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MOTIVATION
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* The conventional picture of (non-supersymmetric) extremal black holes, viz., one
where there is non-trivial degeneracy at zero temperature, is somewhat curious.

* Not only does this naively violate the third law of thermodynamics, it also poses
challenges for how near-extremal black holes Hawking radiate.
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* The fact that energy departures from extremality are quadratic, has important

implications: at temperatures below the gap, the black hole is unable to decharge

by emlttlng even a Slngle Hakag quantum. Preskill, Schwarz, Shapere, Trivedi, Wilczek ‘91

* Various attempts have been made to address, eg., black hole pair production,
attractor mechanism, etc. Hawking, Horowitz, Ross ‘94 Dabholkar, Sen, Trivedi ‘06

* The modern understanding of this situation is somewhat prosaic: the non-trivial
degeneracy is illusory, and in fact near-extremal black holes have a vanishingly
small degeneracy. They behave like a conventional quantum mechanical system
with few low-lying excitations. Ghosh, Maxfield, Turiaci, ‘19 lliesiu, Turiaci ‘20



MOTIVATION

* The essential point is that the semiclassical analysis needs to carried out with care.
While the black hole is a dominant saddle, fluctuations around it are important.

Z ~ det() GIO —|—d€t1 611 SR

* The modification in the low temperature thermodynamics arises from the presence
of zero modes of the extremal geometry localized in the near-horizon region.
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1-loop det of gapless modes classical result

1-loop corrections from Sen "11-"12
gapped and gapless modes |jigsju, Murthy, Turiaci ‘22

* The zero mode contribution can be nicely isolated by examining how they get
gapped in the near-extremal solution.



PLAN OF TH

* The fastest way to derive this picture is to appeal to the enhanced SL(2,R)
symmetry of the near-horizon region Kunduri, Lucietti, Reall 07

* Dimensional reduction to this AdS, spacetime gives and effective JT gravity
description, where quantum effects can be understood. -
Moitra, Trivedi, Vishal 18
* We will try to understand this in two examples, both involving rotation, motivated
by two different questions:

<+ The dimensional reduction is not quite natural in the case of rotating black holes,
where the AdS; factor is typically warped and fibered over some compact base
space. Would therefore be preferable to test the ideas directly without reduction.
Upshot: mostly works, but poses a puzzle regarding rotational zero modes.
Castro, Larsen 09 Moitra, Trivedi, Sake, Vishal ’19

<+ The effects of the zero modes contributing to the 1-loop determinant should be a
robust prediction of any sensible theory of quantum gravity. How does it work in
string theory (viz., account for finite string length effects).

Upshot: one calculable example to demonstrate the universal low temperature
thermodynamics.



Near-extremal Kerr and its enmyay

] [ija Rakic, MR, joacluin Turiaci




EUCLIDEAN RQUANTUM GRAVITY: SAPDPLE ANALYSIS

— e — E— S— — — _——————————

* Focus on gravity with vanishing cosmological constant and understand the general
computation of one-loop fluctuations around a classical saddle.
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* Saddle analysis proceeds as usual: we find solutions to Einstein’s equations with
given boundary conditions and evaluate the on-shell action.

* Fluctuations around the background: pick suitable gauge fixing term (harmonic
gauge) to simplify the quadratic fluctuation operator. For spin-2 fields we have the
Lichnerowicz operator
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* Construct eigenbasis of Lichnerowicz operator (may have zero modes) and
compute the determinant.



EVALMAT!NQ THE ONI -—LOO'P DET""RM!NANT

* Evaluation of the determinant follows from the eigenbasis using standard heat-
kernel techniques.

KZJ :L' x': S Z e~ f(z ) f ( ) quantum propagator
1 ds d i
log Z1 100p = 5 p — K(s), K(s)= [ d°x+/g K" (x,x,s)
Auv
UV cut-off

* K(s) has a Laurent expansion with the polar terms capturing the UV divergences,
which have to be countertermed away.

* Physical information in the constant piece, which is present in even dimensions. It
can be computed directly using the conformal anomaly without recourse to details
about the actual eigenbasis.

* Assuming the black hole saddle configurations have a single macroscopic length
scale (eg., horizon size) gives the one-loop correction to black hole entropy.

* Ensemble matters: Legendre transform between ensembles with macroscopic
parameters also gives logarithmic corrections. Sen '11-'12



KERR ENTROPY

* For the non-extreme Kerr black hole, one evaluates the conformal anomaly, which

gives the result in the grand canonical ensemble. Transforming to the canonical

ensemble (fixed angular momentum) one finds for pure gravity: Sen 12
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* Extremal Kerr: zoom into the near-horizon where the canonical ensemble is
natural. Accounting for the fact that there are 4 zero modes in the geometry:
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* Near-extremal Kerr: account for the quantum dynamics of the zero modes (TBD)

leading to: Sy = 21 J
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* Result valid for low temperatures, but not exponentially low (eg., when other

saddles start to dominate). Rakic, MR, Turiaci /wip



NHEK: SCHWARZIAN ZERO MOPES

* Near-horizon geometry of extreme Kerr: Bardeen, Horowitz ‘99

dy? 4 .J? sin® 0
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* Natural boundary conditions: freeze angular momentum.

* Expectation for zero modes: 3 come from near AdS; or the Schwarzian dynamics
(breaking of SL(2)) and rotation should give one.

* One can look for the modes by solving for metric fluctuations generated by large
diffeomorphisms that are annihilated by the Lichnerowicz operator:
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* Normalize the zero modes with the ultralocal measure on the space of fluctuations.
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REGULATED ACTION

* To compute the determinant, one regulates the zero modes by consider a small
departure from extremality.

* Focus on the near-horizon of a near-extremal black hole, including the zero
modes:

0 1 Sch
Guv =9, + 19, +€hy,
* The on-shell action gives a thermally regulated action for the zero modes:
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* Including the conformal anomaly contribution, and accounting for the logarithmic
terms we end up with the quoted result:
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ROTATIONAL L1

* The near-horizon region was expected to have a rotational zero mode as well.

* Intuition: dimensional reduction gives an Abelian gauge field which has a large
gauge transformation by a function

M = @t (—y_1>2
y+1

* Working directly in four dimensions we find that this does not generate a zero
mode for the spin-2 Lichnerowicz operator.

0 ro
frot = A % ALv(agb)t 7& 0

* Issue: gauge condition not being respected. Can prove that there is no non-
singular gauge transformation that brings us to the harmonic gauge.

* There do not appear to be zero modes which are generated by large diffeos.

* In the canonical ensemble, the absence of this mode affects the log(Area) term,
but not the temperature correction.



ROTAT IONAL ZLERO MOD : MLZLE
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* We can try to benchmark the calculation by looking at other examples: near-
extremal rotating BTZ is a simple example to study.
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* Once again the Schwarzian zero modes are easy to find in this geometry, but there
appears to be no rotational zero mode.

* In fact, as we will argue shortly, the absence is consistent with the microscopic
picture, for either the canonical or the grand canonical ensemble.

* This would have seemed definitive, but for the fact that the matching of the
semiclassical calculation with microscopic data in the BMPV black hole depends
on the existence of the rotational zero mode:

d 2
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* Need 7 zero modes: 3 Schwarzian, 3 from the two-sphere, and one rotational.



Seeﬁing the Schwarzian in the string

Christian Ferko, Sameer ‘Murtﬁy, ‘MR




LOW TEMPERATURE, HIGH SPIN UNIVERSALITY

* Asymptotic high spin density of states in a 2d CFT has a nice universal limit that

can be recognized as the Schwarzian contribution. | -
Ghosh, Maxfield, Turiaci, ‘19

* Consider a 2d CFT with Virasoro symmetry (no conserved currents), with a modular
invariant partition function that has a character decomposition:

ZCFT (7_7 ?) — Xvac Xvac _|_ Z Xh

c—1 ]_ = q
p— 24
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* The limit of interest is low temperatures and fixed angular momentum:

T ~ (’)(c_l), J ~ 0(03), c>1
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* The temperature dependence is the same in the grand canonical ensemble.
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LOW TEM'PI

* Result follows using modular invariance and the nature of the vacuum character.

* Original result inspired by BTZ black hole thermodynamics, but can be argued to
hold in an extended domain. Pal, Qiao ‘23

* The semiclassical computation proceeds as in the near-extremal Kerr case.

* The fact that temperature dependence is unchanged between canonical and
grand canonical ensembles is consistent with there being a Schwarzian zero mode,
but no rotational zero mode in the near-horizon geometry.

* Alternately, one can start with the gravitational action in AdS3; to compute the
thermal graviton partition function, which gives the Virasoro vacuum character, and
use modular properties to extract the BTZ result Giombi, Maloney, Yin ‘08

* We will follow this route for the string, working directly with the thermal AdS;
geometry for simplicity.



* Focus on bosonic string theory with target space AdS; x X.

* The AdS3 part with pure NS-NS flux is a SL(2,R) WZW model, and we will simply
represent X by a unitary CFT of the appropriate central charge.  Giveon, Kutasov, Seiberg '98

3 ]43 de Boer, Ooguri, et al '98

k — g‘z_js m -+ Cx — 20 Maldacena, Ooguri ‘00

* We will for the most part stick to the semiclassical limit (large k); the worldsheet
theory is expected to be dual to a spacetime CFT, though one with somewhat
strange properties.

* There are some special features at small k, where there has been recent progress:

+ The spacetime CFT dual to the bosonic theory at k=3 has an infinite tower of
higher spin states in its spectrum. Gaberdiel, Gopakumar, Hull 18

+ The superstring theory at k =1 is special; it has been argued to be dual to the
symmetric product orbifold. Eberhardt, Gaberdiel, Gopakumar '18



STRING SP

* The physical states of the string comprise of a discretuum, a continuum, and their

spectral flows (for the SL(2,R) WZW model). Maldacena, Ooguri ‘00

* In the sector without spectral flow one has the tachyon (from the continuous
representation) and set of discrete states with spacetime CFT dimension
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* In the spectrally flowed sector, the discretuum and continuum take the form:

1 w(w + 1
discretuum hCFT=§+w+ 1+(k—2)(N+hX—w”— (2 )—1)+”
— 92)2
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4 w \ k—2



THE RMAL /‘HD-S3 ST‘R(NC, 'PART(T(ON FMNCT'(ON

* From the string spectrum the spacetime CFT satisfies the assumptions under
which the large spin, low temperature asymptotics were derived.

* Useful to examine how this works directly from the string partition function, and
examine whether the behaviour persists for finite string tension, and further see
how the behaviour changes as we approach the aforementioned special points.

k — d
Zuslfp) = 8 FGy) = Y [ / it T Z (0 Zuan (1)

(k—2) m? g2

Zads = Z 2
m=1 ‘SinhmTB)

11 .
o (1 — emﬁgn) (1 — e—mﬁén)

1
4(k—2)

worldsheet modulus spacetime CFT data vacuum energy
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* Note: Contribution from a single geometry, and isn't likely to give a spacetime
modular invariant partition function.

* But it should suffice to allow us extract the asymptotics, assuming it can be

modular completed (as for the thermal graviton partition sum)
Maldacena, Ooguri, Son 00



* Recognizing the free energy expression, as resulting from multiparticling a single

string free energy, it is useful to first decompose the result for the single string free
energy, and then reassemble (ellipsis denote other geometries).

Zopr(7,7) = exp(=BF + ) = exp (5 S F(mB,u) +- )
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* Carrying out the worldsheet modular integral one can re-express the string
partition function in terms of the CFT characters, resulting in

2
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* The first term is the building block of the Virasoro vacuum character: the single
string spectrum only has states where a single spacetime Virasoro raising operator
hits the vacuum. This part already captures the piece we seek.

* We have elided over the higher excitations and the spectrally flowed states (and
dropped the tachyon divergence).



SUMMARY § OPEN RUESTIONS

* Thermodynamics of near-extremal black holes is akin to low temperature quantum
systems with low degeneracy.

* Results have been derived in the context of semiclassical quantum gravity, but also
can be motivated from in semiclassical string theory.

Open Questions:

+ Discrepancy of the zero modes in near-horizon for warped, fibered AdS, geometries.

+ Generalizations to other rotating geometries: can one leverage systematic study of
(extremal) near-horizon spacetimes to construct near-horizon near-extremal
geometrieS. cf., Kunduri, Lucietti

+ Understand the dual of the string for general k, cf., proposal as symmetric orbifold of
Liouville times internal CFT. In particular, how does the CFT partition function get
expressed as a sum of holomorphic and anti-holomorphic characters?

Gaberdiel, Eberhardt ’19; Eberhardt '21

* Analysis of string propagation on asymptotically AdS,; geometries...






