Measurement-based quantum simulation

of Abelian lattice gauge theories

QIMG 2023 @ YITP Kyoto
Hiroki Sukeno (C.N.YITP Stony Brook University)
Collaborators: Takuya Okuda (University of Tokyo), Aswin Parayil Mana (CNYITP, SBU) SciPost 14 (5), 129 (arXiv: 2210.10908), and works in prep.

Introduction

- Quantum simulation of lattice gauge theories
- Gate-based quantum computers, quantum simulators.
- Measurement-Based Quantum Computation (MBQC) is also a model capable of (universal) quantum computation.
- In this vein, we formulated an MBQC scheme for simulating a class of spin models that includes gauge theories.
- Measurement-based quantum simulation (MBQS)
- Achieve a quantum simulation by measuring a tailor-made entangled state.
- What's the properties of the entangled state?

Plan

- MBQC (MBQS) in ($0+1$)dimensions
- Wegner's generalized Ising models
- MBQS for Wegner's models
- Higher-form symmetries, an SPT order, and a holographic interplay.
- Generalizations

A simple MBQC (MBQS)
in ($0+1$)dimensions

MBQC: (0+1)dimensions

- A one-qubit state $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$ as an a-qubit. Couple it to b - and c-qubits. - Measure a-qubit and then b-qubit.

Random $\{0,1\} \quad S \quad t$

$$
X^{t} Z^{s} \cdot e^{-i(-1)^{s} \xi X}|\psi\rangle_{c}
$$

$$
\begin{gathered}
0-0-0 \\
|\psi\rangle_{a}|+\rangle_{b}|+\rangle_{c}
\end{gathered}
$$

$X|+\rangle=|+\rangle \quad-C Z_{a, b}:=|0\rangle\left\langle\left. 0\right|_{a} \otimes I_{b}+\mid 1\right\rangle\left\langle\left. 1\right|_{a} \otimes Z_{b}=C Z_{b, a}\right.$

- Gate teleportation.
- Choose $\xi=(-1)^{s} \alpha$ in the second measurement to counter the randomness of the first measurement and realize $e^{-i \alpha X}$ deterministically.

MBQC: (0+1)dimensions

1-qubit state
$|\psi\rangle$

MBQC: (0+1)dimensions

1d entangled state (resource state) $\left|\psi_{\text {resource }}\right\rangle$
E.g. AKLT state, cluster state, ...

MBQC: (0+1)dimensions

E

Measurement
$!$

$$
|\psi\rangle
$$

MBQC: (0+1)dimensions

$$
X^{\#} Z^{\#} \cdot U_{1}|\psi\rangle
$$

MBQC: (0+1)dimensions

MBQC: (0+1)dimensions

$X^{\#} Z^{\#} \cdot U_{2} U_{1}|\psi\rangle$

MBQC: (0+1)dimensions

MBQC: (0+1)dimensions

$$
X^{\#} Z^{\#} \cdot \cdots U_{2} U_{1}|\psi\rangle
$$

MBQC: (0+1)dimensions

Post-measurement product state

$$
X^{\#} Z^{\#} \cdot U_{N} \cdots U_{2} U_{1}|\psi\rangle
$$

Simulated state

MBQC: (0+1)dimensions

Post-measurement product state

$$
U_{N} \cdots U_{2} U_{1}|\psi\rangle
$$

Simulated state
(Cleaned up)

MBQC

What we have just shown is a simple example of MBQC.

MBQC (measurement-based quantum computation)
(Universal) quantum computation can be achieved by
(1) preparing a resource state
(2) measuring the resource state in a certain adaptive pattern.
(3) post-processing (unwanted) byproduct operators
[Raussendorf, Briegel, Browne, Nielsen...] Review article: e.g. [T.-C. Wei (2023)]

However, our goal below is not the universal quantum computation, but a quantum simulation of Wegner's Ising models.

MBQC: multi-body interaction term

More with CZ and measurement:

- Consider a general state $|\psi\rangle_{1 \cdots N}$

Graph state

There is a class of states generated by $|+\rangle$ and $C Z$, which are called graph states.

- Graph $=\{V, E\}$
- V : vertices \leftrightarrow qubits $|+\rangle^{\otimes V}$ are placed

- E : edges $\leftrightarrow C Z_{a, b}$ is applied on $\langle a b\rangle \in E(a, b \in V)$
- Graph state \subset Stabilizer state
- Translationally invariant graph states are called cluster states.

Graph state

- In terms of state vectors,

$$
\left|\psi_{\mathscr{C}}\right\rangle=\prod_{\left\langle v v^{\prime}\right\rangle \in E} C Z_{v, v^{\prime}}|+\rangle^{\otimes V}
$$

■ In terms of stabilizers (i.e., $K_{v}\left|\psi_{\mathscr{C}}\right\rangle=\left|\psi_{\mathscr{C}}\right\rangle$),

Graph state

etc.

Our idea

$|\psi(t)\rangle_{\text {bdry }}$: simulated state of Wegner's model $M_{(d, n)}$ with the Trotterized time evolution $T(t)$,

$$
|\psi(t)\rangle_{\mathrm{bdry}}=T(t)|\psi(0)\rangle
$$

$\left|\psi_{C}\right\rangle_{\text {bulk }}:$ resource state to be measured - generalized cluster state (gCS).

Spin model to be simulated -Wegner's generalized Ising models-

Cell simplex σ_{i}

σ_{0}	σ_{1}	σ_{2}	σ_{3}
\bullet			

$\breve{\sigma}_{i}:$ cell simplices in d dimensional hypercube lattice
$\sigma_{i}:$ cell simplices in $d-1$ dimensional hypercube lattice

$$
\breve{\sigma}_{i}=\sigma_{i} \times\{j\} \text { or } \breve{\sigma}_{i+1}=\sigma_{i} \times[j, j+1]
$$

Point Interval x_{d} coordinate
$(d-1)$-dim

$$
\begin{array}{r}
\{j\} \\
{[j, j+1]} \\
\{j+1\} \\
x_{d} \downarrow
\end{array} \stackrel{\bullet \sigma_{0}}{ } \quad \bullet \breve{\sigma}_{0}=\sigma_{0} \times\{j\} \quad \stackrel{\sigma_{0}}{ } \quad \square \quad \breve{\sigma}_{1}=\sigma_{0} \times[j, j+1] \quad \square \quad \breve{\sigma}_{2}=\sigma_{1} \times[j, j+1]
$$

Similarly, we have cell simplices in the dual lattice with $\sigma_{i} \simeq \sigma_{d-i}^{*}$. We have $\partial^{2}=0\left(\right.$ and $\left.\left(\partial^{*}\right)^{2}=0\right)$ and a chain complex.

$$
\begin{aligned}
& \partial\left(\sigma_{2} \stackrel{\text { dual }}{\longleftrightarrow} \stackrel{\sigma}{0}_{*}^{*}\right)=\left(\square_{\square} \stackrel{\text { dual }}{\longleftrightarrow}-\mid-\right) \\
& \partial^{*}\left(\left.\frac{\sigma_{1}}{\longleftrightarrow} \stackrel{\text { dual }}{\longleftrightarrow}\right|_{\sigma_{1}^{*}}\right)=(\square \stackrel{\text { dual }}{\longleftrightarrow} \cdot)
\end{aligned}
$$

Wegner's generalized Ising model

Model $M_{(d, n)}$:
Classical spin variables $S_{\breve{\omega}_{n-1}} \in\{+1,-1\}$ living on $(n-1)$-cells in the d -dimensional hybercubic lattice. [Wegner (1971)]

Euclidean action (classical Hamiltonian) I:

$$
I=-J \sum_{\breve{\sigma}_{n}}\left(\prod_{\breve{\sigma}_{n-1} \subset \partial \check{\sigma}_{n}} S_{\breve{\sigma}_{n-1}}\right) .
$$

Via the transfer matrix formalism, we obtain a quantum Hamiltonian in $(d-1)$ dimensions with the continuous time. [Kogut (1979) etc.]

$$
H_{(d, n)}=-\sum_{\sigma_{n-1}} X\left(\sigma_{n-1}\right)-\lambda \sum_{\sigma_{n}} Z\left(\partial \sigma_{n}\right)
$$

Wegner's generalized Ising model

Classical Ising model
$M_{(d, 1)}$
$I=-J \sum_{\text {edge }} S\left(\partial \breve{\sigma}_{1}\right)$
site variable

Transverse field Ising model

$$
H_{(d, 1)}=-\sum_{\sigma_{0}} X\left(\sigma_{0}\right)-\lambda \sum_{\sigma_{1}} Z\left(\partial \sigma_{1}\right)
$$

Gauge theory (Wilson's plaquette action for $G=\mathbb{Z}_{2}$)
$M_{(d, 2)}$

$$
I=-J \sum_{\text {plaquette }} S\left(\partial \breve{\sigma}_{2}\right)
$$

Quantum pure gauge theory

$$
H_{(d, 2)}=-\sum_{\sigma_{1}} X\left(\sigma_{1}\right)-\lambda \sum_{\sigma_{2}} Z\left(\partial \sigma_{2}\right)
$$

Wegner's generalized Ising model

We wish to simulate a Trotterized (real) time evolution:

$$
|\psi(t)\rangle=U(t)|\psi(0)\rangle
$$

with

$$
T(t=j \Delta t)=\left(\prod_{\sigma_{n-1}} e^{i \Delta t X\left(\sigma_{n-1}\right)} \prod_{\sigma_{n}} e^{i \Delta t \lambda Z\left(\partial \sigma_{n}\right)}\right)^{j}
$$

MBQS

$|\psi(t)\rangle_{\text {bdry }}$: simulated state of $M_{(d, n)}$ with the Trotterized time evolution $T(t)$,

$$
|\psi(t)\rangle_{\mathrm{bdry}}=T(t)|\psi(0)\rangle .
$$

$\left|\psi_{C}\right\rangle_{\text {bulk }}$: resource state to be measured - generalized cluster state (gCS).

Resource state and MBQS

MBQS

Entanglement in our resource state, $\mathrm{gCS}_{(d, n)}$ (generalized cluster state), is tailored to reflect the space-time structure of the model $M_{(d, n)}$:

$$
\begin{aligned}
& \left|\mathrm{gCS}_{(d, n)}\right\rangle:=\mathscr{U}_{C Z}|+\rangle^{\breve{\Delta}_{n}}|+\rangle^{\Delta_{n-1}} \\
& \mathcal{U}_{C Z}=\prod_{\breve{\sigma}_{n} \in \breve{\Delta}_{n}}\left(\prod_{\breve{\sigma}_{n-1} \subset \partial \breve{c}_{n}} C Z_{\breve{\sigma}_{n-1}, \breve{\sigma}_{n}}\right) .
\end{aligned}
$$

$(d, n)=(3,1)$

0 -cell $\breve{\sigma}_{0}$ 1-cell $\breve{\sigma}_{1}$

$(d, n)=(3,2)$
[Raussendorf Bravyi Harrington (2007)]

1-cell $\breve{\sigma}_{1}$
2-cell $\breve{\sigma}_{2}$

MBQS: simulating $M_{(3,1)}$ on $\mathrm{gCS}_{(3,1)}$

MBQS: simulating $M_{(3,1)}$ on $\mathrm{gCS}_{(3,1)}$

MBQS: simulating $M_{(3,2)}$ on $\mathrm{gCS}_{(3,2)}$

\leftarrow Load a 2 d initial state $|\psi(0)\rangle_{\text {bdry }}$ of the $(2+1) \mathrm{d}$ lattice \mathbb{Z}_{2} gauge theory

MBQS: simulating $M_{(3,2)}$ on $\mathrm{gCS}_{(3,2)}$

MBQS: simulating $M_{(d, n)}$ on $\mathrm{gCS}_{(d, n)}$

A state in $M_{(d, n)}$

Single-qubit measurements

Aspects of symmetries in MBQS SPT and holographic interplay

Higher-form symmetries in gCS

$$
(d, n)=(3,1)
$$

$$
(d-n)=2 \text {-form symmetry }
$$

$$
(n-1)=0 \text {-form symmetry }
$$

$$
\partial \breve{z}_{1}=0
$$

$$
\partial^{*} z_{3}^{*}=0
$$

Higher-form symmetries in gCS

$$
(d, n)=(3,2)
$$

$$
(d-n)=1 \text {-form symmetry }
$$

$$
(n-1)=1 \text {-form symmetry }
$$

$$
\partial \breve{z}_{1}=0
$$

Higher-form symmetries in gCS

($d-n$)-form and ($n-1$)-form symmetry:

$$
\begin{array}{r}
|\mathrm{gCS}\rangle=X\left(\breve{z}_{n}\right)|\mathrm{gCS}\rangle=X\left(\breve{z}_{d-n+1}^{*}\right)|\mathrm{gCS}\rangle \\
\text { with } M_{d-n}=\left\{\breve{z}_{n} \mid \partial \breve{z}_{n}=0\right\}, M_{n-1}^{\prime}=\left\{\left\{_{d-n+1}^{*} \mid \partial^{* z_{d-n+1}^{*}}=0\right\} .\right.
\end{array}
$$

SPT order in gCS

$$
\begin{aligned}
& \mathrm{gCS}_{(d, n)} \text { has an SPT order protected by }(d-n) \text {-form } \mathbb{Z}_{2} \text { and } \\
& (n-1) \text {-form } \mathbb{Z}_{2}
\end{aligned}
$$

- Two symmetry generators act projectively at the boundaries of the lattice \rightarrow SPT. [Yoshida (2016), Roberts-Kubica-Yoshida-Bartlett (2017)].
- The simulated state as an edge state of an SPT. Cf. [Miyake (2010)]
- Open Question: Is the quantum simulation possible with any state in the SPT phase?

Bulk/boundary symmetries in MBQS

Boundary symmetry generator $X\left(z_{d-n}^{*}\right)$
Bulk symmetry generator $X\left(\tilde{z}_{d-n+1}^{*}\right)$ with

$$
\partial^{*} \breve{z}_{d-n+1}^{*}=0 \text { or }=z_{d-n}^{*} .
$$

Bulk/boundary symmetries in MBQS

For comparison, consider a d-dimensional bulk (ungauged) Hamiltonian

$$
H=-\sum Z\left(\partial \breve{\sigma}_{n}\right),
$$

which is symmetric under the transformation with the global $(n-1)$-form, $X\left(\breve{z}_{d-n+1}^{*}\right)$.

Cluster state gCS:

It is described by the local stabilizer conditions:

$$
X\left(\breve{\sigma}_{n}\right) Z\left(\partial \breve{\sigma}_{n}\right)\left|\operatorname{gCS}_{(d, n)}\right\rangle=X\left(\breve{\sigma}_{n-1}\right) Z\left(\partial^{*} \breve{\sigma}_{n-1}\right)\left|\operatorname{gCS}_{(d, n)}\right\rangle=\left|\operatorname{gCS}_{(d, n)}\right\rangle,
$$

i.e., the ground state of the gauged version of the above Hamiltonian,

$$
H_{\text {gauged }}=-\sum X\left(\breve{\sigma}_{n}\right) Z\left(\partial \breve{\sigma}_{n}\right),
$$

with the local gauge constraint $X\left(\breve{\sigma}_{n-1}\right) Z\left(\partial \partial^{*} \breve{\sigma}_{n-1}\right)=1\left(\forall \breve{\sigma}_{n-1}\right)$.

Bulk/boundary symmetries in MBQS

In other words, the boundary global symmetry is promoted to the bulk(+boundary) global symmetry $X\left(\bar{z}_{d-n+1}^{*}\right)\left|\psi_{C}\right\rangle=\left|\psi_{C}\right\rangle$, and it is gauged in the cluster state.
global ($n-1$)-form sym.

From cluster states to Euclidean path integral of simulated models

Strange correlator

Our MBQS measurement pattern is related to the overlap formula below:

2d classical Ising partition function
<

- $\langle 0| e^{-K X}$
- $\langle+1$
(K : real)

$$
\mathrm{gCS}_{(2,1)}
$$

Resource state for $(1+1) \mathrm{d}$ transverse-field Ising model

It is known as a classical-quantum correspondence [Van den Nest-Dur-Briegel (2008)] relating a 2 d quantum state and a 2 d classical statistical model.
See also [Lee-Ji-Bi-Fisher (2022)]

Strange correlator

Rewriting it further,

$$
Z_{(2,1)}=\mathcal{N} \times
$$

2d classical Ising partition function

<

This generalizes to between $Z_{(d, n)}$ (Wegner's model) and the generalized toric code ground state in d-dimensions.
A map from TQFT_{d+1} state to a d-dim classical spin system; strange correlator. [M. Bal et al. (2018), Chen et al. (2022) etc.] [More generalizations in Aswin's talk on Friday]

Generalization

Generailzations [okuda-Parayil Mana-Hs, to appear]

- Local lattice CSS code $S_{X}=\left\{A_{\alpha}\right\}_{\alpha=1, \ldots,\left|S_{X}\right|}($ made of $X), S_{Z}=\left\{B_{\beta}\right\}_{\beta=1, \ldots,\left|S_{Z}\right|}$ (made of Z).
\longrightarrow foliated graph (cluster) state $\left|\psi_{\mathscr{C}}\right\rangle \quad$ [Bolt et al. (2016)]
- Consider a Hamiltonian

$$
H=-\sum_{i \in \mathrm{qubits}} X_{i}-\lambda \sum_{\beta} B_{\beta} \text { with a gauge constraint } A_{\alpha}=1
$$

- Time evolution $U(t)=e^{-i t H}$ can be simulated on the state $\left|\psi_{\mathscr{C}}\right\rangle$ by measurements.
- When the logical code space of the (local) CSS code on a lattice is non-trivial, it can be seen as having a mixed 't Hooft anomaly in the ground states.
- Accordingly, the foliated cluster state has an SPT order. The global symmetries that protect the bulk SPT order can be higher-form or subsystem-like.
- A CSS generalization of the Kramers-Wannier-Wegner duality is obtained for statistical models corresponding to CSS codes via the overlap formula etc.

Fradkin-Shenker model

\mathbb{Z}_{2} gauge theory coupled to Using matter field in $(2+1) \mathrm{d}$

$$
H=-\sum_{i \in \text { site }} X_{i}-\sum_{i \in \operatorname{link}} X_{i}-\lambda \sum \underset{Z}{Z} \underset{Z}{Z}-g \sum_{Z}^{Z} \underset{X}{Z} \text { with a gauge constraint } \underset{X}{X} \underset{X}{X}-X=1 .
$$

S_{Z} Foliation of CSS code

$$
\left|\psi_{\mathscr{G}}^{\mathrm{FS}}\right\rangle
$$

Fradkin-Shenker model

- By measuring the foliated cluster state $\left|\psi_{\mathscr{C}}^{\mathrm{FS}}\right\rangle$, one can perform the quantum simulation of the Fradkin-Shenker model.
- Overlap formula:

$$
Z_{\mathrm{FS}}(J, K)=\left\langle\Omega(J, K) \mid \psi_{\mathscr{C}}^{\mathrm{FS}}\right\rangle
$$

$Z_{\mathrm{FS}}(J, K)$: the Euclidean lattice path integral of the FS model.
$\langle\Omega(J, K)|$: a product state.
(J, K) : coupling parameters

- One can reproduce the self-duality of the FS model by manipulating stabilizers of $\left|\psi_{\mathscr{C}}^{\mathrm{FS}}\right\rangle$. Cf. [van den Nest-Dur-Briegel (2007)]

Summary

- Entanglement structure of $\mathrm{gCS}_{(d, n)} \rightleftarrows$ Spacetime structure of $M_{(d, n)}$.
- Single-qubit measurement on $\mathrm{gCS}_{(d, n)} \rightleftarrows$ Hamiltonian quantum simulation of $M_{(d, n)}$.
- Overlap between a product state and $\mathrm{gCS}_{(d, n)} \rightleftarrows$ Partition function of $M_{(d, n)}$.
- The gCS possesses $(n-1)$ - and $(d-n)$-form global symmetries.

1. A state of $M_{(d, n)}$ as an edge state of an SPT
2. Boundary ($n-1$)-from symmetry is promoted to bulk ($n-1$)-from symmetry, which is gauged in gCS.

Recipe

- $Z_{\text {simulated }}=\left\langle\Omega(K) \mid \psi_{\text {resource }}\right\rangle:$ Euclidean path integral.
- Projection to $\Omega(K)$ requires post-selections.
- Rotate $\Omega(K)$ by $K \rightarrow i K$.
- $\Omega(K)$ becomes one of the vectors in a "good" measurement basis.
- Measurement on $\left|\psi_{\text {resource }}\right\rangle$ and feedforward
- \rightarrow Deterministic real-time evolution with $H_{\text {simulated }}$.

References

- R. Raussendorf and H. J. Briegel, A one-way quantum computer, Phys. Rev. Lett. 86, 5188 (2001)
- T.-C. Wei, Measurement-Based Quantum Computation. Oxford Research Encyclopedia of Physics. Retrieved 13 Apr. 2023,
- F. J. Wegner, Duality in Generalized Ising Models and Phase Transitions without Local Order Parameters, Journal of Mathematical Physics 12(10), 2259 (1971); J. B. Kogut, An introduction to lattice gauge theory and spin systems, Reviews of Modern Physics 51(4), 659 (1979)
- R. Raussendorf, S. Bravyi and J. Harrington, Long-range quantum entanglement in noisy cluster states, Physical Review A 71(6), 062313 (2005)
- A. Miyake, Quantum computation on the edge of a symmetry-protected topological order, Physical Review Letter 105, 040501 (2010)
- B. Yoshida, Topological phases with generalized global symmetries, Phys. Rev. B 93(15), 155131 (2016); M. Levin and Z.-C. Gu, Braiding statistics approach to symmetry-protected topological phases, Phys. Rev. B 86, 115109 (2012)
- S. Roberts, B. Yoshida, A. Kubica and S. D. Bartlett, Symmetry-protected topological order at nonzero temperature, Phys. Rev. A 96(2), 022306 (2017)
- M. van den Nest, W. Dür and H. J. Briegel, Completeness of the Classical 2D Ising Model and Universal Quantum Computation, Phys. Rev. Lett. 100(11), 110501 (2008),
- J. Y. Lee, W. Ji, Z. Bi, and M. P. A. Fisher, Decoding Measurement-Prepared Quantum Phases and Transitions: from Ising model to gauge theory, and beyond, arXiv:2208.11699.
- M. Bal, D. J. Williamson, R. Vanhove, N. Bultick, J. Haegeman, F. Verstraete, Mapping topological to conformal field theories through strange correlators. Phys. Rev. Lett. 121, 177203 (2018)
- L. Chen, H.-C. Zhang, K.-X. Ji, C. Shen, R.-S. Wang, X.-D. Zeng, and L.-Y. Hung, Exact Holographic Tensor Networks--Constructing CFT_D from TQFT_ $\{D+1\}$, arXiv preprint arXiv:2210.12127 (2022).
- R. Raussendorf, C. Okay, D.-S. Wang, D. T. Stephen, and H. P. Nautrup, A computationally universal phase of quantum matter, Phys. Rev. Lett. 122, 090501 (2019)

SPT in gCS

- A state has a long-range entanglement iff it is not short-range entangled.
- A state $|\Phi\rangle$ has a short-range entanglement iff there is (finite-depth) local unitary evolution such that $|\Phi\rangle=U\left|\Phi_{\text {prod }}\right\rangle$

Long-range entangled state

0
0

Pr Product state

SPT in gCS

- A state has a nontrivial SPT order if it is SRE and it is not a trivial SPT.
- A symmetric state $|\Phi\rangle$ has a trivial SPT order with respect to a symmetry G iff there is (finite-depth) symmetric local unitary evolution such that $|\Phi\rangle=U_{\text {sym }}\left|\Phi_{\text {prod }}\right\rangle$

SPT ordered state

Symmetric-SRE

MBQC: (0+1)dimensions

- Consider a one-qubit "initial state" $|\psi\rangle$
- Prepare a "resource state" $C Z_{a, b}|\psi\rangle_{a}|+\rangle_{b}$
- Measure the first qubit with the basis $\left\{e^{i \xi Z}|+\rangle, e^{i \xi Z}|-\rangle\right\}$, i.e., $Z^{s} e^{i \xi Z}|+\rangle(s=0,1)$

$$
\left\langle+\left.\right|_{a} e^{-i \xi Z_{a} Z_{a}^{s}} \cdot C Z_{b, a} \mid \psi\right\rangle_{a}|+\rangle_{b}=\frac{1}{\sqrt{2}} e^{-i \xi X} X^{s} H|\psi\rangle_{b}
$$

\rightarrow Teleportation \& rotation.
$0|+\rangle$
$-C Z_{a, b}:=|0\rangle\left\langle\left. 0\right|_{a} \otimes I_{b}+\mid 1\right\rangle\left\langle\left. 1\right|_{a} \otimes Z_{b}=C Z_{b, a}\right.$
Notation:
Q4 Single-qubit measurement
$H:$ Hadamard transform, $H|0\rangle=|+\rangle, \quad H|1\rangle=|-\rangle, \quad H Z H=X, \quad H^{2}=I$.

MBQC: (0+1)dimensions

- Consider a one-qubit "initial state" $|\psi\rangle$
- Prepare a "resource state" $C Z_{a, b} C Z_{b, c}|\psi\rangle_{a}|+\rangle_{b}|+\rangle_{c}$
- Measure: the a qubit with the basis $Z^{s}|+\rangle(s=0,1)$
- Measure: the b qubit with the basis $Z^{t} e^{i \xi Z}|+\rangle(t=0,1)$

$$
0|+\rangle
$$

Notation: $\quad-C Z_{a, b}:=|0\rangle\left\langle\left. 0\right|_{a} \otimes I_{b}+\mid 1\right\rangle\left\langle\left. 1\right|_{a} \otimes Z_{b}=C Z_{b, a}\right.$
01 Single-qubit measurement

MBQC: (0+1)dimensions

Teleportation to the c qubit \& rotation.
The rotation angle depends on the outcome of the first measurement s.

$$
01+\rangle
$$

Notation: $-C Z_{a, b}:=|0\rangle\left\langle\left. 0\right|_{a} \otimes I_{b}+\mid 1\right\rangle\left\langle\left. 1\right|_{a} \otimes Z_{b}=C Z_{b, a}\right.$
01 Single-qubit measurement

MBQC: (0+1)dimensions

$$
X^{t} Z^{s} \cdot e^{-i(-1)^{s} \xi X}|\psi\rangle \rightarrow X^{t} Z^{s} \cdot e^{-i \alpha X}|\psi\rangle
$$

$$
\text { by choosing } \xi=(-1)^{s} \alpha . \quad(\alpha: \text { desired angle })
$$

MBQC: (0+1)dimensions

\bigcirc

One can choose angles $\left\{\xi_{k}\right\}$ adaptively to absorb effects from previous measurements.

After measuring all qubits except the last one, we will be left with

$$
\begin{aligned}
& X^{\#} Z^{\#} e^{-i \alpha_{k} X} \ldots e^{-i \alpha_{2} X} e^{-i \alpha_{1} X}|\psi\rangle_{\text {right ddry }} \\
& \text { can be removed }
\end{aligned}
$$

MBQC: multi-body interaction term

We make use of the following ingredient.

- Consider a general "initial state" $|\psi\rangle_{b c}$
- Prepare a "resource state" $C Z_{a, b} C Z_{a, c}|\psi\rangle_{b c}|+\rangle_{a}$
- Measure the middle qubit with $\left\{e^{i \xi X}|0\rangle, e^{i \xi X}|1\rangle\right\}$, i.e., $X^{s} e^{i \xi X}|0\rangle \quad(s=0,1)$

$$
\left\langle\left. 0\right|_{a} e^{-i \xi X_{a}} X_{a}^{s} \cdot C Z_{a, b} C Z_{a, c} \mid \psi\right\rangle_{b c}|+\rangle_{a}=e^{-i \xi Z_{b} Z_{c}}\left(Z_{b} Z_{c}\right)^{s}|\psi\rangle_{b c}
$$

\rightarrow Multi-qubit rotation.

