Quantum-classical hybrid method for microcanonical ensembles

Kazuhiro Seki
RIKEN

Outline

- Background and motivation
- Quantum-classical hybrid method for microcanonical ensembles
- Numerical results
- Classical simulation
- Quantum simulation (preliminary)
- Summary

Dynamics of quantum many-body systems on quantum computers

Time evolution of a state by the 1D Hubbard Hamiltonian Arute et al., arXiv:2010.07965

$$
\mathbf{d}
$$

b

$$
\begin{array}{ll}
-\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos \theta & -i \sin \theta & 0 \\
0 & -i \sin \theta & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \rightarrow\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array} 0\right. \\
0 & 0
\end{array} 1
$$

Variational (VQE) calculation for the Hubbard model Hamiltonian-variational ansatz

a

b

Dynamics of quantum many-body systems on quantum computers

Mi et al., Science 374, 1479 (2021)

Out-of-time-order correlators with random unitaries \hat{U} (not a Hamiltonian dynamics)

$$
\left\langle\hat{X}_{b}(t) \hat{Z}_{1} \hat{X}_{b}(t) \hat{Z}_{1}\right\rangle, \hat{X}_{b}(t)=\hat{U}^{\dagger} \hat{X}_{b} \hat{U}
$$

Kim et al., Nature 618, 500 (2023)

Dynamics of transverse-field Ising model
A finite signal of $\left\langle\hat{Z}_{62}\right\rangle$ with
20 Trotter steps ($144 \times 20=2880$ CNOTs)
A naive estimation of circuit fidelity
$(0.99)^{2880} \sim 3 \times 10^{-13}$
0.99: median 2Q gate fidelity

Several followup papers appeared

Dynamics of quantum many-body systems on quantum computers

Purpose:

To develop a finite-temperature method for quantum many-body systems using time evolution

Time evolution by quantum many-body Hamiltonians is getting feasible

Quantum-classical hybrid method for microcanonical ensembles

Definition of microcanonical density matrix

Conventional definition

$$
\left\langle E_{m}\right| \hat{\rho}_{\text {mic }}(E)\left|E_{n}\right\rangle=\left\{\begin{array}{l}
\rho_{0} \delta_{m n} \quad\left(E-\frac{\delta E}{2} \leqslant E_{n}<E+\frac{\delta E}{2}\right) \\
0 \quad \text { (otherwise) }
\end{array}\right.
$$

Our definition

$$
\left\langle E_{m}\right| \hat{\rho}_{\mathrm{mic}, \tau}(E)\left|E_{n}\right\rangle=\frac{\mathrm{e}^{-\left(E_{n}-E\right)^{2} \tau^{2}}}{\sum_{n=0}^{D-1} \mathrm{e}^{-\left(E_{n}-E\right)^{2} \tau^{2}}} \delta_{m n} \quad \delta E=\frac{\sqrt{\pi}}{\tau}
$$

$$
\hat{\rho}_{\text {mic }, \tau}(E) \equiv \frac{\begin{array}{c}
\text { Density matrix operator : } \\
\operatorname{Tr}\left[\hat{G}_{\tau}(E)\right]
\end{array}, \quad \hat{G}_{\tau}(E)=\mathrm{e}^{-(\hat{\mathscr{H}}-E)^{2} \tau^{2}}}{}
$$

Pure state $\left|\psi_{\tau, r}(E)\right\rangle$ corresponding to the density matrix $\hat{\rho}_{\text {mic }, \tau}(E)$

| "Random state" $(r$: label for random seeds) | Gaussian (center E, width $\sim 1 / \tau)$ | Density matrix |
| :---: | :---: | :---: | :---: |
| $\left\|\psi_{\tau, r}(E)\right\rangle=\left[\hat{G}_{\tau}(E)\right]^{\frac{1}{2}}\left\|\boldsymbol{\phi}_{r}\right\rangle$ | $\hat{G}_{\tau}(E)=\mathrm{e}^{-(\hat{\mathscr{H}}-E)^{2} \tau^{2}}$ | $\hat{\rho}_{\text {mic }, \tau}(E) \equiv \frac{\hat{G}_{\tau}(E)}{\operatorname{Tr}\left[\hat{G}_{\tau}(E)\right]}$ |

- Thermodynamic quantities
- N : Number of qubits
$D=2^{N}$
$\hat{\mathscr{H}}$: Hamiltonian
E : Target energy
$\tau: \sim 1 /($ energy width $\delta E)$
$\bigcirc\left\langle\left\langle\left\langle\psi_{\tau, r}(E) \mid \psi_{\tau, r}(E)\right\rangle\right\rangle\right\rangle=\frac{1}{D} \operatorname{Tr}\left[\hat{G}_{\tau}(E)\right]$ \# states $/ D$

$$
\begin{aligned}
& \odot S_{\tau}(E)=\ln \operatorname{Tr}\left[\hat{G}_{\tau}(E)\right] \quad \text { Entropy } \\
& \odot \beta_{\tau}(E)=\partial_{E} S_{\tau}(E)=2 \tau^{2}\left(\mathscr{E}_{\tau}(E)-E\right) \quad \text { Inverse temperature } \\
& \odot \mathscr{E}_{\tau}(E)=\operatorname{Tr}\left[\hat{\rho}_{\text {mic }, \tau}(E) \hat{\mathscr{H}}\right]=\frac{\operatorname{Tr}\left[\hat{\mathscr{H}} \hat{G}_{\tau}(E)\right]}{\operatorname{Tr}\left[\hat{G}_{\tau}(E)\right]} \text { Energy expectation }
\end{aligned}
$$

- $\left|\psi_{\tau, r}(E)\right\rangle$: a microcanonical version of the canonical TPQ state $\mathrm{e}^{-\frac{1}{2} \beta \hat{H}}\left|\phi_{r}\right\rangle$ Sugiura and Shimizu, PRL 111, 010401 (2013) (norm of canonical TPQ state ~ partition function Z)
- $\left|\psi_{\tau, r}(E)\right\rangle$: a linear combination of energy eigenstates $\left|E_{n}\right\rangle$ s.t.
$\left|\psi_{\tau, r}(E)\right\rangle=\sum_{n=0}^{D-1} \mathrm{e}^{-\frac{1}{2}\left(E_{n}-E\right)^{2} \tau^{2}} c_{n, r}\left|E_{n}\right\rangle$ where $c_{n, r}=\left\langle E_{n} \mid \phi_{r}\right\rangle$ $E-\frac{\sqrt{2 \pi}}{\tau} \lesssim E_{n} \lesssim E+\frac{\sqrt{2 \pi}}{\tau}$

○ $\left|\psi_{\tau, r}(E)\right\rangle$ was introduced in the filter-diagonalization method Wall and Neuhauser, J. Chem. Phys. 102, 8011 (1995)

Random state $\left|\phi_{r}\right\rangle$ on quantum circuit

$\left|\phi_{r}\right\rangle$ should satisfy...

- Statistical average of $x_{r} \equiv\left\langle\phi_{r}\right| \hat{X}\left|\phi_{r}\right\rangle$ coincides with $\operatorname{Tr}[\hat{X}] / D$
\odot Covariance $\operatorname{Cov}(x, y)$ decreases exponentially in N

Random phase states $\left|\Phi_{r}\right\rangle$ satisfy the above properties, but require exponentially large number of gates. However, it suffices to prepare states $\left|\phi_{r}\right\rangle$ which reproduce the properties of $\left|\Phi_{r}\right\rangle$ up to $2 n d$ statistical moment.

Variance of ratio (from error propagation) is :
$\operatorname{Var}\left[\frac{\frac{1}{R} \sum_{r} x_{r}}{\frac{1}{R} \sum_{r} y_{r}}\right] \approx \frac{1}{R} \operatorname{Var}\left[\frac{x}{y}\right] \quad \begin{aligned} & \text { For a review, see } \\ & \text { Jin et al., JPSJ 90, }\end{aligned}$
$\operatorname{Var}\left[\frac{x}{y}\right] \approx\left(\frac{\mathbb{E}[x]}{\mathbb{E}[y]}\right)^{2}\left[\frac{\operatorname{Var}[x]}{\mathbb{E}[x]^{2}}+\frac{\operatorname{Var}[y]}{\mathbb{E}[y]^{2}}-2 \frac{\operatorname{Cov}(x, y)}{\mathbb{E}[x] \mathbb{E}[y]}\right]$

$\operatorname{Cov}(x, y)=\mathbb{E}[x y]-\mathbb{E}[x] \mathbb{E}[y]=\frac{1}{D^{2}}\left[\operatorname{Tr}[\hat{X} \hat{Y}]-\sum_{i=0}^{D-1}[\hat{X}]_{i i}[\hat{Y}]_{i i}\right]$,
where
$\mathbb{E}[x]=\frac{1}{D} \operatorname{Tr}[\hat{X}], \mathbb{E}[y]=\frac{1}{D} \operatorname{Tr}[\hat{Y}], x_{r}=\left\langle\Phi_{r}\right| \hat{X}\left|\Phi_{r}\right\rangle, y_{r}=\left\langle\Phi_{r}\right| \hat{Y}\left|\Phi_{r}\right\rangle$ (\hat{X}, \hat{Y} : Hermitian)

Let \hat{X}, \hat{Y} be $\hat{X}=\hat{G}_{\tau}(E)^{\frac{1}{2}} \hat{\mathscr{H}} \hat{G}_{\tau}(E)^{\frac{1}{2}}, \hat{Y}=\hat{G}_{\tau}(E)$, where $\frac{\mathbb{E}[x]}{\mathbb{E}[y]}=\mathscr{E}_{\tau}(E)$. Since eigenvalues of \hat{X}, \hat{Y} are $O(N), O(1), \operatorname{Cov}(x, y)$ is $O\left(N D^{-1}\right)$. Assuming that the energy window considered contains sufficiently large number of states, $\operatorname{Tr}\left[\hat{G}_{\tau}(E)\right]=f D, 1 / D \ll f \leqslant 1$, then
$\mathbb{E}[x]=f \mathscr{C}_{\tau}(E), \mathbb{E}[y]=f$, and $\operatorname{Var}(x / y) \sim \mathrm{e}^{-N}$.

Fourier representation of the Gaussian operator

How to compute $\operatorname{Tr}\left[\hat{G}_{\tau}(E)\right]$ and $\operatorname{Tr}\left[\hat{\mathscr{H}} \hat{G}_{\tau}(E)\right]$
Represent $\hat{G}_{\tau}(E)$ as a sum of time-evolution operators

$$
\begin{aligned}
& \odot S_{\tau}(E)=\ln \operatorname{Tr}\left[\hat{G}_{\tau}(E)\right] \quad \text { Entropy } \\
& \odot \beta_{\tau}(E)=\partial_{E} S_{\tau}(E)=2 \tau^{2}\left(\mathscr{C}_{\tau}(E)-E\right) \quad \text { Inverse temperature } \\
& \mathscr{C}_{\tau}(E)=\operatorname{Tr}\left[\hat{\rho}_{\text {mic }, \tau}(E) \hat{\mathscr{H}}\right]=\frac{\operatorname{Tr}\left[\hat{\mathscr{H}} \hat{\sigma}_{\tau}(E)\right]}{\operatorname{Tr}\left[\hat{G}_{\tau}(E)\right]} \text { Energy expectation }
\end{aligned}
$$

$\hat{G}_{\tau}(E)=e^{-(\hat{\mathscr{H}}-E)^{2} \tau^{2}}=\frac{1}{2 \sqrt{\pi} \tau} \int_{-\infty}^{\infty} \mathrm{d}\left\{\mathrm{e}^{-\frac{t^{2}}{4 \tau^{2}}} \mathrm{e} \mathrm{e} E t \hat{U}(t), \quad \hat{U}(t)=\mathrm{e}^{-\mathrm{i} \hat{\mathscr{H} t}}\right.$

- Gaussian of energy $E=$ Fourier transform of gaussian of time t
- Unitary time-evolution operator $\hat{U}(t)$ appears naturally

Evaluate $\left\langle\phi_{r}\right| \hat{U}(t)\left|\phi_{r}\right\rangle$ and $\left\langle\phi_{r}\right| \hat{\mathscr{H}} \hat{U}(t)\left|\phi_{r}\right\rangle$ on a quantum computer, integrate them over t on a classical computer.
$\operatorname{Tr}\left[\hat{G}_{\tau}(E)\right] \approx D\left\langle\left\langle\mathcal{N}_{\tau, r}(E)\right\rangle\right\rangle_{R}, \quad \mathcal{N}_{\tau, r}(E) \equiv \frac{1}{2 \sqrt{\pi} \tau} \int_{-\infty}^{\infty} \mathrm{d} t \mathrm{e}^{-\frac{t^{2}}{4 \tau^{2}}} \mathrm{e}^{\mathrm{i} E t}\left\langle\phi_{r}\right| \hat{U}(t)\left|\phi_{r}\right\rangle$

$$
\operatorname{Tr}\left[\hat{\mathscr{H}} \hat{G}_{\tau}(E)\right] \approx D\left\langle\left\langle\mathscr{E}_{\tau, r}(E)\right\rangle\right\rangle_{R}, \quad \mathscr{E}_{\tau, r}(E) \equiv \frac{1}{2 \sqrt{\pi} \tau} \int_{-\infty}^{\infty} \mathrm{d} t \mathrm{e}^{-\frac{t^{2}}{4 \tau^{2}}} \mathrm{e}^{\mathrm{i} E t}\left\langle\phi_{r}\right| \hat{\mathscr{H}} \hat{U}(t)\left|\phi_{r}\right\rangle
$$

$$
\langle\langle\cdots\rangle\rangle_{R} \equiv \frac{1}{R} \sum_{r=1}^{R} \cdots
$$

Evaluation of $\operatorname{Re}\langle\psi| \hat{U}|\psi\rangle$: Hadamard test

$$
\begin{gathered}
\text { Basis states } \\
\hat{Z}|0\rangle=|0\rangle \\
\hat{Z}|1\rangle=-|1\rangle
\end{gathered}
$$

Evaluation of $\operatorname{Re}\langle\psi| \hat{U}|\psi\rangle$: Hadamard test

$$
\begin{gathered}
\text { Basis states } \\
\hat{Z}|0\rangle=|0\rangle \\
\hat{Z}|1\rangle=-|1\rangle
\end{gathered}
$$

Evaluation of $\operatorname{Im}\langle\psi| \hat{U}|\psi\rangle$: Hadamard test

$$
\begin{gathered}
\text { Basis states } \\
\hat{Z}|0\rangle=|0\rangle \\
\hat{Z}|1\rangle=-|1\rangle
\end{gathered}
$$

Phase gate

$$
\boldsymbol{S}=\left[\begin{array}{ll}
1 & 0 \\
0 & \mathrm{i}
\end{array}\right]
$$

$$
|\Psi\rangle \equiv \frac{|0\rangle \otimes \frac{1-\mathrm{i} \hat{U}}{2}|\psi\rangle+|1\rangle \otimes \frac{1+\mathrm{i} \hat{U}}{2}|\psi\rangle}{\hat{P}_{0}|\Psi\rangle} \frac{\hat{P}_{1}|\Psi\rangle}{}
$$

Evaluation of $\operatorname{Im}\langle\psi| \hat{U}|\psi\rangle$: Hadamard test

$$
\begin{gathered}
\text { Basis states } \\
\hat{Z}|0\rangle=|0\rangle \\
\hat{Z}|1\rangle=-|1\rangle \\
\hline
\end{gathered}
$$

Phase gate

$$
\boldsymbol{S}=\left[\begin{array}{ll}
1 & 0 \\
0 & \mathrm{i}
\end{array}\right]
$$

$$
|\Psi\rangle \equiv \frac{|0\rangle \otimes \frac{1-\mathrm{i} \hat{U}}{2}|\psi\rangle+|1\rangle \otimes \frac{1+\mathrm{i} \hat{U}}{2}|\psi\rangle}{\hat{P}_{0}|\Psi\rangle} \frac{\hat{P}_{1}|\Psi\rangle}{}
$$

Roles of quantum and classical computers

Quantum computer

Classical computer

Fourier transformation
"From time-evolved states to energy-resolved states"

[^0]Target energy E
Thermodynamic quantities

$$
\begin{array}{|l}
-S_{\tau}(E)=\ln \operatorname{Tr}\left[\hat{G}_{\tau}(E)\right] \\
\odot \beta_{\tau}(E)=\partial_{E} S_{\tau}(E)=2 \tau^{2}\left(\mathscr{E}_{\tau}(E)-E\right) \\
\odot \mathscr{E}_{\tau}(E)=\operatorname{Tr}\left[\hat{\rho}_{\text {mic }, \tau}(E) \hat{\mathscr{H} \ell}\right]=\frac{\left.\operatorname{Tr} \hat{\mathscr{H} G} \hat{\hat{c}}_{\tau}(E)\right]}{\operatorname{Tr}\left[\hat{G}_{\tau}(E)\right]}
\end{array}
$$

- Prepare random state $\left|\phi_{r}\right\rangle$ and time evolve it. - Evaluate $\left\langle\phi_{r}\right| \hat{U}(t)\left|\phi_{r}\right\rangle$ and $\left\langle\phi_{r}\right| \hat{\mathscr{H}} \hat{U}(t)\left|\phi_{r}\right\rangle$ for $r=1, \cdots, R$ and $0 \leqslant t \leqslant c \tau, c \sim O(1)$.

Numerical results

Numerical Results

- Classical simulation

1D Heisenberg model, 20, 22, 24 and 28sites

- Time discretization : $\Delta_{t} J=0.01$, number of samples $R=64$ fixed
- First-order Suzuki-Trotter decomposition of $\hat{U}(t)$
$\odot \int_{-\infty}^{\infty} \mathrm{d} t \cdots \rightarrow \int_{-10 \tau}^{10 \tau} \mathrm{~d} t \cdots$, trapezoidal rule
$\operatorname{Tr}\left[\hat{G}_{\tau}(E)\right] \approx D\left\langle\left\langle\mathcal{N}_{\tau, r}(E)\right\rangle\right\rangle_{R}, \quad \mathcal{N}_{\tau, r}(E) \equiv \frac{1}{2 \sqrt{\pi} \tau} \int_{-\infty}^{\infty} \mathrm{d} t \mathrm{e}^{-\frac{\tau^{2}}{4 \tau^{2}} \mathrm{e} t} \mathrm{i}^{\mathrm{E} t}\left\langle\phi_{r}\right| \hat{U}(t)\left|\phi_{r}\right\rangle$
- Quantum simulation (preliminary results)

2-site Heisenberg model (No Trotter errors)

$$
\begin{aligned}
& \text { © ibm_manila (Superconducting qubits) } \\
& \text { @ ibm_kawasaki (Superconducting qubits) } \\
& \text { @ lonQ Harmony (Trapped ion qubits) } \\
& \hline
\end{aligned}
$$

Classical simulation results

1D PBC $S=1 / 2$ Heisenberg model, $N=24$

Importance of the number of states for thermodynamic quantities

1D PBC $S=1 / 2$ Heisenberg model, $N=24$ and 28

Quantum simulation results

Test on ibm_manila (work in progress)

Two-site Heisenberg model: $\mathscr{H}=J\left(\hat{X}_{1} \hat{X}_{2}+\hat{Y}_{1} \hat{Y}_{2}+\hat{Z}_{1} \hat{Z}_{2}\right)$
|0)
$|0\rangle$
$|0\rangle-(X)$
$\mathrm{c}_{0}-\exp \left(-\mathrm{i} J t \hat{Z}_{1} \hat{Z}_{2}\right) \quad \mathrm{c}_{0}-\exp \left(-\mathrm{i} J t \hat{X}_{1} \hat{X}_{2}\right)$
$\mathrm{c}_{0}-\exp \left(-\mathrm{i} J t \hat{Y}_{1} \hat{Y}_{2}\right)$
$N_{\text {shot }}=4096$
) H

Evaluate $\langle 00| \hat{U}(t)|00\rangle$ and $\langle 01| \hat{U}(t)|01\rangle$

Test on ibm_kawasaki (work in progress)

|0) $-H$
$|0\rangle$
$|0\rangle-(X)$
$\mathrm{c}_{0}-\exp \left(-\mathrm{i} J t \hat{Y}_{1} \hat{Y}_{2}\right)$
$N_{\text {shot }}=4096$

Evaluate $\langle 00| \hat{U}(t)|00\rangle$ and $\langle 01| \hat{U}(t)|01\rangle$

Test on IonQ (work in progress)

Two-site Heisenberg model: $\mathscr{H}=J\left(\hat{X}_{1} \hat{X}_{2}+\hat{Y}_{1} \hat{Y}_{2}+\hat{Z}_{1} \hat{Z}_{2}\right)$
|0)
|0〉

Evaluate $\langle 00| \hat{U}(t)|00\rangle$ and $\langle 01| \hat{U}(t)|01\rangle$

$\operatorname{Tr}\left[\hat{G}_{\tau}(E)\right]=\mathrm{e}^{-(E+3 J)^{2} \tau^{2}}+3 \mathrm{e}^{-(E-J)^{2} \tau^{2}}$

Test on ibm_kawasaki with random states (work in progress)

Two-site Heisenberg model: $\mathscr{\mathscr { C }}=J\left(\hat{X}_{1} \hat{X}_{2}+\hat{Y}_{1} \hat{Y}_{2}+\hat{Z}_{1} \hat{Z}_{2}\right)$

$$
N_{\text {shot }}=4096
$$

$|0\rangle$
$\mathrm{c}_{0}-\exp \left(-\mathrm{i} J t \hat{Z}_{1} \hat{Z}_{2}\right) \quad \mathrm{c}_{0}-\exp \left(-\mathrm{i} J t \hat{X}_{1} \hat{X}_{2}\right.$

$$
\mathrm{c}_{0}-\exp \left(-\mathrm{i} J t \hat{Y}_{1} \hat{Y}_{2}\right)
$$

$R=16$
Evaluate $\operatorname{Tr}[\hat{U}(t)] / D$ directly

A related work using Quantinuum H1-1 (20-qubit) device

Summer et al., arXiv:2303.13476

All-to-all connection
(a)
(b)

12-site $X Y Z$ model

erations on a many-qubit register. We emphasise that the accuracy of our hardware results has been limited primarily by financial constraints, and not by fundamental resource scalings nor even by noise on the H1-1 device.

Summary

A quantum-classical hybrid method for microcanonical ensembles is proposed

Microcanonical TPQ state	Random state	Gaussian (center E, width $\sim 1 / \tau)$	Density matrix
$\left\|\hat{G}_{\tau, r}(E)\right\rangle=\left[\hat{G}_{\tau}(E)\right]^{\frac{1}{2}}\left\|\boldsymbol{\phi}_{r}\right\rangle$	$\hat{G}_{\tau}(E)=\mathrm{e}^{-(\hat{\mathscr{H}}-E)^{2} \tau^{2}}$	$\hat{\rho}_{\mathrm{mic}, \tau}(E) \equiv \frac{\hat{G}_{\tau}(E)}{\operatorname{Tr}\left[\hat{G}_{\tau}(E)\right]}$	

Requirements for random states $\left|\phi_{r}\right\rangle$

- Statistical average of $\left\langle\phi_{r}\right| \hat{X}\left|\phi_{r}\right\rangle$ coincides with $\operatorname{Tr}[\hat{X}] / D$. - Covariance $\operatorname{Cov}(x, y)$ decreases exponentially in N.

Diagonal-unitary 2-design

Quantum circuit reproducing the properties of the random phase states up to 2 nd statistical moments.

$\left|\phi_{r}\right\rangle$ can be prepared with $O\left(N^{2}\right) 2$ qubit gates
Thermodynamic quantities

- $S_{\tau}(E)=\ln \operatorname{Tr}\left[\hat{G}_{\tau}(E)\right]$
- $\beta_{\tau}(E)=\partial_{E} S_{\tau}(E)=2 \tau^{2}\left(\mathscr{E}_{\tau}(E)-E\right)$
$\mathscr{E}_{\tau}(E)=\operatorname{Tr}\left[\hat{\rho}_{\text {mic }, \tau}(E) \hat{\mathscr{H}}\right]=\frac{\operatorname{Tr}\left[\hat{\mathscr{H}} \hat{G}_{\tau}(E)\right]}{\operatorname{Tr}\left[\hat{G}_{\tau}(E)\right]}$
Gaussian as a sum of time-evolution operators
$\hat{G}_{\tau}(E)=\frac{1}{2 \sqrt{\pi} \tau} \int_{-\infty}^{\infty} \mathrm{d} t \mathrm{e}^{-\frac{t^{2}}{4 \tau^{2}}} \mathrm{e}^{\mathrm{i} E t} \hat{U}(t), \quad \hat{U}(t)=\mathrm{e}^{-\mathrm{i} \hat{\mathscr{H} t} t}$
"FT from time-evolved states to energy-resolved states"

- 2-designs are important to obtain thermodynamic quantities with a fixed number R of samples.
- The method becomes more relevant for energy windows with the larger number of states.

Quantum simulation

Work in progress

[^0]: - Sum and Integrate $\left\langle\phi_{r}\right| \hat{U}(t)\left|\phi_{r}\right\rangle$ and $\left\langle\phi_{r}\right| \hat{\mathscr{H}} \hat{U}(t)\left|\phi_{r}\right\rangle$ over r and t.
 - Target energy E can be varied solely with classical post processing.

