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FIG. 1. Qubit layouts and quantum circuits. a. The 5 stages in a Trotter step, where the orange and green qubits
represent spin-up and -down fermionic sites, respectively. In stage 1 and 2, the blue and red edges represent the hopping and
interaction terms, respectively. In stage 3, we change the positions of the odd and even sites by applying the iSWAP gates
across the blue edges, which allows for implementing U even in the next stage. In stage 5, we swap the sites back to their
original positions using the iSWAP

† gates, which are combined with the J even terms. b. The matrix representations of the
two-qubit gates. The Givens rotation gate G (yellow) is used to prepare the initial state. The iSWAP-like gate K (blue) and
the CPHASE gate (red) are used to implement the time evolution under the hopping and interaction terms, respectively. The
iSWAP gate (green) is a special case of K(✓), with ✓ = �⇡/2. In Supplementary Fig. S1, we show that any of the four gates can
be decomposed into two K(⇡/4) gates and several single-qubit gates. c. The entire quantum circuit includes an initialization
part, ⌘ Trotter steps, and measurements in the Pauli-Z basis. d. The circuit to prepare the ground state of a noninteracting
Hamiltonian with two particles (excitations), where the angles of the Givens rotations can be determined using an efficient
classical algorithm. e. The quantum circuit to implement one Trotter step of the model.

We map the fermionic operators to qubit operators us-
ing the Jordan-Wigner transformation (JWT) for each
spin state, cj,⌫ 7!

1
2 (Xj,⌫ + iYj,⌫) Z1,⌫ · · · Zj�1,⌫ , where

Xj,⌫ , Yj,⌫ , and Zj,⌫ are the Pauli operators. Under the
JWT, the unoccupied and occupied spin orbitals are rep-
resented by the qubit states | 0 i and | 1 i, respectively.
We use the product formula [33], i.e., Trotter steps, to
simulate the time evolution of the system, where each
term in the Hamiltonian (1) is implemented separately.
A single Trotter step is implemented with the 5 stages
depicted in Fig. 1a, where each spin state of the model is
mapped to a zigzag chain of 8 qubits; this optimizes the
circuit depths under the geometric constraints.

Under the JWT, the hopping term c
†
j,⌫cj+1,⌫ + h.c. is

mapped to 1
2 (Xj,⌫Xj+1,⌫ + Yj,⌫Yj+1,⌫). Its time evolu-

tion can be implemented using the two-qubit gate K(✓)
in Fig. 1b. This gate is used in the first and last stages
in the circuit depicted in Fig. 1e. In the first stage, we
set ✓ = �⌧J/h̄ to implement a time step of length ⌧ .
In the last stage, we set ✓ = �⌧J/h̄ + ⇡/2, where the
extra angle ⇡/2 is used to undo the iSWAP gates in the
third stage to change the positions of the fermionic sites.
The gate K(✓) with arbitrary ✓ can be decomposed into
two K(⇡/4) =

p
iSWAP

† gates and several single-qubit
Z rotations, see Supplementary Fig. S1c. Our hardware
native two-qubit gate takes the form K(#) CPHASE('),

where # ⇡ ⇡/4 and the parasitic controlled phase ' <
⇠

⇡/20. At the time we took the data, the means and
standard deviations of the two parameters across dif-
ferent pairs of qubits were # = 0.783 ± 0.012 rad and
' = 0.138 ± 0.015 rad. The CPHASE(') term introduces
an interaction term between neighboring fermionic sites
V nj,⌫ nj+1,⌫ with V = 2h̄'/⌧ . It has sizable effects for
longer evolution times, and we include it in our numerical
simulations to compare to experimental results. The en-
tanglement part in our native two-qubit gate takes about
12 ns and is preceded by single-qubit Z rotations, which
take 10 ns with a 5 ns padding on each side. Therefore,
one hopping term takes about 2⇥32 ns = 64 ns to imple-
ment on the hardware.

The time evolution of the on-site interaction term
nj,"nj,# can be implemented using CPHASE(�) gate with
� = ⌧U/h̄. It can be decomposed exactly into two na-
tive two-qubit gates and single-qubit X and Z rotations,
see Supplementary Information A. There are three layers
of X rotations (microwave gates) in the composite gate,
each taking about 25 ns. Therefore, the entire compos-
ite CPHASE gate takes about 139 ns to implement. As
shown in Fig. 1a, we implement the CPHASE gate on
the odd and even sites separately due to geometry con-
straints. Idling qubits are susceptible to crosstalk and
low-frequency noises in the Z basis, and we mitigate them
by applying spin echos consisting of pairs of X gates (not

Time evolution of a state by the 1D Hubbard Hamiltonian Arute et al., arXiv:2010.07965
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FIG. 2. Separation in charge and spin densities. We initialize the quantum state with N" = N# = 2 (quarter filling),
where the charge and spin densities ⇢±

j = h nj," i ± h nj,# i are peaked around the middle sites. We then evolve the state
under the Fermi-Hubbard Hamiltonian (1) with Trotter step length ⌧ = 0.3h̄/J . Points and solid lines represent experimental
and numerical (exact) results, respectively. a. Time evolved charge (blue) and spin (red) densities for u ⌘ U/J = 3 with
tJ/h̄ = 0, 1.2, 1.8, 3 (corresponding to Trotter numbers ⌘ = 0, 4, 6, 10), where the error bars represent the standard error of the
mean over 16 simulations with different choices of qubits and their arrangements, see Supplementary Fig. S8; the uncertainties
due to finite sample sizes are much smaller (omitted on the plots). The charge density spreads faster than the spin density and
reaches the boundaries earlier. b. The charge and spin spreads ±

=
P

j

��j � (L + 1)/2
�� ⇢±

j as functions of the evolution time.
For u = 0, they almost lay on top of each other; the small discrepancy is due to the parasitic CPHASE in our native gate. In
comparison, they are well separated for larger interaction strengths u � 1. c. The numerical derivatives of ± with respect to
the evolution time.

shown in Fig. 1).
We initialize the system into the ground state of a

non-interacting fermionic Hamiltonian using networks
of Givens rotations [25], i.e., two-mode fermionic basis
transformations. The Givens rotation takes the matrix
form G in Fig. 1b when acting on neighboring qubits.
It can also be decomposed into two K(⇡/4) gates and
single-qubit Z rotations, see Supplementary Fig. S1b.
By parallelizing the Givens rotations, the ground state of
an arbitrary L-mode non-interacting Hamiltonian can be
prepared in circuit depth O(L) [19, 27]. Recently, the
Givens rotation network was successfully used to vari-
ationally construct a chemically-accurate Hartree-Fock
state [34]. Here we use the OpenFermion code [35] based
on the scheme in [19], which requires ⇠L

2
/4 Givens rota-

tions with circuit depth ⇠L near half filling. In Fig. 1d,
we plot the initialization circuit for two fermions.

II. SEPARATION OF SPIN AND CHARGE
VELOCITIES

In the Luttinger liquid description of the 1D Fermi-
Hubbard model [36–38], low-energy charge and spin ex-
citations propagate at different characteristic velocities;
see Supplementary Information B. It is based on the as-
sumption that the system is close to its ground state.
Here we observe separations in the dynamics of charge
and spin densities in a highly excited regime, where the
Luttinger liquid theory does not formally apply.

Consider an 8-site 1D Fermi-Hubbard system with N⌫

particles in the spin state ⌫. We prepare the initial state
| 0 i as the ground state of an non-interacting Hamil-
tonian H0 by setting U = 0 in Eq. (1). The local
potentials in H0 are chosen to have a Gaussian form
✏j,⌫ = ��⌫ e

� 1
2 (j�m⌫)

2/�2
⌫ , where �⌫ , m⌫ , and �⌫ set the

magnitude, center, and width of the potentials, respec-
tively. We set the parameters of the spin-up Gaussian
potential to �" = 4, m" = 4.5, and �" = 1 while leaving
the spin-down potential to zero. This generates initial
charge and spin density peaks in the middle of the chain,
see subplot t = 0 in Fig. 2a.

We then evolve the system under the Hamiltonian (1)
with the Trotter step described in Fig. 1e by setting the
time step length to ⌧ = 0.3h̄/J and the local potentials
to ✏j,⌫ = 0. In Fig. 2a, we plot the distributions of the
charge and spin densities at several evolution times for
N" = N# = 2 and u ⌘ U/J = 3, where the dynam-
ics of the charge and spin degrees of freedom are sepa-
rated. We leave more detailed results for this case and
the N" = N# = 3 case in Supplementary Figs. S12 and
S13, respectively.

To quantify the degree that charge and spin densities
spread from the middle of the chain, we introduce


±
⌘ =

LX

j=1

��j � (L + 1)/2
�� ⇢±j,⌘ , (3)

where ⇢
±
j,⌘ = h nj," i ± h nj,# i are the charge and spin

densities after ⌘ Trotter steps. In Fig. 2b, we plot ±
as functions of the evolution time for several interaction
strengths u. When u = 0, they nearly coincide with each

incorporates the restrictions due to the fermionic Jordan-Wigner
string in an efficient way, and deployed a range of error mitigation
techniques to extract a meaningful signal from the noisy measure-
ments on the quantum device. This allowed us to compute energies
relatively accurately for states that can be produced with one

variational layer. It is interesting to note that the features we observe
are visible despite the fidelity between the VQE ground state and the
true ground state—which is a very stringent measure of closeness—
being low enough that, in principle, these features might not still be
present. It is also worth noting that the error in the measured energy

ba
Energy errors for 1 x 8, U = 4

Progress of VQE for 1 x 8 and 2 x 4 Fermi-
Hubbard instances, U = 4, at half-filling

Fig. 3 | Experimental results for the BayesMGD algorithm and final energy
errors with respect to the VQE ground state. a Progress of VQE for 1 × 8 and 2 × 4
Fermi-Hubbard instances at half-filling, asmeasured by the error between energy at
parameters θk and VQE ground energy Emin (main plot log scale, inset linear scale).
“Estimate” is the energy estimated by the BayesMGD algorithm during the VQE
procedure based on measurement results, “exact” is the true energy at the corre-
sponding parameters. b Final errors in measured energy following error mitigation
on thefinal state. “Raw”: no errormitigation. “PS”: only postselectiononoccupation

number. “+Sym”: also time-reversal symmetry. “+TFLO”: also Training with Fer-
mionic Linear Optics32. “+Coh”: also coherent error correction in TFLO. “+PHS”: also
particle-hole symmetry. Raw/PS shown with different scale for clarity. Reduction in
error using all techniques is e.g. ~46× at half-filling. Each errormitigationmethod is
applied as well as all previous methods. Plots show a piecewise linear interpolation
between integer occupations. Error bars were calculated according to the proce-
dure described in Methods section and are often too small to be visible.

Energies, 1 x 8, U = 4 Energies, 2 x 4, U = 4 Energies, 1 x 4, U = 4

Chemical potentials, 1 x 8, U = 4 Chemical potentials, 1 x 8, U = 8 Charge correlations, 1 x 8, U = 4

a b c

d e f

Fig. 4 | Experimental energies, chemical potentials and charge correlations.
“VQE”: experimental data. “Simulated”: the lowest energy achievable in the VQE
ansatz. “Ground state”: energy in the true ground state within each occupation
number subspace. “Slater determinant”: the energy achievedby anoptimisedSlater
determinant state as detailed in Supplementary Note 5. Dashed lines are exact
numerical calculations, solid line is experimental data. Plots show a piecewise linear
interpolation between integer occupations. a–c Energies E(Nocc) produced by VQE
experiments compared with exact results (U = 4). VQE results for 1 × 8 and 2 × 4 use

one variational layer; 1 × 4 has two variational layers. Inset shows zoomed-in region
around half-filling. d, e Chemical potentials μ for a 1 × 8 system, where μ(Nocc) =
E(Nocc) − E(Nocc − 1). Inset shows the derivative μ0ðNoccÞ= EðNocc + 1Þ #
2EðNoccÞ+ EðNocc # 1Þ of the chemical potential at even occupations. f Decay of
normalised charge correlations Ccð1, iÞ= ðhn1nii# hn1ihniiÞ=ðhn2

1 i# hn1i
2Þ for even

occupation numbers. Solid lines: experimental results. Dashed lines: correlations in
ground state. Error bars were calculated according to the procedure described in
Methods section and are often too small to be visible.
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Small-scale experiments have used quantum algorithms to find
ground states of the interacting Fermi-Hubbardmodel for instances on
up to 4 sites17–19 using up to 4 qubits. These experiments compress the
model based on its symmetries; methods of this form, while having
running time scaling polynomially with system size, are complex
enough that solving apost-classical Fermi-Hubbard instancewould not
be viable on a near-term quantum computer.

Here we instead use an extremely efficient quantum algorithm,
proposed in Ref. [12] based on previous work10,11,20, to study medium-
scale instances of the Fermi-Hubbard model without the need for
compression. The algorithm fits within the framework of the varia-
tional quantumeigensolver21,22 (VQE) using theHamiltonian variational
ansatz10. Based on extensive classical numerics for Fermi-Hubbard
instances onup to 12 sites12, this algorithmmaybe able to find accurate
representations of the ground state of Fermi-Hubbard instances
beyond classical exact diagonalisation by optimising over quantum
circuits where the number of ansatz layers scales like the number of
sites, corresponding to several hundred layers of two-qubit gates.
While substantially smaller than previous quantum circuit complexity
estimates for post-classical simulation tasks, this is still beyond the
capability of today’s quantum computers.

In this work, we demonstrate that a far lower number of ansatz
layers can nevertheless reproduce qualitative properties of the
Fermi-Hubbard model on quantum hardware. We apply VQE to
Fermi-Hubbard instances on 1 × 8 and 2 × 4 lattices, using a super-
conducting quantum processor23, and observe physical properties
expected for the ground state, such as the metal-insulator transition
(MIT), Friedel oscillations, decay of correlations, and anti-
ferromagnetic order. These results rely on an array of error-
mitigation techniques that improve substantially the accuracy of
estimating observables on noisy quantum devices, opening the path
to useful applications in the near future.

Results
Variational algorithm
Our algorithms attempt to approximate the ground state of the Fermi-
Hubbard model,

H = !
X

hi,ji,σ

ay
iσajσ +a

y
jσaiσ

! "
+U

X

i

ni"ni#, ð1Þ

where aiσða
y
iσÞ is a fermionic operator that destroys (creates) a particle

at site i with spin σ, niσ =a
y
iσaiσ is the number (density) operator, and

〈i, j〉 denotes adjacent sites on a rectangular lattice.

Representing the Fermi-Hubbard Hamiltonian on a quantum
computer requires a fermionic encoding. Here we use the well-known
Jordan-Wigner transform, under which each fermionic mode maps to
one qubit, interpreted as lying on a 1D line. This parsimony in space
comes at the price that, except in 1D, some terms correspond to
operators acting on more than two qubits:

ay
i aj +a

y
j ai 7!

1
2
ðXiX j + Y iY jÞZi + 1 $ $ $Zj!1, ð2Þ

ninj =a
y
i aia

y
j aj 7!∣11i 11h ∣ij : ð3Þ

For Lx × Ly instances with Lx ≥ 2, the “snake” ordering shown in
Fig. 1a (for 2 × 4) can be used to map the rectangular lattice to a line.
Under this mapping, horizontal terms only involve pairs of qubits, but
some vertical terms act on larger numbers of qubits. As onsite terms
always only involve pairs of qubits, we can place the qubits corre-
sponding to spin-down modes after those corresponding to spin-up
without incurring any additional cost for these long-range interactions.

The variational approach we use optimises over quantum circuits
of the following form12 (Fig. 1d). First, prepare the ground state of the
noninteracting (U = 0) Fermi-Hubbard model, which can be achieved
efficiently via a sequence of Givens rotations11, which act on pairs of
adjacent modes. Then repeat a number of layers, each consisting of
time-evolution according to terms in the Fermi-Hubbard model.

TheHamiltonianHhas a natural decomposition into atmost 5 sets
of terms on a rectangular lattice such that all the terms in each set act
on disjoint modes. This, in principle, allows the corresponding time-
evolution steps to be implemented in parallel, although care must be
taken over overlapping Z-strings in the Jordan-Wigner transform.
Evolution times are variational parameters which areoptimised using a
classical optimisation algorithm. Within each layer, the terms within
each set evolve for the same amount of time. For a 1 × Ly instance,
Ly ≥ 3, each layer thenhas3parameters (oneonsite term, and two types
of hopping terms); for a 2 × Ly instance, Ly ≥ 3, each layer has 4 para-
meters; and for a Lx × Ly instance, Lx, Ly ≥ 3, each layer has 5 parameters.

This structure is advantageous in two respects: the small number
of parameters reduces the complexity of the variational optimisation
process, and the variational ansatz respects the symmetries of the
Fermi-Hubbard model, which (as we will see) provides opportunities
for errormitigation. The same decomposition ofH into atmost 5 parts
allows for highly efficient measurement of energies using only 5 dis-
tinct measurements, each implemented via a computational basis
measurement with at most one additional layer of two-qubit gates12.

a b c dJordan-Wigner 
ordering

Horizontal terms, swaps and 
first vertical terms

Swaps and second vertical 
terms

Quantum circuit structure

Fig. 1 | Implementation of the Efficient Hamiltonian Variational ansatz.
a Jordan-Wigner encoding mapping one spin sector of a 2 × 4 lattice to a line.
Mapping is repeated for the other spin sector. b, c Horizontal terms are imple-
mented combined with fermionic swaps (red); then the first set of vertical terms
(blue); then another layer of fermionic swaps; then the second set of vertical terms.
d Quantum circuit structure shown for a 1 × 4 instance at half-filling with one var-
iational layer (actual experiments used up to 16 qubits). G: Givens rotations; O:
onsite gates; H: hopping gates. Onsite and hopping gates correspond to time-
evolution according to onsite and hopping terms in the Fermi-Hubbard

Hamiltonian; the structure of this part is repeated for multiple layers. All onsite
terms have the same time parameter, and for 1 × Ly instances, all hopping terms
occurring in parallel have the same time parameter. When implemented on hard-
ware in a zig-zag configuration, a layer of FSWAP gates is required before and after
the onsite gates. First four qubits represent spin-upmodes, last four represent spin-
down modes. All operations in this diagram are implemented using two hardware-
native two-qubit gates. Circuit is repeatedmultiple times for energymeasurement,
with differing measurement transformations at the end.

Article https://doi.org/10.1038/s41467-022-33335-4
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Variational (VQE) calculation for the Hubbard model Stanisic et al., Nature communications 13, 5743 (2022)
Hamiltonian-variational ansatz

Time evolution∼Slater det.

Dynamics of quantum many-body systems on quantum computers



Kim et al., Nature 618, 500 (2023)

Dynamics of quantum many-body systems on quantum computers

Dynamics of transverse-field Ising model

Mi et al., Science 374, 1479 (2021)

Out-of-time-order correlators with random unitaries 

(not a Hamiltonian dynamics)

Û A finite signal of  with 

20 Trotter steps (144 x 20 = 2880 CNOTs)

⟨ ̂Z62⟩

A naive estimation of circuit fidelity 

  


0.99: median 2Q gate fidelity

Several followup papers appeared

(0.99)2880 ∼ 3 × 10−13
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FIG. 1. Qubit layouts and quantum circuits. a. The 5 stages in a Trotter step, where the orange and green qubits
represent spin-up and -down fermionic sites, respectively. In stage 1 and 2, the blue and red edges represent the hopping and
interaction terms, respectively. In stage 3, we change the positions of the odd and even sites by applying the iSWAP gates
across the blue edges, which allows for implementing U even in the next stage. In stage 5, we swap the sites back to their
original positions using the iSWAP

† gates, which are combined with the J even terms. b. The matrix representations of the
two-qubit gates. The Givens rotation gate G (yellow) is used to prepare the initial state. The iSWAP-like gate K (blue) and
the CPHASE gate (red) are used to implement the time evolution under the hopping and interaction terms, respectively. The
iSWAP gate (green) is a special case of K(✓), with ✓ = �⇡/2. In Supplementary Fig. S1, we show that any of the four gates can
be decomposed into two K(⇡/4) gates and several single-qubit gates. c. The entire quantum circuit includes an initialization
part, ⌘ Trotter steps, and measurements in the Pauli-Z basis. d. The circuit to prepare the ground state of a noninteracting
Hamiltonian with two particles (excitations), where the angles of the Givens rotations can be determined using an efficient
classical algorithm. e. The quantum circuit to implement one Trotter step of the model.

We map the fermionic operators to qubit operators us-
ing the Jordan-Wigner transformation (JWT) for each
spin state, cj,⌫ 7!

1
2 (Xj,⌫ + iYj,⌫) Z1,⌫ · · · Zj�1,⌫ , where

Xj,⌫ , Yj,⌫ , and Zj,⌫ are the Pauli operators. Under the
JWT, the unoccupied and occupied spin orbitals are rep-
resented by the qubit states | 0 i and | 1 i, respectively.
We use the product formula [33], i.e., Trotter steps, to
simulate the time evolution of the system, where each
term in the Hamiltonian (1) is implemented separately.
A single Trotter step is implemented with the 5 stages
depicted in Fig. 1a, where each spin state of the model is
mapped to a zigzag chain of 8 qubits; this optimizes the
circuit depths under the geometric constraints.

Under the JWT, the hopping term c
†
j,⌫cj+1,⌫ + h.c. is

mapped to 1
2 (Xj,⌫Xj+1,⌫ + Yj,⌫Yj+1,⌫). Its time evolu-

tion can be implemented using the two-qubit gate K(✓)
in Fig. 1b. This gate is used in the first and last stages
in the circuit depicted in Fig. 1e. In the first stage, we
set ✓ = �⌧J/h̄ to implement a time step of length ⌧ .
In the last stage, we set ✓ = �⌧J/h̄ + ⇡/2, where the
extra angle ⇡/2 is used to undo the iSWAP gates in the
third stage to change the positions of the fermionic sites.
The gate K(✓) with arbitrary ✓ can be decomposed into
two K(⇡/4) =

p
iSWAP

† gates and several single-qubit
Z rotations, see Supplementary Fig. S1c. Our hardware
native two-qubit gate takes the form K(#) CPHASE('),

where # ⇡ ⇡/4 and the parasitic controlled phase ' <
⇠

⇡/20. At the time we took the data, the means and
standard deviations of the two parameters across dif-
ferent pairs of qubits were # = 0.783 ± 0.012 rad and
' = 0.138 ± 0.015 rad. The CPHASE(') term introduces
an interaction term between neighboring fermionic sites
V nj,⌫ nj+1,⌫ with V = 2h̄'/⌧ . It has sizable effects for
longer evolution times, and we include it in our numerical
simulations to compare to experimental results. The en-
tanglement part in our native two-qubit gate takes about
12 ns and is preceded by single-qubit Z rotations, which
take 10 ns with a 5 ns padding on each side. Therefore,
one hopping term takes about 2⇥32 ns = 64 ns to imple-
ment on the hardware.

The time evolution of the on-site interaction term
nj,"nj,# can be implemented using CPHASE(�) gate with
� = ⌧U/h̄. It can be decomposed exactly into two na-
tive two-qubit gates and single-qubit X and Z rotations,
see Supplementary Information A. There are three layers
of X rotations (microwave gates) in the composite gate,
each taking about 25 ns. Therefore, the entire compos-
ite CPHASE gate takes about 139 ns to implement. As
shown in Fig. 1a, we implement the CPHASE gate on
the odd and even sites separately due to geometry con-
straints. Idling qubits are susceptible to crosstalk and
low-frequency noises in the Z basis, and we mitigate them
by applying spin echos consisting of pairs of X gates (not

Time evolution of a state by the 1D Hubbard Hamiltonian Arute et al., arXiv:2010.07965
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FIG. 2. Separation in charge and spin densities. We initialize the quantum state with N" = N# = 2 (quarter filling),
where the charge and spin densities ⇢±

j = h nj," i ± h nj,# i are peaked around the middle sites. We then evolve the state
under the Fermi-Hubbard Hamiltonian (1) with Trotter step length ⌧ = 0.3h̄/J . Points and solid lines represent experimental
and numerical (exact) results, respectively. a. Time evolved charge (blue) and spin (red) densities for u ⌘ U/J = 3 with
tJ/h̄ = 0, 1.2, 1.8, 3 (corresponding to Trotter numbers ⌘ = 0, 4, 6, 10), where the error bars represent the standard error of the
mean over 16 simulations with different choices of qubits and their arrangements, see Supplementary Fig. S8; the uncertainties
due to finite sample sizes are much smaller (omitted on the plots). The charge density spreads faster than the spin density and
reaches the boundaries earlier. b. The charge and spin spreads ±

=
P

j

��j � (L + 1)/2
�� ⇢±

j as functions of the evolution time.
For u = 0, they almost lay on top of each other; the small discrepancy is due to the parasitic CPHASE in our native gate. In
comparison, they are well separated for larger interaction strengths u � 1. c. The numerical derivatives of ± with respect to
the evolution time.

shown in Fig. 1).
We initialize the system into the ground state of a

non-interacting fermionic Hamiltonian using networks
of Givens rotations [25], i.e., two-mode fermionic basis
transformations. The Givens rotation takes the matrix
form G in Fig. 1b when acting on neighboring qubits.
It can also be decomposed into two K(⇡/4) gates and
single-qubit Z rotations, see Supplementary Fig. S1b.
By parallelizing the Givens rotations, the ground state of
an arbitrary L-mode non-interacting Hamiltonian can be
prepared in circuit depth O(L) [19, 27]. Recently, the
Givens rotation network was successfully used to vari-
ationally construct a chemically-accurate Hartree-Fock
state [34]. Here we use the OpenFermion code [35] based
on the scheme in [19], which requires ⇠L

2
/4 Givens rota-

tions with circuit depth ⇠L near half filling. In Fig. 1d,
we plot the initialization circuit for two fermions.

II. SEPARATION OF SPIN AND CHARGE
VELOCITIES

In the Luttinger liquid description of the 1D Fermi-
Hubbard model [36–38], low-energy charge and spin ex-
citations propagate at different characteristic velocities;
see Supplementary Information B. It is based on the as-
sumption that the system is close to its ground state.
Here we observe separations in the dynamics of charge
and spin densities in a highly excited regime, where the
Luttinger liquid theory does not formally apply.

Consider an 8-site 1D Fermi-Hubbard system with N⌫

particles in the spin state ⌫. We prepare the initial state
| 0 i as the ground state of an non-interacting Hamil-
tonian H0 by setting U = 0 in Eq. (1). The local
potentials in H0 are chosen to have a Gaussian form
✏j,⌫ = ��⌫ e

� 1
2 (j�m⌫)

2/�2
⌫ , where �⌫ , m⌫ , and �⌫ set the

magnitude, center, and width of the potentials, respec-
tively. We set the parameters of the spin-up Gaussian
potential to �" = 4, m" = 4.5, and �" = 1 while leaving
the spin-down potential to zero. This generates initial
charge and spin density peaks in the middle of the chain,
see subplot t = 0 in Fig. 2a.

We then evolve the system under the Hamiltonian (1)
with the Trotter step described in Fig. 1e by setting the
time step length to ⌧ = 0.3h̄/J and the local potentials
to ✏j,⌫ = 0. In Fig. 2a, we plot the distributions of the
charge and spin densities at several evolution times for
N" = N# = 2 and u ⌘ U/J = 3, where the dynam-
ics of the charge and spin degrees of freedom are sepa-
rated. We leave more detailed results for this case and
the N" = N# = 3 case in Supplementary Figs. S12 and
S13, respectively.

To quantify the degree that charge and spin densities
spread from the middle of the chain, we introduce


±
⌘ =

LX

j=1

��j � (L + 1)/2
�� ⇢±j,⌘ , (3)

where ⇢
±
j,⌘ = h nj," i ± h nj,# i are the charge and spin

densities after ⌘ Trotter steps. In Fig. 2b, we plot ±
as functions of the evolution time for several interaction
strengths u. When u = 0, they nearly coincide with each

incorporates the restrictions due to the fermionic Jordan-Wigner
string in an efficient way, and deployed a range of error mitigation
techniques to extract a meaningful signal from the noisy measure-
ments on the quantum device. This allowed us to compute energies
relatively accurately for states that can be produced with one

variational layer. It is interesting to note that the features we observe
are visible despite the fidelity between the VQE ground state and the
true ground state—which is a very stringent measure of closeness—
being low enough that, in principle, these features might not still be
present. It is also worth noting that the error in the measured energy

ba
Energy errors for 1 x 8, U = 4

Progress of VQE for 1 x 8 and 2 x 4 Fermi-
Hubbard instances, U = 4, at half-filling

Fig. 3 | Experimental results for the BayesMGD algorithm and final energy
errors with respect to the VQE ground state. a Progress of VQE for 1 × 8 and 2 × 4
Fermi-Hubbard instances at half-filling, asmeasured by the error between energy at
parameters θk and VQE ground energy Emin (main plot log scale, inset linear scale).
“Estimate” is the energy estimated by the BayesMGD algorithm during the VQE
procedure based on measurement results, “exact” is the true energy at the corre-
sponding parameters. b Final errors in measured energy following error mitigation
on thefinal state. “Raw”: no errormitigation. “PS”: only postselectiononoccupation

number. “+Sym”: also time-reversal symmetry. “+TFLO”: also Training with Fer-
mionic Linear Optics32. “+Coh”: also coherent error correction in TFLO. “+PHS”: also
particle-hole symmetry. Raw/PS shown with different scale for clarity. Reduction in
error using all techniques is e.g. ~46× at half-filling. Each errormitigationmethod is
applied as well as all previous methods. Plots show a piecewise linear interpolation
between integer occupations. Error bars were calculated according to the proce-
dure described in Methods section and are often too small to be visible.

Energies, 1 x 8, U = 4 Energies, 2 x 4, U = 4 Energies, 1 x 4, U = 4

Chemical potentials, 1 x 8, U = 4 Chemical potentials, 1 x 8, U = 8 Charge correlations, 1 x 8, U = 4

a b c

d e f

Fig. 4 | Experimental energies, chemical potentials and charge correlations.
“VQE”: experimental data. “Simulated”: the lowest energy achievable in the VQE
ansatz. “Ground state”: energy in the true ground state within each occupation
number subspace. “Slater determinant”: the energy achievedby anoptimisedSlater
determinant state as detailed in Supplementary Note 5. Dashed lines are exact
numerical calculations, solid line is experimental data. Plots show a piecewise linear
interpolation between integer occupations. a–c Energies E(Nocc) produced by VQE
experiments compared with exact results (U = 4). VQE results for 1 × 8 and 2 × 4 use

one variational layer; 1 × 4 has two variational layers. Inset shows zoomed-in region
around half-filling. d, e Chemical potentials μ for a 1 × 8 system, where μ(Nocc) =
E(Nocc) − E(Nocc − 1). Inset shows the derivative μ0ðNoccÞ= EðNocc + 1Þ #
2EðNoccÞ+ EðNocc # 1Þ of the chemical potential at even occupations. f Decay of
normalised charge correlations Ccð1, iÞ= ðhn1nii# hn1ihniiÞ=ðhn2

1 i# hn1i
2Þ for even

occupation numbers. Solid lines: experimental results. Dashed lines: correlations in
ground state. Error bars were calculated according to the procedure described in
Methods section and are often too small to be visible.
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Small-scale experiments have used quantum algorithms to find
ground states of the interacting Fermi-Hubbardmodel for instances on
up to 4 sites17–19 using up to 4 qubits. These experiments compress the
model based on its symmetries; methods of this form, while having
running time scaling polynomially with system size, are complex
enough that solving apost-classical Fermi-Hubbard instancewould not
be viable on a near-term quantum computer.

Here we instead use an extremely efficient quantum algorithm,
proposed in Ref. [12] based on previous work10,11,20, to study medium-
scale instances of the Fermi-Hubbard model without the need for
compression. The algorithm fits within the framework of the varia-
tional quantumeigensolver21,22 (VQE) using theHamiltonian variational
ansatz10. Based on extensive classical numerics for Fermi-Hubbard
instances onup to 12 sites12, this algorithmmaybe able to find accurate
representations of the ground state of Fermi-Hubbard instances
beyond classical exact diagonalisation by optimising over quantum
circuits where the number of ansatz layers scales like the number of
sites, corresponding to several hundred layers of two-qubit gates.
While substantially smaller than previous quantum circuit complexity
estimates for post-classical simulation tasks, this is still beyond the
capability of today’s quantum computers.

In this work, we demonstrate that a far lower number of ansatz
layers can nevertheless reproduce qualitative properties of the
Fermi-Hubbard model on quantum hardware. We apply VQE to
Fermi-Hubbard instances on 1 × 8 and 2 × 4 lattices, using a super-
conducting quantum processor23, and observe physical properties
expected for the ground state, such as the metal-insulator transition
(MIT), Friedel oscillations, decay of correlations, and anti-
ferromagnetic order. These results rely on an array of error-
mitigation techniques that improve substantially the accuracy of
estimating observables on noisy quantum devices, opening the path
to useful applications in the near future.

Results
Variational algorithm
Our algorithms attempt to approximate the ground state of the Fermi-
Hubbard model,

H = !
X

hi,ji,σ

ay
iσajσ +a

y
jσaiσ

! "
+U

X

i

ni"ni#, ð1Þ

where aiσða
y
iσÞ is a fermionic operator that destroys (creates) a particle

at site i with spin σ, niσ =a
y
iσaiσ is the number (density) operator, and

〈i, j〉 denotes adjacent sites on a rectangular lattice.

Representing the Fermi-Hubbard Hamiltonian on a quantum
computer requires a fermionic encoding. Here we use the well-known
Jordan-Wigner transform, under which each fermionic mode maps to
one qubit, interpreted as lying on a 1D line. This parsimony in space
comes at the price that, except in 1D, some terms correspond to
operators acting on more than two qubits:

ay
i aj +a

y
j ai 7!

1
2
ðXiX j + Y iY jÞZi + 1 $ $ $Zj!1, ð2Þ

ninj =a
y
i aia

y
j aj 7!∣11i 11h ∣ij : ð3Þ

For Lx × Ly instances with Lx ≥ 2, the “snake” ordering shown in
Fig. 1a (for 2 × 4) can be used to map the rectangular lattice to a line.
Under this mapping, horizontal terms only involve pairs of qubits, but
some vertical terms act on larger numbers of qubits. As onsite terms
always only involve pairs of qubits, we can place the qubits corre-
sponding to spin-down modes after those corresponding to spin-up
without incurring any additional cost for these long-range interactions.

The variational approach we use optimises over quantum circuits
of the following form12 (Fig. 1d). First, prepare the ground state of the
noninteracting (U = 0) Fermi-Hubbard model, which can be achieved
efficiently via a sequence of Givens rotations11, which act on pairs of
adjacent modes. Then repeat a number of layers, each consisting of
time-evolution according to terms in the Fermi-Hubbard model.

TheHamiltonianHhas a natural decomposition into atmost 5 sets
of terms on a rectangular lattice such that all the terms in each set act
on disjoint modes. This, in principle, allows the corresponding time-
evolution steps to be implemented in parallel, although care must be
taken over overlapping Z-strings in the Jordan-Wigner transform.
Evolution times are variational parameters which areoptimised using a
classical optimisation algorithm. Within each layer, the terms within
each set evolve for the same amount of time. For a 1 × Ly instance,
Ly ≥ 3, each layer thenhas3parameters (oneonsite term, and two types
of hopping terms); for a 2 × Ly instance, Ly ≥ 3, each layer has 4 para-
meters; and for a Lx × Ly instance, Lx, Ly ≥ 3, each layer has 5 parameters.

This structure is advantageous in two respects: the small number
of parameters reduces the complexity of the variational optimisation
process, and the variational ansatz respects the symmetries of the
Fermi-Hubbard model, which (as we will see) provides opportunities
for errormitigation. The same decomposition ofH into atmost 5 parts
allows for highly efficient measurement of energies using only 5 dis-
tinct measurements, each implemented via a computational basis
measurement with at most one additional layer of two-qubit gates12.

a b c dJordan-Wigner 
ordering

Horizontal terms, swaps and 
first vertical terms

Swaps and second vertical 
terms

Quantum circuit structure

Fig. 1 | Implementation of the Efficient Hamiltonian Variational ansatz.
a Jordan-Wigner encoding mapping one spin sector of a 2 × 4 lattice to a line.
Mapping is repeated for the other spin sector. b, c Horizontal terms are imple-
mented combined with fermionic swaps (red); then the first set of vertical terms
(blue); then another layer of fermionic swaps; then the second set of vertical terms.
d Quantum circuit structure shown for a 1 × 4 instance at half-filling with one var-
iational layer (actual experiments used up to 16 qubits). G: Givens rotations; O:
onsite gates; H: hopping gates. Onsite and hopping gates correspond to time-
evolution according to onsite and hopping terms in the Fermi-Hubbard

Hamiltonian; the structure of this part is repeated for multiple layers. All onsite
terms have the same time parameter, and for 1 × Ly instances, all hopping terms
occurring in parallel have the same time parameter. When implemented on hard-
ware in a zig-zag configuration, a layer of FSWAP gates is required before and after
the onsite gates. First four qubits represent spin-upmodes, last four represent spin-
down modes. All operations in this diagram are implemented using two hardware-
native two-qubit gates. Circuit is repeatedmultiple times for energymeasurement,
with differing measurement transformations at the end.
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Variational (VQE) calculation for the Hubbard model Stanisic et al., Nature communications 13, 5743 (2022)
Variational wave function (Hamiltonian-variational ansatz)
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FIG. 13. (a) Circuit structure of the lowest-order Suzuki-Trotter-decomposed time-evolution operator Ŝ 2(�⌧) in Eq. (B3) for the Fermi-
Hubbard model considered here in Eq. (B6). The gate K denotes the exponentiated hopping term defined in (b), while the gate V denotes the
exponentiated interaction term defined in (c). Here, only the part corresponding to the first four exponentials is shown. (b) Decomposition of
the K gate that represents exp[�i✓(X̂iX̂ j + ŶiŶ j)ẐJW,i j/2] operating at qubits i and j as well as all qubits between these two qubits. The gate XY
represents exp[�i✓(X̂iX̂ j + ŶiŶ j)/2] operating at qubits i and j. The gate RX(Y)(✓) is given by RX(Y)(✓) = exp[�i✓X̂i(Ŷi)/2] operating at qubit i.
(c) Decomposition of the V gate that represents exp[�i�ẐiẐ j/2] operating at qubits i and j. The gate RZ(�) is given by RZ(�) = exp[�i�Ẑi/2]
operating at qubit i. Here, ✓ = ��⌧J/2 and � = �⌧UH/2 for the Fermi-Hubbard model given in Eq. (B6).

|�Ai is the ground state of the subdivided Hamiltonian ĤA,
because ĤA after the Jordan-Wigner transformation is merely
a direct sum of two-site XY models with the ferromagnetic
exchange interaction �J < 0, and hence the ground state is
given by the direct product of |ti, ji. |ZAFM1i and |ZAFM2i are
the Néel states (both in the qubit and fermion representations)
with the staggered moments pointing alternatively along the
spin-Z axis.

All these three states are within the subspace of the half fill-
ing and zero magnetization because they have N/4 |0ii� ’s for
1 6 i� 6 N/2 and N/4 |0ii� ’s for N/2+1 6 i� 6 N. Moreover,
these states can be easily generated from |0i⌦N with appropri-
ate combinations of Pauli X, Hadamard, and cnot gates. The
particle number and magnetization are conserved even after
applying the Hamiltonian power to these states. In addition to
these three states, we adopt the ground state of Ĥ at UH = 0,
| UH=0i, as a reference state. Since | UH=0i is a Slater de-
terminant, i.e., a particular case of fermionic Gaussian states,
it can in principle be prepared on a quantum circuit with at
most O(N2) gates [21, 111–113]. | UH=0i is also within the
subspace of the half filling and zero magnetization.

Figures 14 and 15 show the numerical results of the esti-

mated ground-state energy EKS and the ground-state fidelity
F = |h 0| KSi|2, respectively, for the Fermi-Hubbard model
with UH/J = 4, obtained by the same procedures as in the
case of the spin-1/2 Heisenberg model discussed in Sec. V C.
Here, | 0i is the exact ground state and we set the time inter-
val �⌧J = 0.05 with r = 1, m = 1, p = 3, and N� = 4 for
approximating the Hamiltonian power in the numerical simu-
lations. The exact ground-state energy per site is E0/(NJ/2) =
�1.626562894. Note that N is the number of qubits and the
number of lattice sites of the Fermi-Hubbard model is given
by N/2.

As shown in Figs. 14 and 15, the convergence to the ground
state is improved with increasing the block size MB, which is
similar to the case of the spin-1/2 Heisenberg model found in
Figs. 5 and 6. We also observe in Fig. 14(b) the exponen-
tial convergence of the energy with respect to n for any set
of reference states. We can also notice in Fig. 15(a) that the
noninteracting ground state | UH=0i has a significantly larger
overlap with | 0i than |�Ai, and indeed the results obtained
with | UH=0i shows the faster convergence than those with

= exp[−iθ ̂Zi
̂Zj]

RZ(2θ)
V(θ) two-qubit gatesO(N2) one-qubit 

gates
N

Cf. Lu et al., PRX Quantum 2, 020321 (2021), Schuckert et al., PRB 107, L140410 (2023): Micorocanonical, random product states

Cf. Coopmans et al., PRX Quantum 4, 010305 (2023): Canonical TPQ with Random Clifford circuits



Fourier representation of the Gaussian operator

Represent  as a sum of time-evolution operatorsĜτ(E)
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(a)

(b)

FIG. 2. Circuit with N register qubits and n ancilla qubits
for probabilistically generating the state ∝ [Ŝ(p)

2m (!τ/2) −
Ŝ(p)

2m (−!τ/2)]n|ψ〉 in the register qubits for (a) n = 1 and (b)
n = 2. H , S(p)

2m , and S(p)†
2m in the circuit denote the Hadamard gate,

Ŝ(p)
2m (!τ/2), and Ŝ(p)

2m (−!τ/2), respectively. A controlled-unitary
gate with a solid (open) circle indicates that the unitary gate is
applied only if the control qubit is set to 1 (0). The probabil-
ity Pb1b2···bn for finding the bit string b1b2 · · · bn = 11 · · · 1 in the
ancilla qubits is given in Eq. (19).

If |ψ〉 were an eigenstate of Ŝ(p)
2m (!τ/2) with an eigen-

value eiλ(!τ ), it oscillates as P11···1 = [sin λ(!τ )]2n, but
otherwise it is exponentially small. Therefore, as far as
near-term applications with a limited number of gates are
concerned, the linear combination of the Suzuki-Trotter-
decomposed time-evolution operators is better treated with
classical computers in the form of Eq. (4). However, we
anticipate that, once a noiseless quantum computer is real-
ized, the product form of Eq. (5) might have the advantage
of robustness against loss of significance for small !τ .

5. Summary of the proposed method
Figure 1 summarizes the quantum power method. In

the quantum power method, the Hamiltonian power Ĥn

is approximated to Ĥn
ST(!τ ) represented as a linear com-

bination of the n + 1 Suzuki-Trotter decomposed time-
evolution operators {[Ŝ(p)

2m (!τ/2)]n−2k}n
k=0. The systematic

error EFD due to the finite-difference scheme for the time
derivatives is O(!2

τ ), and the systematic error EST due
to the Suzuki-Trotter decomposition of the time-evolution
operators is O(!2m

τ ). These systematic errors EFD and EST
can be both improved systematically with the rth-order
Richardson extrapolation to O(!2+2r

τ ) and O(!2m+2r
τ ),

respectively, by approximating the Hamiltonian power
Ĥn with Ĥn

ST(r)(!τ ), which is given as a linear combi-
nation of the (r + 1)(n + 1) Suzuki-Trotter-decomposed
time-evolution operators

{{
[Ŝ(p)

2m (!τ/2hl)]n−2k
}n

k=0

}r

l=0
.

While the linear combination of the Suzuki-Trotter-
decomposed time-evolution operators is treated classically,

each Suzuki-Trotter-decomposed time-evolution operator
[Ŝ(p)

2m (!τ/2hl)]n−2k is evaluated on quantum computers.

C. Comparison with direct evaluation and classical
computation

The direct evaluation of 〈ψ |Ĥn|ψ〉 requires the expec-
tation values of O(min(N n, 4N )) operators, possibly con-
taining long strings of Pauli operators, provided that
the Hamiltonian Ĥ consists of O(N ) terms. Although
the depth of the circuits for these terms is O(1), the
O(min(N n, 4N )) measurements make the direct evaluation
of 〈ψ |Ĥn|ψ〉 unfeasible as soon as the power n and the
number N of qubits are large.

In classical computation, the computational complexity
scales as O(nND) for the evaluation of Ĥn|ψ〉, when the
Hamiltonian Ĥ is local and thus the Hamiltonian matrix
is sparse. Here, ND is the dimension of the Hilbert space,
e.g., ND = 2N for the spin-1/2 Heisenberg model. This
implies that the computational complexity of the classical
computation scales exponentially in N .

In the quantum power method proposed here, the gate
count for approximating the Hamiltonian power Ĥn scales
as O(nkN ) for a k-local Hamiltonian composed of O(N )
terms. In addition, the number of state overlaps required
to evaluate is (r + 1)(n + 1), which is polynomial in n and
independent of N . Therefore, although it is approximate,
the quantum power method is a potentially promising
application for near-term quantum devices and would have
a quantum advantage over the classical counterpart of the
power method.

III. DERIVATIONS OF THE MAIN FORMULAS

Here, we provide the derivations of the main formulas in
Sec. II and describe technical details of the quantum power
method.

A. Hamiltonian power as a linear combination of
unitary time-evolution operators

As shown in Eq. (2), the Hamiltonian power Ĥn is
given by the nth derivative of the time-evolution operator
Û(t) at t = 0. Here we show that, using the central finite-
difference scheme for the time derivatives, the Hamiltonian
power can be approximated by a linear combination of the
time-evolution operators.

By introducing a small time interval !τ , we replace the
time derivative in Eq. (2) with the central finite difference
as

Ĥn = Ĥn(!τ ) + O(!2
τ ), (20)
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for probabilistically generating the state ∝ [Ŝ(p)

2m (!τ/2) −
Ŝ(p)

2m (−!τ/2)]n|ψ〉 in the register qubits for (a) n = 1 and (b)
n = 2. H , S(p)

2m , and S(p)†
2m in the circuit denote the Hadamard gate,

Ŝ(p)
2m (!τ/2), and Ŝ(p)

2m (−!τ/2), respectively. A controlled-unitary
gate with a solid (open) circle indicates that the unitary gate is
applied only if the control qubit is set to 1 (0). The probabil-
ity Pb1b2···bn for finding the bit string b1b2 · · · bn = 11 · · · 1 in the
ancilla qubits is given in Eq. (19).

If |ψ〉 were an eigenstate of Ŝ(p)
2m (!τ/2) with an eigen-

value eiλ(!τ ), it oscillates as P11···1 = [sin λ(!τ )]2n, but
otherwise it is exponentially small. Therefore, as far as
near-term applications with a limited number of gates are
concerned, the linear combination of the Suzuki-Trotter-
decomposed time-evolution operators is better treated with
classical computers in the form of Eq. (4). However, we
anticipate that, once a noiseless quantum computer is real-
ized, the product form of Eq. (5) might have the advantage
of robustness against loss of significance for small !τ .

5. Summary of the proposed method
Figure 1 summarizes the quantum power method. In

the quantum power method, the Hamiltonian power Ĥn

is approximated to Ĥn
ST(!τ ) represented as a linear com-

bination of the n + 1 Suzuki-Trotter decomposed time-
evolution operators {[Ŝ(p)

2m (!τ/2)]n−2k}n
k=0. The systematic

error EFD due to the finite-difference scheme for the time
derivatives is O(!2

τ ), and the systematic error EST due
to the Suzuki-Trotter decomposition of the time-evolution
operators is O(!2m

τ ). These systematic errors EFD and EST
can be both improved systematically with the rth-order
Richardson extrapolation to O(!2+2r

τ ) and O(!2m+2r
τ ),

respectively, by approximating the Hamiltonian power
Ĥn with Ĥn

ST(r)(!τ ), which is given as a linear combi-
nation of the (r + 1)(n + 1) Suzuki-Trotter-decomposed
time-evolution operators

{{
[Ŝ(p)

2m (!τ/2hl)]n−2k
}n

k=0

}r

l=0
.

While the linear combination of the Suzuki-Trotter-
decomposed time-evolution operators is treated classically,

each Suzuki-Trotter-decomposed time-evolution operator
[Ŝ(p)

2m (!τ/2hl)]n−2k is evaluated on quantum computers.

C. Comparison with direct evaluation and classical
computation

The direct evaluation of 〈ψ |Ĥn|ψ〉 requires the expec-
tation values of O(min(N n, 4N )) operators, possibly con-
taining long strings of Pauli operators, provided that
the Hamiltonian Ĥ consists of O(N ) terms. Although
the depth of the circuits for these terms is O(1), the
O(min(N n, 4N )) measurements make the direct evaluation
of 〈ψ |Ĥn|ψ〉 unfeasible as soon as the power n and the
number N of qubits are large.

In classical computation, the computational complexity
scales as O(nND) for the evaluation of Ĥn|ψ〉, when the
Hamiltonian Ĥ is local and thus the Hamiltonian matrix
is sparse. Here, ND is the dimension of the Hilbert space,
e.g., ND = 2N for the spin-1/2 Heisenberg model. This
implies that the computational complexity of the classical
computation scales exponentially in N .

In the quantum power method proposed here, the gate
count for approximating the Hamiltonian power Ĥn scales
as O(nkN ) for a k-local Hamiltonian composed of O(N )
terms. In addition, the number of state overlaps required
to evaluate is (r + 1)(n + 1), which is polynomial in n and
independent of N . Therefore, although it is approximate,
the quantum power method is a potentially promising
application for near-term quantum devices and would have
a quantum advantage over the classical counterpart of the
power method.

III. DERIVATIONS OF THE MAIN FORMULAS

Here, we provide the derivations of the main formulas in
Sec. II and describe technical details of the quantum power
method.

A. Hamiltonian power as a linear combination of
unitary time-evolution operators

As shown in Eq. (2), the Hamiltonian power Ĥn is
given by the nth derivative of the time-evolution operator
Û(t) at t = 0. Here we show that, using the central finite-
difference scheme for the time derivatives, the Hamiltonian
power can be approximated by a linear combination of the
time-evolution operators.

By introducing a small time interval !τ , we replace the
time derivative in Eq. (2) with the central finite difference
as

Ĥn = Ĥn(!τ ) + O(!2
τ ), (20)
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FIG. 2. Circuit with N register qubits and n ancilla qubits
for probabilistically generating the state ∝ [Ŝ(p)

2m (!τ/2) −
Ŝ(p)

2m (−!τ/2)]n|ψ〉 in the register qubits for (a) n = 1 and (b)
n = 2. H , S(p)

2m , and S(p)†
2m in the circuit denote the Hadamard gate,

Ŝ(p)
2m (!τ/2), and Ŝ(p)

2m (−!τ/2), respectively. A controlled-unitary
gate with a solid (open) circle indicates that the unitary gate is
applied only if the control qubit is set to 1 (0). The probabil-
ity Pb1b2···bn for finding the bit string b1b2 · · · bn = 11 · · · 1 in the
ancilla qubits is given in Eq. (19).

If |ψ〉 were an eigenstate of Ŝ(p)
2m (!τ/2) with an eigen-

value eiλ(!τ ), it oscillates as P11···1 = [sin λ(!τ )]2n, but
otherwise it is exponentially small. Therefore, as far as
near-term applications with a limited number of gates are
concerned, the linear combination of the Suzuki-Trotter-
decomposed time-evolution operators is better treated with
classical computers in the form of Eq. (4). However, we
anticipate that, once a noiseless quantum computer is real-
ized, the product form of Eq. (5) might have the advantage
of robustness against loss of significance for small !τ .

5. Summary of the proposed method
Figure 1 summarizes the quantum power method. In

the quantum power method, the Hamiltonian power Ĥn

is approximated to Ĥn
ST(!τ ) represented as a linear com-

bination of the n + 1 Suzuki-Trotter decomposed time-
evolution operators {[Ŝ(p)

2m (!τ/2)]n−2k}n
k=0. The systematic

error EFD due to the finite-difference scheme for the time
derivatives is O(!2

τ ), and the systematic error EST due
to the Suzuki-Trotter decomposition of the time-evolution
operators is O(!2m

τ ). These systematic errors EFD and EST
can be both improved systematically with the rth-order
Richardson extrapolation to O(!2+2r

τ ) and O(!2m+2r
τ ),

respectively, by approximating the Hamiltonian power
Ĥn with Ĥn

ST(r)(!τ ), which is given as a linear combi-
nation of the (r + 1)(n + 1) Suzuki-Trotter-decomposed
time-evolution operators

{{
[Ŝ(p)

2m (!τ/2hl)]n−2k
}n

k=0
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While the linear combination of the Suzuki-Trotter-
decomposed time-evolution operators is treated classically,

each Suzuki-Trotter-decomposed time-evolution operator
[Ŝ(p)

2m (!τ/2hl)]n−2k is evaluated on quantum computers.

C. Comparison with direct evaluation and classical
computation

The direct evaluation of 〈ψ |Ĥn|ψ〉 requires the expec-
tation values of O(min(N n, 4N )) operators, possibly con-
taining long strings of Pauli operators, provided that
the Hamiltonian Ĥ consists of O(N ) terms. Although
the depth of the circuits for these terms is O(1), the
O(min(N n, 4N )) measurements make the direct evaluation
of 〈ψ |Ĥn|ψ〉 unfeasible as soon as the power n and the
number N of qubits are large.

In classical computation, the computational complexity
scales as O(nND) for the evaluation of Ĥn|ψ〉, when the
Hamiltonian Ĥ is local and thus the Hamiltonian matrix
is sparse. Here, ND is the dimension of the Hilbert space,
e.g., ND = 2N for the spin-1/2 Heisenberg model. This
implies that the computational complexity of the classical
computation scales exponentially in N .

In the quantum power method proposed here, the gate
count for approximating the Hamiltonian power Ĥn scales
as O(nkN ) for a k-local Hamiltonian composed of O(N )
terms. In addition, the number of state overlaps required
to evaluate is (r + 1)(n + 1), which is polynomial in n and
independent of N . Therefore, although it is approximate,
the quantum power method is a potentially promising
application for near-term quantum devices and would have
a quantum advantage over the classical counterpart of the
power method.

III. DERIVATIONS OF THE MAIN FORMULAS

Here, we provide the derivations of the main formulas in
Sec. II and describe technical details of the quantum power
method.

A. Hamiltonian power as a linear combination of
unitary time-evolution operators

As shown in Eq. (2), the Hamiltonian power Ĥn is
given by the nth derivative of the time-evolution operator
Û(t) at t = 0. Here we show that, using the central finite-
difference scheme for the time derivatives, the Hamiltonian
power can be approximated by a linear combination of the
time-evolution operators.

By introducing a small time interval !τ , we replace the
time derivative in Eq. (2) with the central finite difference
as

Ĥn = Ĥn(!τ ) + O(!2
τ ), (20)
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2m (−!τ/2), respectively. A controlled-unitary
gate with a solid (open) circle indicates that the unitary gate is
applied only if the control qubit is set to 1 (0). The probabil-
ity Pb1b2···bn for finding the bit string b1b2 · · · bn = 11 · · · 1 in the
ancilla qubits is given in Eq. (19).
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otherwise it is exponentially small. Therefore, as far as
near-term applications with a limited number of gates are
concerned, the linear combination of the Suzuki-Trotter-
decomposed time-evolution operators is better treated with
classical computers in the form of Eq. (4). However, we
anticipate that, once a noiseless quantum computer is real-
ized, the product form of Eq. (5) might have the advantage
of robustness against loss of significance for small !τ .

5. Summary of the proposed method
Figure 1 summarizes the quantum power method. In
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ST(!τ ) represented as a linear com-

bination of the n + 1 Suzuki-Trotter decomposed time-
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While the linear combination of the Suzuki-Trotter-
decomposed time-evolution operators is treated classically,

each Suzuki-Trotter-decomposed time-evolution operator
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2m (!τ/2hl)]n−2k is evaluated on quantum computers.

C. Comparison with direct evaluation and classical
computation

The direct evaluation of 〈ψ |Ĥn|ψ〉 requires the expec-
tation values of O(min(N n, 4N )) operators, possibly con-
taining long strings of Pauli operators, provided that
the Hamiltonian Ĥ consists of O(N ) terms. Although
the depth of the circuits for these terms is O(1), the
O(min(N n, 4N )) measurements make the direct evaluation
of 〈ψ |Ĥn|ψ〉 unfeasible as soon as the power n and the
number N of qubits are large.

In classical computation, the computational complexity
scales as O(nND) for the evaluation of Ĥn|ψ〉, when the
Hamiltonian Ĥ is local and thus the Hamiltonian matrix
is sparse. Here, ND is the dimension of the Hilbert space,
e.g., ND = 2N for the spin-1/2 Heisenberg model. This
implies that the computational complexity of the classical
computation scales exponentially in N .

In the quantum power method proposed here, the gate
count for approximating the Hamiltonian power Ĥn scales
as O(nkN ) for a k-local Hamiltonian composed of O(N )
terms. In addition, the number of state overlaps required
to evaluate is (r + 1)(n + 1), which is polynomial in n and
independent of N . Therefore, although it is approximate,
the quantum power method is a potentially promising
application for near-term quantum devices and would have
a quantum advantage over the classical counterpart of the
power method.

III. DERIVATIONS OF THE MAIN FORMULAS

Here, we provide the derivations of the main formulas in
Sec. II and describe technical details of the quantum power
method.

A. Hamiltonian power as a linear combination of
unitary time-evolution operators

As shown in Eq. (2), the Hamiltonian power Ĥn is
given by the nth derivative of the time-evolution operator
Û(t) at t = 0. Here we show that, using the central finite-
difference scheme for the time derivatives, the Hamiltonian
power can be approximated by a linear combination of the
time-evolution operators.

By introducing a small time interval !τ , we replace the
time derivative in Eq. (2) with the central finite difference
as

Ĥn = Ĥn(!τ ) + O(!2
τ ), (20)
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R

eiEt

|0⟩

QUANTUM POWER METHOD BY A SUPERPOSITION... PRX QUANTUM 2, 010333 (2021)

(a)

(b)

FIG. 2. Circuit with N register qubits and n ancilla qubits
for probabilistically generating the state ∝ [Ŝ(p)
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Ĝτ(E)
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Numerical Results
• Classical simulation

• Quantum simulation (preliminary results) 
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FIG. 5. (a) The energy expectation value Eτ,R(E ), (b) the entropy
Sτ,R(E ), and (c) the inverse temperature βτ,R(E ) as a function of
the filtering time τ for different target energies E/NJ = −0.25,
0.125, 0.5, and 0.875 calculated with the random sampling of the
trace evaluations using three types of the random-phase states, i.e.,
V̂r |+〉 (blue circles), v̂(1)

r |+〉 (orange squares), and v̂(2)
r v̂(1)

r |+〉 (green
diamonds). The system size is fixed at N = 24 for all the calculations
and the number of samples is R = 64. For comparison, the results
for Eτ (E ), Sτ (E ), and βτ (E ) calculated by the full diagonalization
method are also shown by magenta solid lines. Note that these full-
diagonalization results are the same as those in Figs. 3(c), 3(f), and
3(i). The black dashed horizontal lines in (a) indicate the target ener-
gies. For most of the cases, the results, including the statistical errors,
for V̂r |+〉 and v̂(2)

r v̂(1)
r |+〉 are almost indistinguishable. Moreover, the

results in (b) for E/NJ = 0.125 and 0.875 are on top of each other
in this scale.

window of width δE , and the density of states is thus ex-
pressed by a sum of Gaussians centered at the target energy
E with its spread corresponding to the width of the en-
ergy window δE . Since the density of states is a continuous

FIG. 6. The same as Fig. 5 but for N = 28. The full-
diagonalization results are not shown because the huge computa-
tional resource required is not currently available.

function of E in this formalism, we can derive analytical
expressions of thermodynamic quantities such as the entropy
and the inverse temperature. This formalism also allows us
to estimate these thermodynamic quantities by evaluating
the trace of the time-evolution operator and the trace of the
time-evolution operator multiplied by the Hamiltonian of the
system, which is thus suitable for quantum computation. By
introducing the random sampling for the trace evaluations
using the random-phase states, we can recognize that our
formalism is a microcanonical counterpart of the canonical
TPQ state, and the corresponding TPQ state is now an energy-
filtered random-phase state with the target energy E and the
filtering time τ , the latter being related to the width of the
energy window via δE =

√
π/τ .

We have then numerically validated the proposed
method by calculating thermodynamic quantities of the
one-dimensional spin-1/2 Heisenberg model with the full
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∂τTr [Ĝτ(E)]
Tr [Ĝτ(E)]
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FIG. 2. Semilog plots of the histograms for the number of states as a function of the target energy E with [(a)–(c)] Nbin = 32, [(d)–(f)] 64,
and [(g)–(i)] 128 for [(a), (d), and (g)] N = 20, [(b), (e), and (h)] 22, and [(c), (f), and (i)] 24. For comparison, the number of states calculated
from Tr[Ĝτ (E )] = gτ (E )δE with the filtering time τ chosen as in Eq. (66) is also shown in each panel by the magenta line. The thin dashed
vertical lines at the edges of the histograms indicate the minimum and maximum energy eigenvalues E0 and ED−1. The thick vertical lines at
E/NJ = −0.25, 0.125, 0.5, and 0.875 (indicated by blue, orange, green, and red, respectively) denote the target energies used in the results
shown in Figs. 3–5, and 11. Notice that the different panels employ the different axes scales.

and we allocate Nbin bins so that the minimum (maximum)
energy eigenvalue E0 (ED−1) is located at the center of the
corresponding bin. In Fig. 2, we plot the results for Nbin =
32, 64, and 128. Note that basically the same histogram but
with a different δENbin for N = 20 has already been reported
in Ref. [21]. For comparison, we also show in the figure the
number of states calculated form our definition, i.e.,

Tr[Ĝτ (E )] = gτ (E )δE , (65)

where δE is given in Eq. (11) and the filtering time τ is chosen
as

τ =
√

π

δENbin

, (66)

hence satisfying δE = δENbin . More explicitly, the values of
τ are τJ = 1.98, 1.80, 1.65 for Nbin = 32 and N = 20, 22,
24, τJ = 4.02, 3.65, 3.35 for Nbin = 64 and N = 20, 22, 24,
and τJ = 8.09, 7.36, 6.75 for Nbin = 128 and N = 20, 22, 24,
respectively.

It is found in Fig. 2 that Tr[Ĝτ (E )] = gτ (E )δE closely
follows the corresponding histogram of the number of states,

indicating that our definitions of the density of states gτ (E )
and the width of the energy window δE are reasonable. We
note that, in contrast to the histograms, Tr[Ĝτ (E )] = gτ (E )δE
is a continuous function of E and hence its derivative with
respect to E is well defined even for finite-size systems. How-
ever, when the energy eigenvalues are distributed sparsely as
compared to a given energy window, gτ (E )δE behaves snaky
[for example, see a low-energy region in Figs. 2(g)–2(i)] and
such a behavior becomes more prominent for the smaller N
and the larger Nbin (see Fig. 8 in Appendix E). On the other
hand, thermodynamically, the entropy Sτ (E ) = ln[gτ (E )δE ]
should be a concave function of E so that the inverse temper-
ature βτ (E ) = ∂Sτ (E )/∂E decreases monotonically with E .
This implies that if the filtering time τ is so large that δE is
smaller than the energy-eigenvalue spacing at energy around
E , the statistical mechanical treatment of these quantum states
becomes irrelevant and hence loses connections to thermody-
namics, as it is usually the case in statistical mechanics. In
this sense, the proposed method is expected to be most ef-
fective for larger systems where the distribution of the energy
eigenvalues is dense.
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Importance of the number of states for thermodynamic quantities
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FIG. 2. Semilog plots of the histograms for the number of states as a function of the target energy E with [(a)–(c)] Nbin = 32, [(d)–(f)] 64,
and [(g)–(i)] 128 for [(a), (d), and (g)] N = 20, [(b), (e), and (h)] 22, and [(c), (f), and (i)] 24. For comparison, the number of states calculated
from Tr[Ĝτ (E )] = gτ (E )δE with the filtering time τ chosen as in Eq. (66) is also shown in each panel by the magenta line. The thin dashed
vertical lines at the edges of the histograms indicate the minimum and maximum energy eigenvalues E0 and ED−1. The thick vertical lines at
E/NJ = −0.25, 0.125, 0.5, and 0.875 (indicated by blue, orange, green, and red, respectively) denote the target energies used in the results
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τ are τJ = 1.98, 1.80, 1.65 for Nbin = 32 and N = 20, 22,
24, τJ = 4.02, 3.65, 3.35 for Nbin = 64 and N = 20, 22, 24,
and τJ = 8.09, 7.36, 6.75 for Nbin = 128 and N = 20, 22, 24,
respectively.

It is found in Fig. 2 that Tr[Ĝτ (E )] = gτ (E )δE closely
follows the corresponding histogram of the number of states,

indicating that our definitions of the density of states gτ (E )
and the width of the energy window δE are reasonable. We
note that, in contrast to the histograms, Tr[Ĝτ (E )] = gτ (E )δE
is a continuous function of E and hence its derivative with
respect to E is well defined even for finite-size systems. How-
ever, when the energy eigenvalues are distributed sparsely as
compared to a given energy window, gτ (E )δE behaves snaky
[for example, see a low-energy region in Figs. 2(g)–2(i)] and
such a behavior becomes more prominent for the smaller N
and the larger Nbin (see Fig. 8 in Appendix E). On the other
hand, thermodynamically, the entropy Sτ (E ) = ln[gτ (E )δE ]
should be a concave function of E so that the inverse temper-
ature βτ (E ) = ∂Sτ (E )/∂E decreases monotonically with E .
This implies that if the filtering time τ is so large that δE is
smaller than the energy-eigenvalue spacing at energy around
E , the statistical mechanical treatment of these quantum states
becomes irrelevant and hence loses connections to thermody-
namics, as it is usually the case in statistical mechanics. In
this sense, the proposed method is expected to be most ef-
fective for larger systems where the distribution of the energy
eigenvalues is dense.
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FIG. 2. Semilog plots of the histograms for the number of states as a function of the target energy E with [(a)–(c)] Nbin = 32, [(d)–(f)] 64,
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E/NJ = −0.25, 0.125, 0.5, and 0.875 (indicated by blue, orange, green, and red, respectively) denote the target energies used in the results
shown in Figs. 3–5, and 11. Notice that the different panels employ the different axes scales.
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should be a concave function of E so that the inverse temper-
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This implies that if the filtering time τ is so large that δE is
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becomes irrelevant and hence loses connections to thermody-
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FIG. 5. (a) The energy expectation value Eτ,R(E ), (b) the entropy
Sτ,R(E ), and (c) the inverse temperature βτ,R(E ) as a function of
the filtering time τ for different target energies E/NJ = −0.25,
0.125, 0.5, and 0.875 calculated with the random sampling of the
trace evaluations using three types of the random-phase states, i.e.,
V̂r |+〉 (blue circles), v̂(1)

r |+〉 (orange squares), and v̂(2)
r v̂(1)

r |+〉 (green
diamonds). The system size is fixed at N = 24 for all the calculations
and the number of samples is R = 64. For comparison, the results
for Eτ (E ), Sτ (E ), and βτ (E ) calculated by the full diagonalization
method are also shown by magenta solid lines. Note that these full-
diagonalization results are the same as those in Figs. 3(c), 3(f), and
3(i). The black dashed horizontal lines in (a) indicate the target ener-
gies. For most of the cases, the results, including the statistical errors,
for V̂r |+〉 and v̂(2)

r v̂(1)
r |+〉 are almost indistinguishable. Moreover, the

results in (b) for E/NJ = 0.125 and 0.875 are on top of each other
in this scale.

window of width δE , and the density of states is thus ex-
pressed by a sum of Gaussians centered at the target energy
E with its spread corresponding to the width of the en-
ergy window δE . Since the density of states is a continuous

FIG. 6. The same as Fig. 5 but for N = 28. The full-
diagonalization results are not shown because the huge computa-
tional resource required is not currently available.

function of E in this formalism, we can derive analytical
expressions of thermodynamic quantities such as the entropy
and the inverse temperature. This formalism also allows us
to estimate these thermodynamic quantities by evaluating
the trace of the time-evolution operator and the trace of the
time-evolution operator multiplied by the Hamiltonian of the
system, which is thus suitable for quantum computation. By
introducing the random sampling for the trace evaluations
using the random-phase states, we can recognize that our
formalism is a microcanonical counterpart of the canonical
TPQ state, and the corresponding TPQ state is now an energy-
filtered random-phase state with the target energy E and the
filtering time τ , the latter being related to the width of the
energy window via δE =

√
π/τ .

We have then numerically validated the proposed
method by calculating thermodynamic quantities of the
one-dimensional spin-1/2 Heisenberg model with the full
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Quantum simulation results 



Test on ibm_manila (work in progress)
Two-site Heisenberg model: ℋ = J (X̂1X̂2 + ̂Y1

̂Y2 + ̂Z1
̂Z2) Nshot = 4096

τ = 1

Tr [Ĝτ(E)] =
1

2 πτ ∫
∞

−∞
dte− t2

4τ2 eiEtTr [Û(t)]

Tr [Ĝτ(E)] = e−(E+3J)2τ2 + 3e−(E−J)2τ2

X( )

Orange: Parity and Scale corrected







ReTr [Û(t)] = ReTr [Û(−t)]
ImTr [Û(t)] = − ImTr [Û(−t)]
ReTr [Û(0)]/D = 1 D = 22 = 4

Evaluate   and ⟨00 | Û(t) |00⟩ ⟨01 | Û(t) |01⟩

c0- exp(−iJt ̂Z1
̂Z2) c0- exp(−iJtX̂1X̂2) c0- exp(−iJt ̂Y1

̂Y2)



Test on ibm_kawasaki (work in progress)
Two-site Heisenberg model: ℋ = J (X̂1X̂2 + ̂Y1

̂Y2 + ̂Z1
̂Z2) Nshot = 4096

τ = 1

Tr [Ĝτ(E)] =
1

2 πτ ∫
∞

−∞
dte− t2

4τ2 eiEtTr [Û(t)]

Tr [Ĝτ(E)] = e−(E+3J)2τ2 + 3e−(E−J)2τ2

X( )

Orange: Parity and Scale corrected







ReTr [Û(t)] = ReTr [Û(−t)]
ImTr [Û(t)] = − ImTr [Û(−t)]
ReTr [Û(0)]/D = 1 D = 22 = 4

Evaluate   and ⟨00 | Û(t) |00⟩ ⟨01 | Û(t) |01⟩

c0- exp(−iJt ̂Z1
̂Z2) c0- exp(−iJtX̂1X̂2) c0- exp(−iJt ̂Y1

̂Y2)



Test on IonQ (work in progress)
Two-site Heisenberg model: ℋ = J (X̂1X̂2 + ̂Y1

̂Y2 + ̂Z1
̂Z2) Nshot = 4096

τ = 1

Tr [Ĝτ(E)] =
1

2 πτ ∫
∞

−∞
dte− t2

4τ2 eiEtTr [Û(t)]

Tr [Ĝτ(E)] = e−(E+3J)2τ2 + 3e−(E−J)2τ2

X( )

Orange: Parity and Scale corrected







ReTr [Û(t)] = ReTr [Û(−t)]
ImTr [Û(t)] = − ImTr [Û(−t)]
ReTr [Û(0)]/D = 1 D = 22 = 4

Evaluate   and ⟨00 | Û(t) |00⟩ ⟨01 | Û(t) |01⟩

c0- exp(−iJt ̂Z1
̂Z2) c0- exp(−iJtX̂1X̂2) c0- exp(−iJt ̂Y1

̂Y2)



Test on ibm_kawasaki with random states (work in progress)

ra
nd

om

Two-site Heisenberg model: ℋ = J (X̂1X̂2 + ̂Y1
̂Y2 + ̂Z1

̂Z2)

R = 16

Nshot = 4096

τ = 1

Tr [Ĝτ(E)] =
1

2 πτ ∫
∞

−∞
dte− t2

4τ2 eiEtTr [Û(t)]

Tr [Ĝτ(E)] = e−(E+3J)2τ2 + 3e−(E−J)2τ2

Orange: Parity and Scale corrected







ReTr [Û(t)] = ReTr [Û(−t)]
ImTr [Û(t)] = − ImTr [Û(−t)]
ReTr [Û(0)]/D = 1 D = 22 = 4

Evaluate   directlyTr[Û(t)]/D

c0- exp(−iJt ̂Z1
̂Z2) c0- exp(−iJtX̂1X̂2) c0- exp(−iJt ̂Y1

̂Y2)



A related work using Quantinuum H1-1 (20-qubit) device
Summer et al., arXiv:2303.13476

4

1st

2nd

3rd

4th

5th

6th

FIG. 2. Shown in this figure is the 6-layer randomised cir-
cuit used for trace evaluation in the L = 12 (the blue box
on L-1 qubit register in Fig. 1). (a) A representation that
illustrates the connectivity of the circuit, the grey dots rep-
resent the qubits, and the colored lines are the 2-qubit gates
where they are numbered according to their application. Note
that this particular structure is chosen to exploit the all to all
connectivity of the Quantinuum H1-1 device [38]. (b) Gate
decomposition of the random circuit. The colored lines repre-
sent ẐZ(⇡/2) gates, and the dark gray squares are the single-
qubit rotations, randomly selected from X̂(⇡/2), Ŷ (⇡/4) and
Ẑ(⇡/2). The latter two will be removed by the compilation
since they commute with ẐZ(⇡/2) and anti-commute with
the other operators. Therefore, their e↵ect is to add two more
types of single-qubit rotations.

gate e�ciency, with the number of gates required scaling
polynomially with the number of qubits. Nonetheless,
T-designs are still costly and may be overly random for
specific purposes. Here we take an alternative approach
based on pseudorandom state generation [46]. This in-
volves the generation of states that do not uniformly sam-
ple the Haar distribution [48], but still possess the desired
properties such as Eqs. (13) and (14). This method has
been shown to generate states that are su�ciently ran-
dom in an e�cient way.

Using pseudorandom states to stochastically evaluate
the trace has been proposed in various papers [35, 49–52],
and recently used on quantum hardware to extract high-
temperature transport exponents [11]. In order to gener-
ate pseudo-random states, one can use a circuit composed
of alternating layers of 2-qubit gates and layers with ran-
dom single qubit rotations, as suggested by Ref. [46]
and adopted in Refs. [11, 44, 49] with small variations.
This random composition has become a widely accepted
method for generating this type of random state. In
Ref. [49] the random state is aimed at generation on a
quantum computer where the qubits are connected in a
ring geometry. Layers of 2-qubit gates connecting even-

odd and odd-even qubits are alternated and in between
them, there are layers of single-qubit gates randomly cho-
sen among {X̂(⇡/2), Ŷ (⇡/2), Ẑ(⇡/4)} so that the same
rotation is not applied to the same qubit sequentially.
In our case, we focus on a variation of this procedure

that takes advantage of the all-to-all connectivity and of
the specific set of elementary gates that can be imple-
mented directly on the Quantinuum H1-1 trapped-ion-
based quantum computer (see Fig. 2). The gate set of
the device Quantinuum H1-1 device includes

ẐZ(✓) = e
�i✓/2Ẑ⌦Ẑ

,

Ẑ(✓) = e
�i✓/2Ẑ

,

Û1q(✓,�) = e
�i✓/2(cos(�)X̂+sin(�)Ŷ )

.

(18)

The device that we will use also supports parallelisa-
tion (using Quantum charge-coupled device (QCCD) ar-
chitecture with five parallel gate zones [53]). Inspired
by existing techniques to create shallow randomisers,
we change the single qubit rotations to be chosen from
{X̂(⇡/2), Ŷ (⇡/4), Ẑ(⇡/2)}. Note that the former two ro-
tations can be applied as a single Û1q(✓,�) gate, while
the latter can be implemented virtually [54]. The 2-qubit
gate will now be a ẐZ(⇡/2) with a di↵erent connectiv-
ity. Each ẐZ(⇡/2) will connect the qubits 2i and (2i+p)
mod L with i = 0, . . . , L/2 and p an odd number called
a jump. The jumps are chosen so that each qubit is nar-
rowly connected to the other. For instance, as shown in
Fig. 2, the jumps of the first half of the layers can be
chosen with p` = �(�1)`(2s`+ 1) with s 2 N0 and ` the
index of the layer, and with p` = �p�` for the second
half of the layers. In particular, Fig. 2 shows the random
compiler with L = 12 and s = 1. Notice that s = 0
reproduces the same pattern of 2-qubit gates as in [49].
Following Ref. [49], we quantify the randomising ef-

fect of our circuit by checking how well the half-system
entanglement entropy converges to the Page value [55],
which is the entanglement entropy for a typical Haar-
random state. The von Neumann entanglement entropy
of a state ⇢r = |rihr| on a space divided in subspaces Ha

and Hb is:

S(⇢r(a)) = Tr[⇢r(a) ln ⇢r(a)] (19)

with ⇢r(a) = Tr(b)[|rihr|]. As shown in [55], this
value converges to the Page value log(dimHa) �
dimHa/(2 dimHb) for random pure states. For
dimHa = dimHb the it becomes log(2L/2)� 1/2.
In Fig. 3, we present a classical simulation comparing

the convergence rates to the Page value of three di↵er-
ent approaches: Ric., which is the approach suggested by
Richter et al. [49]; Par., the approach used in this work;
and Seq., a variation of Par. where the 2-qubit gates
are applied as a chain. In this latter method, the lay-
ers of 2-qubit gates are composed of a sequence of gates,
each of these has support overlapping over half of the
previous and half of the succeeding gate. Therefore, we
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FIG. 6. Results for the Hamiltonian of Eq. (44) at L = 12
with Jx = 1, Jy = 1/3, Jz = ⇤ = 1/2. In (a) the estimates for
the first 25 Chebyshev moments. The comparison is between
Chebyshev moments obtained in di↵erent ways: analytically
(Cheb), applying the arc-cosine approximation at the first or-
der (Arccos), adding the ST approximation with one single
step (ST), and the results from the circuit of Fig. 1 from
Quantinuum, the emulator (H1-1e) and the quantum com-
puter (H1-1). We used 4 di↵erent random circuits with j = 5
and 1000 shots. Each cross represents the result from a cir-
cuit with a di↵erent random circuit. Figure (b) is composed
by two parts. On top: the DOS obtained with the five dif-
ferent estimates for the Chebyshev moments (using a kernel
with M = 25) and the DOS from the exact diagonalisation
(ED). On bottom we reported the comparison of the DOS
obtained with di↵erent approximation of the Chebyshev mo-
ments w.r.t. the analytical ones.

from the exact values within the bulk of the spectrum,
and that the KPM with M = 25 is able to accurately
reconstruct the DOS using these moments.

We next attempted the same calculation on a register

FIG. 7. Similarly to Fig. 6, the results for the Hamiltonian of
Eq. (44) at L = 18 with Jx = 1, Jy = 1/3, Jz = ⇤ = 1/2. In
(a) the estimates for the first 50 Chebyshev moments. Here,
for the Quantinuum executions, we used 10 di↵erent random
circuits with j = 4 and 1000 shots. Each cross represents the
result from a circuit with a di↵erent random circuit. Figure
(b) is composed by two parts. On top: the DOS obtained
with the five di↵erent estimates for the Chebyshev moments
and the DOS from the exact diagonalisation (ED). Since we
computed µ2 only from the H1-1 System, we also included
what the DOS estimate from the µ2 from the real hardware
combined with the estimates from the emulator would look
like (H1-1*). On bottom we reported the comparison of the
DOS obtained with di↵erent approximation of the Chebyshev
moments w.r.t. the analytical ones.

of L = 18, which uses 19 out of 20 qubits currently avail-
able on the H1-1 System [38]. Here the KPM requires
M ⇠ 50 to achieve an accurate approximation, while the
moments that can be simulated accurately range up to
m = 11, beyond which their values become too small
to be distinguished from zero given the number of shots

12-site XYZ modelAll-to-all connection
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we have used. Simulating a larger system requires even
more resources, and due to the higher costs associated
with these larger circuits, we ultimately only simulated
µ2 on the real hardware for the L = 18 case. Our re-
sults demonstrate that the emulator (H1-1e) consistently
produces accurate outcomes and we compute the rest of
the moments with it. Additionally, we note that the fi-
delity of the ẐZ gate appears to improve with smaller an-
gles. Our circuit heavily employs these gates (see Fig. 5),
and any discrepancies in the emulator results can be at-
tributed to an underestimation of these gates’ fidelities.
We report the results from this last system in Fig. 7,
where in the plot of the DOS we add a projection ob-
tained by combining the results from hardware and em-
ulator together.

V. CONCLUSIONS

In summary, we have performed the first estimation
of the density of states of an non-integrable many-
body quantum system on a digital quantum simulator.
We have designed and implemented a quantum algo-
rithm that exploits a combination of the Hadamard test,
Suzuki-Trotter decomposition and random state prepara-
tion to extract Chebyshev moments. Proof-of-principle
hardware simulations were performed on registers of L =
12 and L = 18 qubits on the Quantinuum H1-1 ion trap
quantum computer, obtaining a good approximation to
the DOS for a non-integrable Hamiltonian in the bulk of
the spectrum (corresponding to high microcanonical tem-
peratures). We explored in detail the crucial subroutines
of stochastic trace evaluation and controlled evolution
with arccosine approximation. We believe that our quan-
tum hardware results represent the current state-of-the-
art, in terms of both the generation of pseudo-random
states and the implementation of controlled unitary op-
erations on a many-qubit register. We emphasise that
the accuracy of our hardware results has been limited
primarily by financial constraints, and not by fundamen-
tal resource scalings nor even by noise on the H1-1 device.

For the DOS we found it was su�cient to take the
arccosine expansion to very low order (K = 0), which is
ultimately due to the concentration of energy levels at the
centre of the spectrum in large systems. We note that our
KPM-inspired approach can easily be tailored to compute
finite-temperature expectation values in the diagonal and
micro-canonical ensembles, in addition to other spectral
functions such as the Lehmann representation of multi-
time correlation functions. In these cases, it may be nec-
essary to consider higher-order expansions (i.e. K > 0)
to account for features away from the centre of the spec-
trum. Our methods could also be combined with other
quantum algorithms tailored to compute ground-state
and low-lying excited state properties [17–22], in order to
estimate thermodynamic properties across the full range
of temperature scales.

Our estimation of the DOS on current quantum hard-

ware represents an important step forward towards quan-
tum statistical mechanics calculations on quantum com-
puters. As the devices improve, we expect that this al-
gorithm and subroutines can be used to extract useful
approximations to thermodynamic properties in regimes
not accessible to state-of-the-art classical numerical tech-
niques for strongly correlated systems.
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Appendix A: Chebyshev polynomials

Given a f function, {gM}, a family of orthogonal func-
tions s.t.

f(x) ⇡ gM (x) =
MX

m=0

am�m(x) (A1)

is said to be a good approximation if it approximates f

in at least the square norm:

kf(x)� gM (x)k2 =

Z
(f(x)� gM (x))2 dx

�1/2
. (A2)

A family of functions that are frequently used for this
scope is the given by Fourier series. In this case, the
polynomials are:

gM (x) =
1

2
a0 +

MX

m=1

(am cos(mx) + bm sin(mx)) (A3)

where the coe�cients are

am =
1

⇡

Z
f(x) cos(mx)dx

bm =
1

⇡

Z
f(x) sin(mx)dx

(A4)

The Fourier decomposition works well with signals,
namely with processes that happen to be periodic and
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FIG. 2. Semilog plots of the histograms for the number of states as a function of the target energy E with [(a)–(c)] Nbin = 32, [(d)–(f)] 64,
and [(g)–(i)] 128 for [(a), (d), and (g)] N = 20, [(b), (e), and (h)] 22, and [(c), (f), and (i)] 24. For comparison, the number of states calculated
from Tr[Ĝτ (E )] = gτ (E )δE with the filtering time τ chosen as in Eq. (66) is also shown in each panel by the magenta line. The thin dashed
vertical lines at the edges of the histograms indicate the minimum and maximum energy eigenvalues E0 and ED−1. The thick vertical lines at
E/NJ = −0.25, 0.125, 0.5, and 0.875 (indicated by blue, orange, green, and red, respectively) denote the target energies used in the results
shown in Figs. 3–5, and 11. Notice that the different panels employ the different axes scales.

and we allocate Nbin bins so that the minimum (maximum)
energy eigenvalue E0 (ED−1) is located at the center of the
corresponding bin. In Fig. 2, we plot the results for Nbin =
32, 64, and 128. Note that basically the same histogram but
with a different δENbin for N = 20 has already been reported
in Ref. [21]. For comparison, we also show in the figure the
number of states calculated form our definition, i.e.,

Tr[Ĝτ (E )] = gτ (E )δE , (65)

where δE is given in Eq. (11) and the filtering time τ is chosen
as

τ =
√

π

δENbin

, (66)

hence satisfying δE = δENbin . More explicitly, the values of
τ are τJ = 1.98, 1.80, 1.65 for Nbin = 32 and N = 20, 22,
24, τJ = 4.02, 3.65, 3.35 for Nbin = 64 and N = 20, 22, 24,
and τJ = 8.09, 7.36, 6.75 for Nbin = 128 and N = 20, 22, 24,
respectively.

It is found in Fig. 2 that Tr[Ĝτ (E )] = gτ (E )δE closely
follows the corresponding histogram of the number of states,

indicating that our definitions of the density of states gτ (E )
and the width of the energy window δE are reasonable. We
note that, in contrast to the histograms, Tr[Ĝτ (E )] = gτ (E )δE
is a continuous function of E and hence its derivative with
respect to E is well defined even for finite-size systems. How-
ever, when the energy eigenvalues are distributed sparsely as
compared to a given energy window, gτ (E )δE behaves snaky
[for example, see a low-energy region in Figs. 2(g)–2(i)] and
such a behavior becomes more prominent for the smaller N
and the larger Nbin (see Fig. 8 in Appendix E). On the other
hand, thermodynamically, the entropy Sτ (E ) = ln[gτ (E )δE ]
should be a concave function of E so that the inverse temper-
ature βτ (E ) = ∂Sτ (E )/∂E decreases monotonically with E .
This implies that if the filtering time τ is so large that δE is
smaller than the energy-eigenvalue spacing at energy around
E , the statistical mechanical treatment of these quantum states
becomes irrelevant and hence loses connections to thermody-
namics, as it is usually the case in statistical mechanics. In
this sense, the proposed method is expected to be most ef-
fective for larger systems where the distribution of the energy
eigenvalues is dense.
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from Tr[Ĝτ (E )] = gτ (E )δE with the filtering time τ chosen as in Eq. (66) is also shown in each panel by the magenta line. The thin dashed
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E/NJ = −0.25, 0.125, 0.5, and 0.875 (indicated by blue, orange, green, and red, respectively) denote the target energies used in the results
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This implies that if the filtering time τ is so large that δE is
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