌



Proof idea

Apply depth-1 circuit to 
“punch holes” in the bulk.  The 
holes have gapped boundary.

What does state look like on a blue region      ?𝑋

Locally looks like ground state, so it’s in Σ X .
⇒ it’s a mixture of orthogonal sectors labeled 
by boundary anyon types.

Consider blue region as single qudit, with basis 
labeled by boundary anyon types.

Looks like string-net on hexagonal lattice! 
Edge DOF labeled by boundary fusion category.

We coarse-grain, locally disentangle. Then show there exists a parent 
Hamiltonian identical to string-net parent Hamiltonian.



The classification of 2D bosonic gapped phases with gapped boundary 
appears to follow the conjecture!

Was it pre-ordained?  Maybe not, otherwise the proof would have been 
easier.  (This wasn’t even the “𝜖, 𝛿” version.)  
Or give me a simpler argument!

One non-trivial “check”: we obtained generalized string-nets, not the 
original (slightly more restrictive) string nets.

Next:
Let’s do nonzero correlation length, higher dimensions, symmetries, etc.

Outlook



Thank you!
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