

Scalable quantum simulation for topological quantum phases on noisy quantum devices

Seiji Yunoki (RIKEN)

Rong-Yang Sun (RIKEN)

Computational Materials Science Research Team RIKEN Center for Computational Science (R-CCS) and

RIKEN Center for Quantum Computing (RQC)

and

RIKEN iTHEMS

QIMG2023 2023/09/25

- Quantum simulation in NISQ era & its scalability
- Scalable quantum simulation of symmetry-protected topological (SPT) states [arXiv:2303.17187]
- Scalable quantum simulation of intrinsic topologically ordered (TO) states [arXiv:2210.14662]
- Summary

"...Nature isn't classical, dammit, and if you want to make a simulation of nature, you'd better make it quantum mechanical, and by golly it's a wonderful problem, because it doesn't look so easy..."

Simulating a quantum system by using other quantum systems (i.e. controllable quantum devices)

Quantum simulation for quantum many-body systems

—— R. P. Feynman, Int. J. Theor. Phys. 21, 467 (1982)

R. P. Feynman

R RIKEK

R Variational quantum eigensolver (VQE) algorithm RIKE

VQE & its scalabilities

R.-Y. Sun, T. Shirakawa, and S. Yunoki, Phys. Rev. B **108**, 075127 (2023) [arXiv:**2303.17187**]

Scalable quantum simulation of symmetry-protected topological states

Scalable PQC Ansatz for topological phases Rccs

Quantum circuit definition of topological phases

Topological phases: Symmetry-protected topological (SPT) state & intrinsic topological order (TO)

Ś

Local unitary transformation, long-range quantum entanglement, wave function renormalization, and topological order

Xie Chen,¹ Zheng-Cheng Gu,² and Xiao-Gang Wen¹

¹Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA ²Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA (Received 28 July 2010; revised manuscript received 21 September 2010; published 26 October 2010)

quantum circuit

• Exist constant D for unsymmetric C

TO (long-range entangled)

Scalable PQC Ansatz for topological phases R-ccs

Two-layer structured PQC Ansatz

R.-Y. Sun, T. Shirakawa & S. Yunoki, PRB **108**, 075127 (2023)

VQE study of SPT spin chain

S = 1/2 alternating Heisenberg chain (AHC)

Hida, PRB **45**, 5 (1992)

Fixed point:
$$J' = \infty$$

In general, non-exactly solvable

*q*₃ –

 q_3

Х

Œ

R.-Y. Sun, T. Shirakawa & S. Yunoki, PRB **108**, 075127 (2023)

VQE simulation of AHC using D = 1 shallow circuit Ansatz

Scalable: Keeping accuracy with increasing system size

VQE study of SPT spin chain

R.-Y. Sun, T. Shirakawa & S. Yunoki, PRB 108, 075127 (2023)

Realize SPT state on real quantum computer

Quantum devices & gate realization

VQE study of SPT spin chain

R.-Y. Sun, T. Shirakawa & S. Yunoki, PRB **108**, 075127 (2023)

R.-Y. Sun, T. Shirakawa, and S. Yunoki, Phys. Rev. B **107**, L041109 (2023) [arXiv:**2210.14662**]

Scalable quantum simulation of intrinsic topologically ordered states

R

Toric code model and its realization on NISQ device

Scalable PQC Ansatz for quantum loop gas Rccs

Scalable PQC Ansatz for quantum loop gas R-ccs

Toric code model in a magnetic field

R

PHYSICAL REVIEW LETTERS PRL 98, 070602 (2007)

Breakdown of a Topological Phase: Quantum Phase Transition in a Loop Gas Model with Tension

Simon Trebst,¹ Philipp Werner,² Matthias Troyer,³ Kirill Shtengel,⁴ and Chetan Nayak^{1,5}

Scalable PQC Ansatz for quantum loop gas R-ccs

Parametrized loop gas circuit (PLGC)

VQE study of toric code model in a magnetic field

VQE simulation of $H_{TCM}(x)$ using PLGC Ansatz

Realize scalable VQE simulations

R.-Y. Sun, T. Shirakawa & S. Yunoki, PRB **107**, L041109 (2023)

Thank you for your attention!