Rotating strings and particles in AdS: Holography at weak gauge coupling and without conformal symmetry
 Yasuhiro Sekino [C01]
 (Takushoku University)

- Tomotaka Kitamura (Rikkyo U.), Shoichiro Miyashita (Natl. Dong Hwa U.), YS, PTEP 2022(2022) 4, 043B03.
- YS, PTEP 2020 (2020) 2, 021B01.

Outline

- The question:

What is the gauge/gravity correspondence at weak gauge ('t Hooft) coupling?
(We consider $N \rightarrow \infty$, and zero temperature.)

- Our "testing ground" (next slide): Example of gauge/gravity correspondence with maximal SUSY, but without conformal symmetry.
- Result:

Reproduce the free-field correlators of gauge theory from string theory (based on "string bit" picture).

Gauge/gravity correspondence for D p-branes

- Conjecture: [ltzhaki, Maldacena, Sonnenschein, Yankielowicz, ‘98]

Superstring on the near-horizon limit of
 D p-brane solution

$=$ in $(p+1)$ dimensions with 16 supercharges

$$
S=\frac{1}{g_{\mathrm{YM}}^{2}} \int d x^{p+1}\left\{\frac{1}{4} F_{M N} F^{M N}+\frac{i}{2} \Psi \Gamma^{M} D_{M} \Psi\right\}
$$

(Dimensional reduction of (9+1)D Super Yang-Mills)
(We consider $0 \leq p \leq 4$)
$p=3$: Conformally invariant $\left(\mathrm{AdS}_{5} / \mathrm{CFT}_{4}\right)$
$p \neq 3$: Non-conformal (coupling const. g_{YM} has dimension)

Background geometry

- Near-horizon Dp-brane solution in string frame

$$
\begin{aligned}
& d s^{2}=H^{-1 / 2}\left(-d t^{2}+d x_{a}^{2}\right)+H^{1 / 2}\left(d r^{2}+r^{2} d \Omega_{8-p}^{2}\right) \\
& e^{\phi}=g_{s} H^{\frac{3-p}{4}}, \quad H=\frac{q}{r^{7-p}} \quad q \propto\left(g_{s} N\right) \ell_{s}^{7-p}
\end{aligned}
$$

- String coupling e^{ϕ} depends on the position (for $p \neq 3$).
- Metric is Weyl equivalent to $\operatorname{AdS}_{p+2} \times S^{8-p}$:

$$
\begin{gathered}
d s^{2}=H^{1 / 2} r^{2}\left[\left(\frac{2}{5-p}\right)^{2}\left(\frac{d t^{2}+d x_{a}^{2}+d z^{2}}{z^{2}}\right)+d \Omega_{8-p}^{2}\right] \\
z=\frac{2}{5-p}\left(g_{s} N\right)^{1 / 2} l_{s}^{(7-p) / 2} r^{-(5-p) / 2}
\end{gathered}
$$

- No AdS isometry for $p \neq 3$.
- Note: for $p \neq 3$, we cannot rely on the identification
$($ Energy in global AdS $)=($ scaling dimension of CFT $)$

Review of strong 't Hooft coupling (1)

- If we want to use weakly coupled SUGRA, we need a large region where e^{ϕ} and curvature are both weak.
- This is satisfied if one takes $N \rightarrow \infty$ with $g_{s} N$ fixed and large. (i.e., SUGRA corresponds to 't Hooft limit with large 't Hooft coupling) [e.g., Sekino-Yoneya, '99].

Review of strong 't Hooft coupling (2)

- Gubser-Klebanov-Polyakov-Witten (GKPW) prescription:

$$
Z\left[\phi_{0}\right]=\left\langle e^{\int d^{p+1} x \phi_{0}(x) O(x)}\right\rangle
$$

- Evaluate the classical SUGRA action as a function of the b.c., and obtain generating functional of gauge theory correlators.

- Boundary condition $\phi(x, r)=\phi_{0}(x)$ at the (regulated) boundary, and decaying $\phi(x, r) \rightarrow 0$ near the center.
- Remark: Due to this b.c., the singularity at $r=0$ is no problem.

Review of strong 't Hooft coupling (3)

- From GKPW, correlators corresponding to SUGRA modes obey power law (even though there is no conformal sym.)
[YS, Yoneya, '99, YS, '00, Kanitscheider, Skenderis, Taylor, ‘08]
- e.g., for "BMN operator" $O=\operatorname{Tr}\left(Z^{J}\right), \quad\left(Z \equiv X_{8}+i X_{9}\right)$

$$
\begin{aligned}
\left\langle\mathcal{O}\left(x^{\prime}\right) \mathcal{O}(x)\right\rangle=\frac{\delta}{\delta \phi_{0}\left(x^{\prime}\right)} \frac{\delta}{\delta \phi_{0}(x)} e^{-S_{\mathrm{SG}}\left[\phi_{0}\right]} \sim & \frac{1}{\left|x-x^{\prime}\right| \frac{4 J}{5-p}+c_{p}} . \\
& \left(c_{p}=-\frac{(3-p)^{2}}{5-p} .\right)
\end{aligned}
$$

- The powers (fractional numbers in general) are different from the free-field values (for $p \neq 3$).
- Not understood in gauge theory, analytically.
- For $p=0$, confirmed by Monte Carlo simulation.
[Hanada, Nishimura, YS, Yoneya, '09, ‘11]
- Not known how to obtain free-field behavior from the bulk.

From Hanada, Nishimura, Sekino, Yoneya, ‘11

Results (supergravity modes)

$$
J_{l, i_{1}, \cdots, i_{l}}^{+i j}=\frac{1}{N} \operatorname{Str}\left(F_{i j} X_{i_{1}} \cdots X_{i_{l}}\right) \quad(l=1,2,3,4)
$$

Predicted power law $\quad \nu=2 l / 5$ seen at

$$
0.5 \lesssim t \lesssim 1.5 \quad\left(\text { in unit of }\left(g_{Y M}^{2} N\right)^{-1 / 3}\right)
$$

$$
N=3, \beta=4, \Lambda=16
$$

Worldsheet analysis

The need of string theory:

- To understand weak 't Hooft coupling, we need to study highly curved background (in string unit).
- In this limit, string excited modes are lighter than the curvature scale \Rightarrow SUGRA analysis is insufficient.

The string that we first consider

- A point-like configuration of closed string moving along a geodesic which connects two points on the boundary.
- We include quantum fluctuations around it. (Using technical results from '02-'03.)
- We will consider states with angular momentum along S^{8-p}, and along AdS_{p+2}

State with angular momentum along S^{8-p}

-"BMN Operator" [Berenstein, Maldacena, Nastase, '02] $O=\operatorname{Tr}\left(Z^{J}\right) \quad\left(Z \equiv X_{8}+i X_{9}\right)$ corresponds to a SUGRA mode with angular momentum J along S^{8-p}.

- SUGRA mode (lowest mode of string) is massless in 10D.
- By KK reduction, it is massive in AdS_{p+2} with mass

$$
m=\frac{4}{5-p} J
$$

- As long as we consider on-shell massless mode in 10D, Weyl factor plays no role (can be absorbed by worldine metric.)
- We will consider AdS_{p+2} with Euclidean signature (for which GKPW is formulated).

Review of the formalism (1)

- Geodesic in Euclidean AdS:

$$
z=\frac{\tau}{\cosh \tau}, \quad x=\ell \tanh \tau
$$

- Half-circle $x^{2}+z^{2}=\ell^{2}$
- Connects two points on boundary; coordinate distance $\left|x_{f}-x_{i}\right|=2 \ell$
- Cutoffs:

$$
z \geq \frac{1}{\Lambda} \quad \text { and } \quad-T \leq \tau \leq T
$$

- Related by $e^{T} \sim\left|x_{f}-x_{i}\right| \Lambda$
- Geodesic approximation (Classical contribution from Routh function in 10D)
$\left\langle\mathcal{O}\left(x_{f}\right) \mathcal{O}\left(x_{i}\right)\right\rangle=e^{-m \int_{-T}^{T} d \tau}=e^{-\frac{4}{5-p} J T}=\frac{1}{\left(\Lambda\left|x_{f}-x_{i}\right|\right)^{\frac{4 J}{5-p}}}$

Consistent with GKPW. Leading exponent in J is obtained.

Review of the formalism (2)

- We study fluctuations around this geodesic, by expand world-sheet fields around it:

$$
x_{\text {full }}^{\mu}(\tau, \sigma)=x_{\mathrm{cl}}^{\mu}(\tau)+x^{\mu}(\tau, \sigma)
$$

- Perform "double Wick rotation"
[Dobashi-Shimada-Yoneya, ‘02]
- Time (in AdS and worldsheet) is Euclidean.
- To keep angular momentum J real, we take an angle in S^{8-p} effectively imaginary:

$$
J=P_{\psi} \sim \int d \sigma \frac{\partial \psi}{\partial \tau}
$$

- Under this prescription,
(Gauge-theory correlator)
$=$ (Euclidean amplitude of closed string)

Review of the formalism (3)

[Asano-Sekino-Yoneya, '03, Asano-Sekino, '04]

$$
\text { (} p=3 \text { case: BMN, ’02 (Lorentzian), DSY, ‘02 (Euclidean)) }
$$

- Worldsheet action at quadratic order
- 8 bosons and 8 fermions. Bosonic part:

$$
\begin{gathered}
S^{(2)}=\frac{1}{4 \pi \ell_{s}^{2}} \int d \tau \int_{0}^{2 \pi \tilde{\alpha}} d \sigma\left\{\dot{x}_{a}^{2}+\tilde{r}^{p-3}(\tau) x_{a}^{\prime 2}+m_{x}^{2} x_{a}^{2}\right. \\
\left.+\dot{y}_{i}^{2}+\tilde{r}^{p-3}(\tau) y_{i}^{\prime 2}+m_{y}^{2} y_{i}^{2}\right\}
\end{gathered}
$$

- Fluctuations are massive (These are the mass of SUGRA modes, due to background curvature)

$$
\begin{array}{ll}
m_{x}=1 & (p+1) \text { fields along } \operatorname{AdS}_{p+2} \\
m_{y}=\frac{2}{5-p} & (7-p) \text { fields along } S^{8-p} \\
m_{f}=\frac{7-p}{2(5-p)} & 8 \text { fermionic fields }
\end{array}
$$

- String excited modes have time-dependent mass, from the factor $\bar{r}^{p-3}(\tau)$ (due to Weyl factor) for the σ-derivative.

String bit picture

Assumptions:

- The string corresponding to $\operatorname{Tr}\left(Z^{J}\right)$ has the σ direction discretized into J "bits."
- One bit has a unit angular momentum along S^{8-p}.
- Reason 1: (In gauge theory,) string states are constructed by inserting "impurities" into $\operatorname{Tr}\left(Z^{J}\right)$. Can only represent J sites. e.g.,

$$
a_{i, n}^{\dagger}|0\rangle \leftrightarrow \sum_{k=0}^{J} e^{i k n / J} \operatorname{Tr}\left(Z^{k} X_{i} Z^{J-k}\right)
$$

- Reason 2: (In string theory,) we may imagine angular momentum J to be realized by acting a creation operator in position representation (in terms of the worldsheet σ) instead of the usual momentum rep.

BMN operator at zero 't Hooft coupling
 [YS, 2020]

- String tension is zero at zero 't Hooft coupling. The string can be regard as a collection of J free bits.
- Then, zero-point energy for the ground state is $J E_{0}$. (E_{0} for each bit, from 8 bosons and fermions)

$$
E_{0}=\frac{1}{2}\left((p+1) m_{x}+(7-p) m_{y}-8 m_{f}\right)=-\frac{(3-p)^{2}}{2(5-p)} .
$$

- Amplitude (correlator for $O=\operatorname{Tr}\left(Z^{J}\right)$):

$$
\left\langle\mathcal{O}\left(x_{f}\right) \mathcal{O}\left(x_{i}\right)\right\rangle=e^{-2\left(m+J E_{o}\right) T}=\frac{1}{\left(\Lambda\left|x_{f}-x_{i}\right|\right)^{(p-1) J}} .
$$

- Agrees with the free-field result.
(Dimensional analysis: one scalar field in $(p+1) \mathrm{D}$ has dimension $(p-1) / 2$.)

Operators with angular momentum along AdS_{p+2}

[Kitamura, Miyashita, YS, 2022]

- "GKP operator" [Gubser, Klebanov, Polyakov, ‘02]

$$
\operatorname{Tr}\left(Z^{k} D^{S} Z^{J-k}\right) \quad\left(D \equiv D_{1}+i D_{2}\right)
$$

- For $p=3$, at strong 't Hooft coupling: Interpreted as a folded string spinning in Lorentzian AdS_{5}. (By identifying AdS energy with scaling dimension.)

(Figure: GKP, ‘02)
- For general p (without symmetry):
- Consider Euclidean AdS $_{p+2}$.
- Generalizing Dobashi-Shimada-Yoneya, take the angles imaginary: along $\operatorname{AdS}_{p+2}, \psi \rightarrow i \psi$, and along $S^{8-p}, \tilde{\psi} \rightarrow i \tilde{\psi}$, to keep angular momenta real.
(In the following, we briefly explain the general formalism, and state the result for zero 't Hooft coupling.)

The general formalism (1)

The "Spinning" string solution: boundary

- Euclidean AdS_{p+2} in $R^{p+2,1}$:

$$
-X_{p+2}^{2}+X_{0}^{2}+\sum_{a=1}^{p+1} X_{a}^{2}=-L^{2}
$$

- Global coordinates:

$$
\begin{aligned}
& X_{p+1}=\cosh \rho \cosh t_{E} \\
& X_{0}=\cosh \rho \sinh t_{E} \\
& X_{a}=\sinh \rho \Omega_{a}
\end{aligned}
$$

- We have taken the rotating angle (not shown in the figure) imaginary.
- The string moves from boundary to boundary.

The general formalism (2)

- Center of string $\left(x_{i}=0\right)$ follows the same trajectory as a massive particle.
- In the Poincare coordinates,

$$
\begin{aligned}
t_{\mathrm{P}} & =\tilde{\ell} \tanh \tau_{\mathrm{E}} \\
z & =\frac{\tilde{\ell}}{\cosh \rho \cosh \tau_{\mathrm{E}}} \\
x_{i}^{2} & =z^{2} \sinh ^{2} \rho=\frac{\tilde{\ell^{2}} \tanh ^{2} \rho}{\cosh ^{2} \tau_{\mathrm{E}}}
\end{aligned}
$$

- String reduces to a "single point" at boundary $\left(x_{i}^{2} \rightarrow 0\right.$ as $\left.z \rightarrow 0\right)$:
- In comfort with the fact that this

$$
\longleftarrow \quad z=\frac{1^{\prime}}{\Lambda} \quad \begin{aligned}
& \quad \mid \\
& \text { (center) } \\
& \text { (boundary) }
\end{aligned}
$$ corresponds to a local operator.

- (Correlator) $=($ Amplitude $)$.
- For $p=3$,

$$
e^{-\int_{-T}^{T} d \tau_{\mathrm{E}} H\left(\tau_{\mathrm{E}}\right)}=e^{-2 H T}=\frac{1}{\left(\Lambda\left|t_{\mathrm{f}}-t_{\mathrm{i}}\right|\right)^{2 H}}
$$

Zero 't Hooft coupling (general p)

- Assumption (as before):
- One bit has a unit angular momentum along S^{8-p}.
- At zero 't Hooft coupling, can ignore interaction among bits.
- To keep S real, take the corresponding angle imaginary.
- R : radius of rotation, Θ : angle
- Consider motion of one bit with S units of angular momentum along AdS $_{p+2}$.
- Follows trajectory similar to $S=0$ case.

$$
\begin{aligned}
& I=\int_{-T}^{T} d \tau \frac{\tilde{\alpha}}{2} L^{2}\left[\left(\frac{2}{5-p}\right)^{2} \frac{1}{z^{2}}\left\{\dot{t}^{2}+\dot{z}^{2}+\dot{R}^{2}-R^{2} \dot{\Theta}^{2}+\cdots\right\}\right. \\
&\left.+\left(\dot{\theta}^{2}-\cos ^{2} \theta \dot{\psi}^{2}+\cdots\right)\right]
\end{aligned}
$$

- Amplitude of J free bits with total angular momentum S along $A d S_{p+2}$ (by including the zeropoint energy for each bit):

$$
\begin{aligned}
\left\langle t_{f}, J, S \mid t_{i}, J, S\right\rangle & \simeq e^{-\left(I+J\left(\psi_{f}-\psi_{i}\right)+S\left(\Theta_{f}-\Theta_{i}\right)\right)} Z_{J-b i t}^{(2)} \\
& =e^{-((p-1) J+2 S) T} \\
= & \left(\frac{2 J+S(5-p)}{2 J}\right)^{\frac{p-1}{2} J+S} \frac{1}{\Lambda^{(p-1) J+2 S}} \frac{1}{\left|t_{f}-t_{i}\right|^{(p-1) J+\underline{2 S}}}
\end{aligned}
$$

- Agrees with the free-field result in gauge theory. (A covariant derivative is just a partial derivative at zero coupling, and contributes S to the dimension.)
- Remark: The spectrum of the fluctuations around this geodesic is different from the previous one (with $S=0$), but the zero-point energy is the same value.

Summary

- Consider the gauge/gravity correspondence between superstring on near-horizon limit of Dpbrane solution, and SYM in $(p+1)$ dim.
- Studied the case of zero 't Hooft coupling.
- Taking the string-bit picture.
- Reproduced the free-field result of gauge theory from string theory.
- Confirmed this for general operators.

Issues to be clarified

1. Are there α^{\prime}-corrections to the near-horizon Dpbrane background (for general p)?

- We are assuming there it not.
- The $p=3$ case $\left(\operatorname{AdS}_{5} \times S^{5}\right)$ is believed to be α^{\prime}-exact, but for general p, not known.

2. We got the free-field result by taking into account fluctuations around geodesic, only up to quadratic order. No higher-order corrections?

- There is no small parameter; everything is order 1.
- This could be exact because of the high symmetry of the $\mathrm{AdS}_{p+2} \times S^{8-p}$ background. (This is calculation of a single bit (particle), so Weyl factor does not play a role.)

Future directions

1. Study of non-zero gauge coupling:

- Include interactions among bits perturbatively, and see if it reproduces the perturbation in gauge theory.
- If successful, this can be regarded as a proof for gauge/gravity correspondence.

2. Classical solution of rotating string for $p \neq 3$

- Will be useful for the study of strong 't Hooft coupling.
- Technically challenging, in the absence of AdS isometry.

3. Formulation of finite temperature case
4. Application to other backgrounds
