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Setting the stage 

• Thermalization: Quantum chaotic many body systems locally relax to 
maximally entropic thermal states constrained only by global 
conservation laws

Quench dynamics 
under chaotic 𝐻

Many body system in 
simple initial state

A
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Highly entangled state



Mechanism for emergence of thermalization

Consider closed many-body quantum systems
Eigenstate Thermalization Hypothesis: RMT 

based approach which allows to study 
equilibrium values for local observables 

(only makes prediction about average state 
of the subsystem)

Delocalization of information due to growth 
of entanglement in the global state of the 

system

These approaches ignore the information contained within the bath

Projected ensembles: new approach 
that takes into account information 

from the bath



Projected ensembles*
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Projected ensemble:
ℰ ≔ {𝑝 𝑧' , ⟩|𝜓 𝑧'	 (	}

*Cotler, Jordan S., et al; PRX Quantum 4.1 (2023): 010311
Choi, Joonhee, et al; Nature 613.7944 (2023): 468-473



Visualizing Projected Ensembles

Consider ℰ ≔ {𝑝 𝑧, , ⟩|𝜓 𝑧, 	 -	} with 𝑁- = 1



Thermalization vs Deep Thermalization

• Thermalization concerned with the density matrix of subsystem 
(maximize entropy subject to global conservation laws)

• In the case of Projected ensemble: maximize entropy of the 
distribution of states ⟩|𝜓 𝑧, 	 - over the Hilbert space

• Probing the emergence of such universality via quench dynamics is 
within reach of experimental platforms (cold atoms, trapped ions, 
superconducting qubits etc.)

𝜌-	~	𝑒./0! 

⟩|𝜓 𝑧, 	 -~ ⟩|𝜓0112 - “Deep Thermalization”(if no conservation laws)



Characterizing the Projected Ensemble
• Construct moments of the distribution as
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Reduced density matrix over A recovered

Ask how uniform is this distribution?
Or

Does it form a quantum state design?

Quantum State 𝑘-design: Any weighted ensemble of pure q. states	{𝑝), |𝜓)⟩} such that it 
duplicates any statistical property up to 𝑘*+ moment obtained from Haar-randomly 

distributed states
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Exact emergent state designs*
• Model: 1D periodically kicked Ising model
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Result: For KIM tuned to self-dual point and 𝑡 ≥ 𝑁!, projected ensemble ℰ()*   forms an exact 
state design as 𝑁% → ∞

ℰ()* = {𝑝 𝑧% , ⟩|𝜓 𝑧%	 !	}

*Ho, W. W., & Choi, S. (2022); Physical Review Letters, 128(6), 060601.



• Key property of underlying quantum circuit: Dual Unitarity of model

Exact emergent state designs: Proof intuition
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Claim 1: In the limit 𝑁% → ∞, quantum circuits 𝑈(𝑧%) are indistinguishable from Haar random 
unitaries 



Do boundary conditions play a role?

• LR bounds dictate the speed at which correlations grow in a many 
body systems
• Correlations created by local Hamiltonians vanish exponentially 

outside the effective light cone
• PBC vs OBC: Expect 𝜌- to become mixed at same rate since 

correlations grow at same rate

Our result: Boundary conditions can govern the rate of emergence of universal randomness
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Rate of Deep Thermalization

Compare the rates of deep thermalization for PBC and OBC cases 



Projected ensemble in our scenario

ℰ = {𝑝 𝑧3, 𝑧: , ⟩|𝜓 𝑧3, 𝑧: -	}
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Quantum circuit representation
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Using Claim 1: 𝑈+& → 𝑈$,,- 	and 𝑈+% → 𝑈$,,-. 	as 𝑁%& , 𝑁%% → ∞
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Simplifications



PBC case
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OBC case
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𝑈$,,-W

Setup 𝑘;<  moment of state as 𝜌(5) = ∑G& ̃𝜓G& ̃𝜓G&
BHI
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How do we estimate a rational function of Haar random unitaries?



Replica trick
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Main Results

• Haar random ensemble emerges in both PBC and OBC cases in the 
limit of large times 

• (Nonlocal nature of deep thermalization) Separation in the rate at 
which Haar randomness emerges in the 2 cases



=
P,Q∈S'()

𝑓(𝜎, 𝜏) 𝑊⊗𝑊∗ ⊗&'(	

𝜎𝜏

𝑁!
2

Result 1: Intuition
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• Diagonal terms 𝜎 = 𝜏 = 𝜌$,,-

• 𝐷𝑖𝑎𝑔	𝑡𝑒𝑟𝑚𝑠 ≥ 2' 𝑂𝑓𝑓	𝑑𝑖𝑎𝑔	𝑡𝑒𝑟𝑚𝑠



Result 2: Numerical evidence

Separation in convergence rate for PBC and OBC cases supported by 
numerics in 2 ways:
• 𝛿𝜌(5,?) 3 vs ‘t’ plots for k=2,3,4 from Replica trick, where

𝛿𝜌(5,?) = 𝜌(5,?) − 𝜌0112
5

• Monte Carlo sampling
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• We studied Deep Thermalization using the framework of Projected 
Ensembles 
• Deep Thermalization requires emergence of a uniform ensemble of 

states at the level of subsystem
• Boundary conditions can affect the rate of Deep Thermalization
• Future directions:
• Entanglement structure for PBC vs OBC
• Scrambling rates for PBC vs OBC

Outlook



Thanks for listening!


