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• Quantum simulation of lattice gauge theories

• Gate-based quantum computers, quantum simulators.

• Measurement-Based Quantum Computation (MBQC) is also a model capable 
of (universal) quantum computation.

• In this vein, we formulated an MBQC scheme for simulating a class of spin 
models that includes gauge theories.

• Measurement-based quantum simulation (MBQS)

• Achieve a quantum simulation by measuring a tailor-made entangled state.

• What’s the properties of the entangled state?

Introduction



Plan

• MBQC (MBQS) in (0+1)dimensions

• Wegner’s generalized Ising models

• MBQS for Wegner’s models

• Higher-form symmetries, an SPT order, and a holographic interplay.

• Generalizations



A simple MBQC (MBQS) 
in (0+1)dimensions



•A one-qubit state   as an -qubit. Couple it to - and -qubits.
•Measure -qubit and then -qubit.

|ψ⟩ = α |0⟩ + β |1⟩ a b c
a b

MBQC: (0+1)dimensions

X | + ⟩ = | + ⟩  CZa,b := |0⟩⟨0 |a ⊗ Ib + |1⟩⟨1 |a ⊗ Zb = CZb,a

|ψ⟩a| + ⟩b| + ⟩c

s t
ξ

Random {0,1}
Adjustable real 
parameter XtZs ⋅ e−i(−1)sξX |ψ⟩c=

•Gate teleportation. 
•Choose  in the second measurement to counter the randomness 

of the first measurement and realize  deterministically. 
ξ = (−1)sα

e−iαX



MBQC: (0+1)dimensions

1-qubit state

|ψ⟩



MBQC: (0+1)dimensions

|ψ⟩
1d entangled state (resource state) 

E.g. AKLT state, cluster state, …

|ψresource⟩



MBQC: (0+1)dimensions

|ψ⟩

Measurement



MBQC: (0+1)dimensions

X#Z# ⋅ U1 |ψ⟩



MBQC: (0+1)dimensions

Feedforward

X#Z# ⋅ U1 |ψ⟩



MBQC: (0+1)dimensions

X#Z# ⋅ U2U1 |ψ⟩



MBQC: (0+1)dimensions

X#Z# ⋅ U2U1 |ψ⟩

Feedforward



MBQC: (0+1)dimensions

X#Z# ⋅ ⋯U2U1 |ψ⟩



MBQC: (0+1)dimensions

Simulated state

Post-measurement product state

X#Z# ⋅ UN⋯U2U1 |ψ⟩



MBQC: (0+1)dimensions

Simulated state
(Cleaned up)

Post-measurement product state

UN⋯U2U1 |ψ⟩



MBQC (measurement-based quantum computation)

(Universal) quantum computation can be achieved by 
(1) preparing a resource state
(2) measuring the resource state in a certain adaptive pattern.
(3) post-processing (unwanted) byproduct operators 

Review article: e.g. [T.-C. Wei (2023)]
[Raussendorf, Briegel, Browne, Nielsen…]

MBQC

What we have just shown is a simple example of MBQC. 

However, our goal below is not the universal quantum computation, but a 
quantum simulation of Wegner’s Ising models.



More with CZ and measurement: 

MBQC: multi-body interaction term

•Consider a general state |ψ⟩1⋯N

|ψ⟩1⋯N

| + ⟩

→ Multi-qubit rotation 

(Z1⋯ZN)se−iξZ1⋯ZN |ψ⟩1⋯N

1 + (−1)sZ1⋯ZN

2
|ψ⟩1⋯N

→ Parity check

-basisX

-rotated basisξ



Graph state

There is a class of states generated by  and CZ, which are called graph 

states. 

•Graph = 

• : vertices   qubits  are placed

• : edges     is applied on   ( )

•Graph state  Stabilizer state

•Translationally invariant graph states are called cluster states.

| + ⟩

{V, E}

V ↔ | + ⟩⊗V

E ↔ CZa,b ⟨ab⟩ ∈ E a, b ∈ V

⊂

a ∈ V

b ∈ V
⟨ab⟩ ∈ E



Graph state

■ In terms of state vectors,

■ In terms of stabilizers  (i.e.,    ),

           

|ψ𝒞⟩ = ∏
⟨vv′ ⟩∈E

CZv,v′ 
| + ⟩⊗V

Kv |ψ𝒞⟩ = |ψ𝒞⟩

| + ⟩⊗V ⟷ {Xv v ∈ V }
|ψ𝒞⟩ ⟷ {Kv v ∈ V }

Kv = ( ∏
⟨vv′ ⟩∈E

CZv,v′ ) ⋅ Xv ⋅ ( ∏
⟨vv′ ⟩∈E

CZv,v′ ) = Xv ∏
⟨vv′ ⟩∈E

Zv′ 



Graph state

1

2

3
4

5

6

K1 = X1Z2Z3Z4

K2 = X2Z1Z6

K4 = X3Z1Z4

etc.



|ψ(0)⟩bdry

|ψC⟩bulk

|ψC⟩bulk

|ψ(t)⟩bdry

|ψ(T)⟩bdry

 : simulated state of Wegner’s model  with the Trotterized time 

evolution ,
 .

 : resource state to be measured — generalized cluster state (gCS). 

|ψ(t)⟩bdry M(d,n)

T(t)
|ψ(t)⟩bdry = T(t) |ψ(0)⟩

|ψC⟩bulk

Our idea



Spin model to be simulated
—Wegner’s generalized Ising models—



Cell simplex σi
σ0 σ1 σ2 σ3

 : cell simplices in  dimensional hypercube lattice 
  : cell simplices in  dimensional hypercube lattice

  or 

σ̆i d
σi d − 1

σ̆i = σi × {j} σ̆i+1 = σi × [ j, j + 1]
 coordinatexdIntervalPoint

{j}

{j + 1}
[ j, j + 1]

xd

σ̆1 = σ0 × [ j, j + 1]

σ0

σ̆2 = σ1 × [ j, j + 1]

σ1

σ̆0 = σ0 × {j}

σ0

 -dimd

 -dim(d − 1)



We have  (and ) and a chain complex.∂2 = 0 (∂*)2 = 0

Similarly, we have cell simplices in the dual lattice with  . σi ≃ σ*d−iSciPost Physics Submission

�*( dual� )=( dual� )

�( dual� )=( dual� )�*0

�*1�1

�2

Figure 2: An illustration of boundary operators and duality for a square lattice. (Top)
The 2-cell �2 is represented by a shaded square. Its boundary @ �2 is the sum of four
1-cells. (Bottom) The 1-cell �1 is represented by a gray line. Its dual boundary is the
sum of two 2-cells. In both figures, the duals of the relevant cells are indicated.

for some i. Then on each �i we have Pauli operators X (�i) and Z(�i). For each i-chain ci we
define

X (ci) :=
Y

�i2�i

X (�i)a(ci ;�i) ,

Z(ci) :=
Y

�i2�i

Z(�i)a(ci ;�i) . (8)

For MBQS we consider a hypercubic lattice in d-dimensions, with the (1,2, ..., d � 1)-
directions periodic and the d-th direction open. The value of the d-th coordinate xd (“time”)
specifies an artificial time slice. The boundaries xd = 0 and xd = Ld , where Ld is the linear
lattice size in the d-th direction, are examples. The bulk state to be introduced later will be the
resource state for MBQS. As we proceed in the protocol of MBQS, the state originally defined on
the xd = 0 time slice will be teleported to a middle time slice xd = j, where j 2 {0,1, . . . , Ld}.
Throughout the paper, unless otherwise stated, we use the notation where the bold fonts (���,
���, @@@ , etc.) represent “bulk” quantities related to the d-dimensional lattice, whereas the nor-
mal fonts (�, �, @ , etc.) are used for the (d �1)-dimensional lattice identified with the space
of the simulated model.

A cell ���i inside a time slice xd = j is of the form

���i = �i ⇥ { j} , (9)

while a cell ���i extending in the time direction takes the form

���i = �i�1 ⇥ [ j, j + 1] . (10)

Sometimes we express a point in the time direction as pt and an interval as I.

2.2 Model M(d,n)

We consider a class of theories described by classical spin degrees of freedom living on (n�1)
cells in the d-dimensional hypercubic lattice whose action I is given by

I[{S���n�1
}] = �J
X

���n2���n

S(@@@���n) , (11)

where J is a coupling constant. S���n�1
2 {+1,�1} is a classical spin variable living on each

(n� 1)-cell ���n�1 2���n�1 and

S(ccci) =
Y

���i2���i

(S���i
)a(ccci ;���i) (12)

7



Model : 
Classical spin variables  living on -cells in the 
-dimensional hybercubic lattice.  [Wegner (1971)]

M(d,n)
Sσ̆n−1

∈ {+1, − 1} (n − 1) d

Euclidean action (classical Hamiltonian)  : 
 . 

I
I = − J∑̆

σn

( ∏
σ̆n−1⊂∂σ̆n

Sσ̆n−1)

Wegner’s generalized Ising model

 .H(d,n) = − ∑
σn−1

X(σn−1) − λ∑
σn

Z(∂σn)

Via the transfer matrix formalism, we obtain a quantum Hamiltonian in  
dimensions with the continuous time. [Kogut (1979) etc. ]

(d − 1)



Transverse field Ising model 

Wegner’s generalized Ising model

 

Classical Ising model  

Gauge theory (Wilson’s 
plaquette action for )G = ℤ2

  M(d,1)

  M(d,2)

Quantum pure gauge theory 

H(d,1) = − ∑
σ0

X(σ0) − λ∑
σ1

Z(∂σ1)I = − J ∑
edge

S(∂σ̆1)

I = − J ∑
plaquette

S(∂σ̆2) H(d,2) = − ∑
σ1

X(σ1) − λ∑
σ2

Z(∂σ2)

site variable

link variable



We wish to simulate a Trotterized (real) time evolution:

with

 . 

|ψ(t)⟩ = U(t) |ψ(0)⟩

T(t = jΔt) = (∏
σn−1

eiΔtX(σn−1)∏
σn

eiΔtλZ(∂σn))
j

Wegner’s generalized Ising model



|ψ(0)⟩bdry

|ψC⟩bulk

|ψC⟩bulk

|ψ(t)⟩bdry

|ψ(T)⟩bdry

 : simulated state of  with the Trotterized time evolution ,

 .

 : resource state to be measured — generalized cluster state (gCS). 

|ψ(t)⟩bdry M(d,n) T(t)
|ψ(t)⟩bdry = T(t) |ψ(0)⟩

|ψC⟩bulk

MBQS



Resource state and MBQS



Entanglement in our resource state, gCS  (generalized cluster state), is 
tailored to reflect the space-time structure of the model :

 

(d,n)
M(d,n)

|gCS(d,n)⟩ := 𝒰CZ | + ⟩Δ̆n | + ⟩Δ̆n−1

𝒰CZ = ∏
σ̆n∈Δ̆n

( ∏
σ̆n−1⊂∂σ̆n

CZσ̆n−1,σ̆n) .

(d, n) = (3,1)
[Raussendorf Bravyi 
Harrington (2007)]

(d, n) = (3,2)

0-cell 
1-cell 

σ̆0
σ̆1

1-cell 
2-cell 

σ̆1
σ̆2

MBQS



←Load a 2d initial state  at .|ψ(0)⟩bdry x3 = 0

Couple it to the rest of the resource state.

-direction
=“time” in the simulated world 
x3

{0}

{1}

[0,1]

MBQS: simulating  on M(3,1) gCS(3,1)



teleported to [ j, j + 1]∏
σ1

e−iξ1Z(∂σ1) ∏
σ0

e−iξ3X(σ0)

teleported to {j + 1}

σ̆1 = σ1 × {j} σ̆0 = σ0 × {j} σ̆1 = σ0 × [ j, j + 1]

MBQS: simulating  on M(3,1) gCS(3,1)



←Load a 2d initial state  of the d 
lattice  gauge theory 

|ψ(0)⟩bdry (2 + 1)
ℤ2

MBQS: simulating  on M(3,2) gCS(3,2)

{0}

{1}
[0,1]



teleported to [ j, j + 1]∏
σ2

e−iξ1Z(∂σ2) ∏
σ1

e−iξ4X(σ1)

teleported to {j + 1}

Parity check for 
Gauss law 

σ̆2 = σ2 × {j} σ̆1 = σ1 × {j} σ̆1 = σ0 × [ j, j + 1] σ̆2 = σ1 × [ j, j + 1]

MBQS: simulating  on M(3,2) gCS(3,2)



|gCS(d,n)⟩

A state in M(d,n) Single-qubit measurements

MBQS: simulating  on M(d,n) gCS(d,n)



Aspects of symmetries in MBQS
SPT and holographic interplay



(d, n) = (3,1)
-form symmetry(d − n) = 2

X

X
X

X

X

XX(z̆1)

-form symmetry(n − 1) = 0

X

X
X

X
X

X
X(z̆*3 )

X X

Higher-form symmetries in gCS

∂z̆1 = 0 ∂*z̆*3 = 0



(d, n) = (3,2)

X

X
X

X

X

X

-form symmetry(n − 1) = 1

X(z̆*2 )

X

X
X

X

X
X

-form symmetry(d − n) = 1

X(z̆1)

Higher-form symmetries in gCS

∂z̆1 = 0 ∂*z̆*2 = 0



-form and -form symmetry:

 

with  ,  . 

(d − n) (n − 1)
|gCS⟩ = X(z̆n) |gCS⟩ = X(z̆*d−n+1) |gCS⟩

Md−n = {z̆n |∂z̆n = 0} M′ n−1 = {z̆*d−n+1 |∂*z̆*d−n+1 = 0}

Higher-form symmetries in gCS



gCS  has an SPT order protected by -form  and 
-form 

(d,n) (d − n) ℤ2
(n − 1) ℤ2

• Two symmetry generators act projectively at the boundaries of the lattice → 
SPT.  [Yoshida (2016), Roberts-Kubica-Yoshida-Bartlett (2017)].

• The simulated state as an edge state of an SPT.  Cf. [Miyake (2010)]

• Open Question: Is the quantum simulation possible with any state in the SPT 
phase?

SPT order in gCS



 Boundary symmetry generator X(z*d−n)
 Bulk symmetry generator  with 

.
X(z̆*d−n+1)

∂*z̆*d−n+1 = 0 or = z*d−n

Electric 1-form symmetry X(z*1 ) 1-form symmetry X(z̆*2 )

0-form symmetry X(z*2 ) = ∏
v∈V

Xv 0-form symmetry X(z̆*3 ) = ∏̆
v∈V̆

Xv̆ Ising(3,1)

 gauge(3,2)

⑧
⑧

⑧
-
&

⑧

Bulk/boundary symmetries in MBQS

M(d,n)



For comparison, consider a -dimensional bulk (ungauged) Hamiltonian
 ,

which is symmetric under the transformation with the global -form,  . 

d
H = − ∑ Z(∂σ̆n)

(n − 1) X(z̆*d−n+1)

Cluster state gCS: 
It is described by the local stabilizer conditions:

 ,

i.e., the ground state of the gauged version of the above Hamiltonian,
 ,

with the local gauge constraint   ( ). 

(The global symmetry generator  is a product of local stabilizers .)

X(σ̆n)Z(∂σ̆n) |gCS(d,n)⟩ = X(σ̆n−1)Z(∂*σ̆n−1) |gCS(d,n)⟩ = |gCS(d,n)⟩

Hgauged = − ∑ X(σ̆n)Z(∂σ̆n)
X(σ̆n−1)Z(∂*σ̆n−1) = 1 ∀σ̆n−1

X(z̆*d−n+1) X(σ̆n−1)Z(∂*σ̆n−1)

Bulk/boundary symmetries in MBQS



X(z̆*d−n+1)

global -form sym.(n − 1)

gauged with -form gauge fieldn|gCS(d,n)⟩

⑧
-
&

⑧

Bulk/boundary symmetries in MBQS
In other words, the boundary global symmetry is promoted to the bulk(+boundary) 
global symmetry , and it is gauged in the cluster state. X(z̆*d−n+1) |ψC⟩ = |ψC⟩

global -form sym.(n − 1)

“Holographic interplay”

M(d,n)



From cluster states to Euclidean path 
integral of simulated models



Our MBQS measurement pattern is related to the overlap formula below:

It is known as a classical-quantum correspondence [Van den Nest-Dur-Briegel (2008)]  
relating a 2d quantum state and a 2d classical statistical model.  
See also [Lee-Ji-Bi-Fisher (2022)]

  Z(2,1) = 𝒩 × ⟨ ⟩|
gCS(2,1)⟨0 |e−KX

⟨ + |
Resource state for (1+1)d 
transverse-field Ising model

Strange correlator

(  : real )K

2d classical Ising 
partition function



Rewriting it further,

This generalizes to between  (Wegner’s model) and the generalized toric 
code ground state in -dimensions.
A map from TQFT  state to a -dim classical spin system; strange correlator.  
[M. Bal et al. (2018), Chen et al. (2022) etc.] [More generalizations in Aswin’s talk on Friday]

Z(d,n)
d

d+1 d

  Z(2,1) = 𝒩 ×⟨ ⟩|
⟨0 |e−KX Toric code

= partially “measuring” out gCS(2,1)

Strange correlator

(  : real )K

2d classical Ising 
partition function



Generalization



• Local lattice CSS code    (made of ),   (made of ).   

 foliated graph (cluster) state        [Bolt et al. (2016)]

• Consider a Hamiltonian 
   with a gauge constraint  . 

• Time evolution  can be simulated on the state  by measurements. 
• When the logical code space of the (local) CSS code on a lattice is non-trivial, it can be 

seen as having a mixed ’t Hooft anomaly in the ground states. 
• Accordingly, the foliated cluster state has an SPT order. The global symmetries that 

protect the bulk SPT order can be higher-form or subsystem-like. 
• A CSS generalization of the Kramers-Wannier-Wegner duality is obtained for statistical 

models corresponding to CSS codes via the overlap formula etc. 

SX = {Aα}α=1,...,|SX| X SZ = {Bβ}β=1,...,|SZ| Z
⟶ |ψ𝒞⟩

H = − ∑
i∈qubits

Xi − λ∑
β

Bβ Aα = 1

U(t) = e−itH |ψ𝒞⟩

Generalizations [Okuda-Parayil Mana-HS, to appear]



Fradkin-Shenker model [Okuda-Parayil Mana-HS, to appear]

Z
Z Z

ZZ

Z
Z

X
X X
X

X

X               with a gauge constraint        . H = − ∑
i∈site

Xi − ∑
i∈link

Xi − λ∑ − g∑ = 1Z
Z

Z Z
Z

Z
Z

X
X
X

X

 gauge theory coupled to Ising matter field in (2+1)dℤ2

SZ

SX

Foliation of CSS code

⟶

|ψFS
𝒞 ⟩



Fradkin-Shenker model [Okuda-Parayil Mana-HS, to appear]

• By measuring the foliated cluster state , one can perform 
the quantum simulation of the Fradkin-Shenker model. 

• Overlap formula:

  : the Euclidean lattice path integral of the FS model.
 : a product state. 

         : coupling parameters

• One can reproduce the self-duality of the FS model by 
manipulating stabilizers of . Cf. [van den Nest-Dur-Briegel (2007)]

|ψFS
𝒞 ⟩

ZFS(J, K) = ⟨Ω(J, K) |ψFS
𝒞 ⟩

ZFS(J, K)
⟨Ω(J, K) |

(J, K)

|ψFS
𝒞 ⟩



• Entanglement structure of gCS  ⇄ Spacetime structure of . 

• Single-qubit measurement on gCS  ⇄  Hamiltonian quantum simulation of 

.

• Overlap between a product state and gCS  ⇄   Partition function of .  

• The gCS possesses - and -form global symmetries.

1. A state of  as an edge state of an SPT

2. Boundary -from symmetry is promoted to bulk -from 
symmetry, which is gauged in gCS.

(d,n) M(d,n)

(d,n)

M(d,n)

(d,n) M(d,n)

(n − 1) (d − n)

M(d,n)

(n − 1) (n − 1)

Summary



Recipe

•  : Euclidean path integral.

• Projection to  requires post-selections.

• Rotate  by . 

•  becomes one of the vectors in a “good” measurement basis. 

• Measurement on  and feedforward

•  Deterministic real-time evolution with  .

Zsimulated = ⟨Ω(K) |ψresource⟩
Ω(K)

Ω(K) K → iK
Ω(K)

|ψresource⟩
→ Hsimulated
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• A state has a long-range entanglement iff it is not short-range 
entangled. 

• A state  has a short-range entanglement iff there is (finite-depth) 
local unitary evolution such that  

|Φ⟩
|Φ⟩ = U |Φprod⟩

Upiecewise

Long-range entangled state

≠
Product state

[Chen-Gu-Wen]

SPT in gCS



• A state has a nontrivial SPT order if it is SRE and it is not a trivial SPT.

• A symmetric state  has a trivial SPT order with respect to a 
symmetry  iff there is (finite-depth) symmetric local unitary evolution 
such that  

|Φ⟩
G
|Φ⟩ = Usym |Φprod⟩

Usym

≠
SPT ordered state Product state
Symmetric-SRE

[Chen-Gu-Wen]

SPT in gCS



•Consider a one-qubit “initial state” 
•Prepare a “resource state”  
•Measure the first qubit with the basis , i.e.,     

|ψ⟩
CZa,b |ψ⟩a | + ⟩b

{eiξZ | + ⟩, eiξZ | − ⟩} ZseiξZ | + ⟩ (s = 0,1)

 = ⟨ + |a e−iξZaZs
a ⋅ CZb,a |ψ⟩a | + ⟩b

1

2
e−iξXXsH |ψ⟩b

 | + ⟩

 CZa,b := |0⟩⟨0 |a ⊗ Ib + |1⟩⟨1 |a ⊗ Zb = CZb,a

Single-qubit measurement

 : Hadamard transform, H H |0⟩ = | + ⟩, H |1⟩ = | − ⟩, HZH = X, H2 = I .

Notation:

→ Teleportation & rotation.

MBQC: (0+1)dimensions



•Consider a one-qubit “initial state” 
•Prepare a “resource state”  
•Measure: the  qubit with the basis     
•Measure: the  qubit with the basis     

|ψ⟩
CZa,bCZb,c |ψ⟩a | + ⟩b | + ⟩c

a Zs | + ⟩ (s = 0,1)
b ZteiξZ | + ⟩ (t = 0,1)

MBQC: (0+1)dimensions

 | + ⟩

 CZa,b := |0⟩⟨0 |a ⊗ Ib + |1⟩⟨1 |a ⊗ Zb = CZb,a

Single-qubit measurement

Notation:

|ψ⟩a| + ⟩b| + ⟩c
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•Consider a one-qubit “initial state” 
•Prepare a “resource state”  
•Measure: the  qubit with the basis     
•Measure: the  qubit with the basis     

|ψ⟩
CZa,bCZb,c |ψ⟩a | + ⟩b | + ⟩c

a Zs | + ⟩ (s = 0,1)
b ZteiξZ | + ⟩ (t = 0,1)

        [ ⟨ + |a Zs
a ⊗ ⟨ + |b e−iξZbZt

b ] × [CZa,bCZb,c |ψ⟩a | + ⟩b | + ⟩c ] ∝ XtZs ⋅ e−i(−1)sξX |ψ⟩c

Teleportation to the  qubit & rotation. 
The rotation angle depends on the outcome of the first measurement . 
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by choosing .    (  : desired angle)

XtZs ⋅ e−i(−1)sξX |ψ⟩ → XtZs ⋅ e−iαX |ψ⟩

ξ = (−1)sα α

ξ
s t

MBQC: (0+1)dimensions
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by choosing .    (  : desired angle)

XtZs ⋅ e−i(−1)sξX |ψ⟩ → XtZs ⋅ e−iαX |ψ⟩

ξ = (−1)sα α

ξ
s t

One can choose angles  adaptively to absorb 
effects from previous measurements.

{ξk}

After measuring all qubits except the last one, we will be left with

can be removed

MBQC: (0+1)dimensions

can be removed

X#Z#e−iαkX⋯e−iα2Xe−iα1X |ψ⟩right bdry



We make use of the following ingredient.

MBQC: multi-body interaction term

•Consider a general “initial state” 
•Prepare a “resource state”  
•Measure the middle qubit with , i.e.,  

   

|ψ⟩bc
CZa,bCZa,c |ψ⟩bc | + ⟩a

{eiξX |0⟩, eiξX |1⟩}
XseiξX |0⟩ (s = 0,1)

⟨0 |a e−iξXaXs
a ⋅ CZa,bCZa,c |ψ⟩bc | + ⟩a=e−iξZbZc(ZbZc)s |ψ⟩bc

→ Multi-qubit rotation. 


