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Abstract

The Out-of-Time-Order correlators (OTOCS) are known to provide a diagnostic for early-time chaos (scraml)ling that precedes thermalization) in typical non-integrable quantum systems and have mostly been studied in
thermal equilibrium cases. We study OTOCs for a particular non-equilibrium setup in 1+1 D conformal field theories (CFTS) in which the evolution Hamiltonian is subjected to a drive protocol. In [1] we show that, for
large c CFTs, OTOCs in different dynamical pllases 1.e. lleating phase, non-lleating pllase, and on the pllase l)oundary show exponential, oscillatory, and power law behaviour respectively. We find in [2] that the llolograpllic
dual geometry of these phases correspon(ls to AdS3; metrics with different AdS; slicing.

The Driven CFT Protocol

A (periodica]ly) driven CFT protocol simply means to evolve a CFT system with different (non-
commutative) Hamiltonians l)y clmanging some control parameters of the Hamiltonian each time within

a stroboscopic time period T and analyze the system at time t after repeating the evolution process for

integer ‘n’ times 1.e. t = n'7T.

We focus on tlle periodica]ly driven CFTs on a ring of circumference L Where the (lrive Hami]tonian
1 L
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has the control functions f(X) and g (X) that can be clianged continuously or in discrete steps.
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e Main ac]vantage: Since sucll (leforme(l Hami]tonian can l)e written 1n terms of generators of Virasoro

a]gel)ra, 1n Heisenl)erg picture, the time evolution of a primary operator (Witll conforma] Weigllts h, h)

cets translated into the (lynamics of the operator under conformal transformation:

U'(t,0)0(z,z)U(t, 0) = (%Z“) (‘Z‘) O(2n, Zn)

where, t = n'T and U(t, O) = H}lzl Uj(T, O) = e HmT " Gith effective Hamiltonian Hp generating
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time evo]utlon after n strol)oscoplc time.

* Such driven systems can be classified into different (lynamical pllases: lleating pllase, non—lleating along
with a pllase l)oun(lary l)y tuning the control parameters.
e The entanglement entropy and energy density show different behavior in these different pllases.
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We consider Hamiltonians made out of only the glol)al generators L(), Ll, L_l. A simp]e example 18

the fol]owing two-step discrete drive protocol, where the Hamiltonian H is cllangecl twice in each time
period T=T;{+T5 and is g1ven by:
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H2 p— qu#() — deformed CFT hamiltonian
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* Since, Hamiltonians are made out of géenerators of SL(Q, R) algebra, time evolution op-

a; b;
erator: Ui — <Cz dz> < SL(Z, R) generates Msibius transformation in the complex plane
1 W
/) __ ajz+b;
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* Note that these generators lzeep the vacuum state invariant, and therefore only unequal time correlators

can capture the d namics of the (lrive. One such interestin corre]ator, which is not fixed only b
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symmetries, is the 4-point OTOC.

OTOC set-up in Driven CFTs

* One l)egins with a normalized 4 point FEuclidean correlator <W(Zl, Zl)W(Zg, ZQ)V(ZS, Z3)V(Z4, Z4)>
compute(l 1n tlle vacuum state of CFT Suc]l 4- pt correlators are in general undetermine(l functions of

the cross ratios F (77, ’F])
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iEi, where

* Analytic continuation of <W(Z1n, Zln)W(Zgn, ZQH)V(Z?,, Zg)V(Z4, Z4)> with n; = 114
€ — O, corresponds to (lifferent Lorentzian correlators depending upon different orders in which € — 0
1S talzen. For €1 > €3 > €2 > €4 — 0O one gets the OTOC <V(O)W(t)V(O)W(t)>

OTOCs at finite temperatures have been proposed as a diagnostic of chaos. In the case of large c CFTS,
the normalizecl OTOC in the thermal state is known to show exponentia] l)ellaviour, ~ 1 — ge)‘(t_ts)
for t < tg where ts 1s the scraml)ling time.

* Key difference in driven CFTs:

OTOCS il’l large-c (lriven CFTS SllOW exponentia] l)ellaviour il’l a particu]ar pllase i.e. lleating pllase cven

1n tlle vacuum state.

Results for Driven CFTs

* For ]arge c 2D CFTS, with two lleavy operators W and ]ig]lt operators V, a c]osed form expression for
F(’I’], ’ﬁ) is well known.

e We find that in the lleating pllase of such large-c CFTs, the cross-ratio n and tllerefore, the OTOC

shows an exponential behaviour., for sufficiently large time, smaller than the scraml)ling time .

° However, unlike in large-c thermal CFT, this exponentia] behaviour of OTOCS, 1n case of (lriven CFTS,
depends crucially on the initial operator location X1,2, the range of which is controlled l)y the two fixed

points Z;,, = Z of SL(Z, R) evolution.
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* One can show that the l)utterfly velocity is position-dependent. This is a consequence of the lack of

translation invariance in these systems. For fixed X1, in discrete drive, VB = AL% sin (21}(2) with
4¢

T1+To’

Lyapunov exponent >\L —

¢ In the non—lleating pllase, there is no exponential growtll for any value of X. For driven Ising CFT, on
the other hand, the OTOC does not show exponential behavior even in the lleating phase.

Geometries in the Bulk dual

* Since SL(2, R) transformations do not cllange the vacuum, the ho]ograplﬁc dual geometry of CFT

vacuum under SL(2, R) drive remains AdS spacetime. However, one expects to (listinguisll between the
different phases and also to calculate the exponential behavior of OTOC from the bulk.

« To compute the dual bulk metric i_n a SL(2, R) _(lriven CFT, We_start with a l)oun(lary ef-
fective Hamiltonian HF — Oﬁ(Lo —+ LO) —+ ,3(:[11 —+ Ll) -+ ")/(L_l -+ L_1) and lift it into the
l)u]la, ])y rep]acing the g]ol)a] Virasoro generators l)y its Ang representations to write down

Hb - O{(Lb,g -+ Eb’O) -+ /B(Lb,l -+ Eb,l) -+ 'Y(Lb,—l -+ Eb,_l). The parameters (1, ,3, Y (lepen(l
on drive parameters, 1.€. Tl, Tz, ¢ in each periocl.

* Then we rewrite AdS-Poincaré metric in terms of tangent curves generated l)y Hb to get different bulk

metrics for different pllases.
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Interestingly, we find that different pllases of the drive (cllaracterizecl l)y d= > — 1) correspond to

46> B
Ang metrics foliated l)y different bulk AdSz slices [2]

- For non—lleating pllase (d > O)
, _ d¢® 1 4p(—dt’ + d”)
sin?¢ = sin?¢ . sin?(28+vd0) J
Global AdS, patch
Here, ‘0’ and ‘t’ are the l)oundary coordinates and ‘qb’ is the bulk coordinate.

- For heating phase (d < O)

ds

, do® 1 4B*(—dt® + do?)
dS — . 2 | . 92 . 9
sin“g ~ sin“¢ sinh (25\/39)1

AdS, Black hole

- On transition line (d — O)
| (—dt* + d6?)
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° Tlle presence of a llorizon 1in tlle lleating pllase 1s reminiscent of tlle l)ullz (lual picture corresponding to tlle
un-(lriven thermal CFT. Hence, it 1s expected to see the chaotic behavior from bulk OTOC calculations as

well. In our recent Worlz, we have been able to match the l)oundary two—point correlators and the Lyapunov

exponents from tlle l)u]lz calculations.
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