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A Gedankenexperiment in Flat Spacetime

▶ If |Ψ1⟩ and |Ψ2⟩ correspond to the electromagnetic radiation states along each
path then amount of decoherence due to radiation is

D = 1− | ⟨Ψ1|Ψ2⟩ | = 1− e
− 1

2
⟨N⟩Ψ1−Ψ2 where ⟨N⟩ ∼ (qAd/TA)

2

So, even in the absence of Bob, to maintain coherence Alice must recombine
sufficiently slowly (TA > qAd) to avoid decohering herself.
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▶ Meanwhile Bob’s particle is “buffeted around” by vacuum fluctuations of the EM
field which yields a fundamental noise ∆xvac ∼ qB/m. Bob must integrate the
displacement of his particle (δx > qB/m) within a light travel time from Alice.
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sufficiently slowly (TA > qAd) to avoid decohering herself.

▶ Meanwhile Bob’s particle is “buffeted around” by vacuum fluctuations of the EM
field which yields a fundamental noise ∆xvac ∼ qB/m. Bob must integrate the
displacement of his particle (δx > qB/m) within a light travel time from Alice.

▶ Both Alice and Bob cannot succeed for TA,TB < D [Belenchia et al., 2019]. For a
completely general and rigorous resolution see [Danielson, G.S., Wald, 2022].

▶ Lesson: Alice must decohere herself (by emitting entangling radiation) at least as
much as any Bob(s) could decohere her. If Alice recombines sufficiently
adiabatically, in flat spacetime, (i.e. TA ≫ qAd) then she can maintain coherence
and, similarly, any Bobs cannot obtain “which-path” information

2 / 6



A Gedankenexperiment Outside of a Black Hole

▶ Suppose a black hole is present and Bob(s) are inside the black hole. Alice is
performing her experiment in the exterior of the black hole and can recombine
adiabatically as she likes.
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Warm-Up: Displacing a Classical Charge Outside a Black Hole

▶ Let’s consider the simpler warm-up problem of the radiation produced by a
charged body initially at a position r = D and then is displaced to a position
r = D + d where d ≪ D.
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charged body initially at a position r = D and then is displaced to a position
r = D + d where d ≪ D.

▶ To analyze the radiation on the horizon we need Maxwell’s equation on H +.
Maxwell’s equation relates changes in the “Coulombic field” Er on the horizon to
“horizon radiation” EA which propagates into the horizon.

DAEA = −∂VEr
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▶ For a static test charge at r = D, EA vanishes and |Er | ∼ q/D2. Throughout this
process, EA is very small however, due to the displacement,
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Maxwell’s equation relates changes in the “Coulombic field” Er on the horizon to
“horizon radiation” EA which propagates into the horizon.

DAEA = −∂VEr

▶ For a static test charge at r = D, EA vanishes and |Er | ∼ q/D2. Throughout this
process, EA is very small however, due to the displacement,

|∆Er | ∼
qd

D3
=⇒

∫
dV EA ̸= 0

▶ In terms of the vector potential on the horizon EA = ∂VAA, this implies that AA

must suffer a permanent change between early and late times. 4 / 6
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Number of Horizon Photons

▶ The quantum state of a classical solution Aa is a coherent state |Φ⟩ “above” the
Unruh vacuum. The expected number of horizon photons is

⟨N⟩Φ = ||A||2 =
∫
S2

dΩ

∞∫
0

ωdω |ÃA(ω, θ
A)|2

which is the norm in the corresponding one-particle Hilbert space.
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⟨N⟩Φ = ||A||2 =
∫
S2

dΩ

∞∫
0

ωdω |ÃA(ω, θ
A)|2

which is the norm in the one-particle Hilbert space associated to the
Hartle-Hawking vacuum (which is equivalent to the Unruh vacuum at low
frequencies).

▶ Displacing a charged body outside of a black hole and keeping there forever
results in the emission of an infinite number of soft horizon photons.

▶ If it is displaced back after a time T then ⟨N⟩Φ is finite but large for large T
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Black Holes Decohere Quantum Superpositions

▶ Both branches of Alice’s superposition will be forced to radiate soft photons
through the horizon over a proper time T such that number of entangling soft
photons is given by

⟨N⟩Φ1−Φ2
∝ T

▶ The decoherence entirely due to the presence of the black hole is given by

DBH = 1− | ⟨Φ1|Φ2⟩H + | = 1− e
−⟨N⟩Φ1−Φ2

and so after the emission of an O(1) number of entangling soft photons the
superposition completely decohered.
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▶ A charged/massive spatial superposition held outside of a black hole is totally
decohered in a time

TEM
D ∼ D6

M3q2d2
TGR
D ∼ D10

M5m2d4

▶ If performed sufficiently adiabatically, the gravitational field of an ordinary
massive body (rbody ≫ rS) will not decohere Alice’s particle [G.S., S. Carot-Huot, (in prep.)]. 6 / 6



Summary and Conclusions

▶ If one creates a quantum spatial superposition in the presence of a Black hole
horizon, the long range fields of the quantum superposition register on the
horizon. This results in a constant rate of production of “entangling radiation”
into the horizon.

▶ This analysis immediatley generalizes for any stationary superposition in the
presence of a Killing horizon. Eventually, the horizon will decohere any quantum
superposition.[Danielson, G.S., Wald (2023)]

▶ This effect is not due to thermal radiation or the local acceleration of Alice’s lab.

▶ We give a more precise description of Alice’s protocol in terms of quantum
channels and relate the decoherence of the channel due to “optimal”
measurements made in the black hole interior. [Danielson, Kudler-Flam, G.S. (to appear)]

We believe the fact that black holes (and cosmological horizons) will eventually
decohere any quantum superposition in their vicinity may be of fundamental

significance to our understanding of the nature of such structures in a quantum
theory of gravity
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Rindler Horizons Decohere Quantum Superpositions

▶ A similar analysis holds for any stationary superposition in the presence of a
(Killing) horizon (i.e. a Rindler horizon in flat spacetime, cosmological horizon in
de Sitter . . . ) [Danielson, G.S., Wald, 2023]. In the Rindler case, one can analyze this effect
from both the co-accelerating and inertial perspectives.
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frequencies ωRind. ∼ ae−aT . The superposition is completely decohered in a time

TEM
D ∼ ϵ0ℏc6

a3q2d2
, TGR

D ∼ ℏc10

Gm2d4a5

▶ The decoherence can also be calculated (with considerably more effort!) from the
more conventional inertial perspective and one can show that the flux of
entangling photons at I + yields ⟨N⟩I ∝ T . Due to the relative blue shift
between the inertial observer and the accelerating charge, the entangling radiation
is “hard” (ωinert. ∼ aeaT ).
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Cosmological Horizons Decohere Quantum Superposition

▶ In the cosmological case, this decoherence occurs even if Alice’s lab is inertial at
at the “center” of the de Sitter universe.

▶ In de Sitter spacetime with horizon radius RH an inertial superposition will be
completely decohered due to the emission of soft photons/gravitons in a time

TEM
D ∼

ℏϵ0R3
H

q2d2
and TGR

D ∼
ℏR5

H

Gm2d4
.

▶ Since d ≪ RH the decoherence time will be much larger than the Hubble time
RH/c unless q ≫ qP ∼ 10e or m ≫ mP ∼ 10µg.
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What About Thermal Radiation?

▶ Killing horizons thermally radiate [Kay & Wald, ’93] and so, in all cases, a thermal bath is
present in Alice’s lab. Is this effect simply due to collisions with thermal radiation?

▶ For example, the decoherence times for an accelerating charged superposition in
flat spacetime due to collisions with the Unruh bath as compared to our effect are
given by

TEM
therm. ∼

m2

q4d2a5
and TEM

rad. ∼
1

q2d2a3

so the effects are distinct.

▶ Furthermore, using the fact that d > q/m, it is straightforward to show that
TEM
rad. ≪ TEM

therm. as long as d ≪ λtherm. ∼ 1/a.

More generally, the decoherence rate due to the emission of “soft
photons/gravitons” through any (Killing) horizon is always much larger

decoherence due to the thermal radiation if the size of the superposition is smaller
than the wavelength of the thermal radiation.
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Quantum Information Inside the Black Hole

▶ What about the decoherence due to Bob(s) inside the black hole? Let Bt be a
bounded region inside the black hole, and let ΨEM

1 and ΨEM
2 be the two possible

(mixed) states of the EM field restricted to Bt .
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1 and ΨEM
2 be the two possible

(mixed) states of the EM field restricted to Bt .

▶ Decoherence due to Bob(s) “optimal” measurement is determined by “fidelity”

▶ Fidelity - The error in Bob’s “optimal” measurement in distinguishing states Ψ1 and
Ψ2 in Bt and is denoted by 0 ≤ Ft(Ψ

EM
1 ,ΨEM

2 ) ≤ 1

In quantum mechanics, the fidelity of two density matrices is F 2
t = Tr[

√
ρ1
√
ρ2].

In QFT Ft is defined using modular theory [Danielson, Kudler-Flam, G.S. (to appear)].
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▶ The fidelity is monotonic as the region Bt increases. However we prove that

▶ Ft(Ψ
EM
1 ,ΨEM

2 ) is a strictly decreasing function of t

▶ Ft(Ψ
EM
1 ,ΨEM

2 ) > exp(− 1
2 ⟨N⟩t) where ⟨N⟩t ∼ (q2d2M3/D6) · t

▶ lim
t→∞

Ft(Ψ
EM
1 ,ΨEM

2 ) = exp(− 1
2 ⟨N⟩T )
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The decoherence due to the black hole — or any horizon — is equivalent to the
decoherence due to the optimal “which-path” measurement made in its interior 6 / 6



Number of Photons

▶ The number of photons in a coherent state relative to the Hartle Hawking vacuum
— which is equivalent to Unruh vacuum at low frequencies — is given by

⟨N⟩ = 2c

ℏ

∫
S2

dΩ

∞∫
0

ωdω |ÃA(ω, θ
A)|2

where ÃA is the Fourier transform of AA.
▶ Since ⟨N⟩ is expressed in terms of the Fourier transform ÃA, the number of

photons emitted into the black hole seems to depend on the early and late time
behavior of the horizon (i.e. during the collapse/evaporation where the spacetime
is non-stationary). However, the above formula can equivalently be expressed as a
local integral

⟨N⟩ = −2c

ℏ

∫
R2×S2

dV1dV2dΩ
qABA

A(V , θC )AB(V , θC )

(V1 − V2 − i0+)2

where AA only has support on the horizon during the time when the horizon is
stationary.
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