Introduction to Optimal Design of Experiments (DoE) and its Applications to Quantum Estimation

Jun Suzuki Graduate School of Informatics and Engineering Institute for Advanced Science The University of Electro-Communications, Tokyo

2023.9.20 @ QIMG2023

Introduction

• Parameter estimation problem for quantum states

- Given a family of quantum states $\{ \rho_{\theta} | \theta = (\theta_1, \theta_2, \dots, \theta_n) \in \Theta \}$
- To infer the true parameter value heta from a "measurement"
 - Q. 1) Optimal estimation strategy?
 - 2) Estimation error bounds?
- Importance of *quantum estimation theory*:

Metrology, sensing, imaging, noise characterization, etc.

- Interplay between classical statistics and quantum statistics
- An approach: Optimal design of experiment (DoE) in statistics

Any experiment = designing experiment + data analysis

A useful statistical method for designing good experiments

(Cf. Active learning or Bayesian optimization in machine learning)

Introduction

- Design of Experiment (DoE) in classical statistics: Mainly for linear regression models, or its variants
- Applications of the theory of DoE to quantum systems

Hayashi, Matsumoto IEICE Transsactions (2000) Kosut, Walmsley, Rabitz, arXiv: 0411093 (2004). Nunn, Smith, Puentes, Walmsley, Lundeen, PRA (2010) Balló, Hangos, arXiv: 1004.5209 (2010), 1107.0890 (2011) Balló, Hangos, Petz, IEEE Trans.Autom.Control (2012) Ruppert, Virosztek, Hangos, J.Phys.A (2012)

- Discrete design problem (Combinatorial optimization)
- Additional constraints and/or a specific figure of merit.
- 1) General formulation of the problem
- 2) Optimal designs for popular optimality criteria in qubit models

Classical vs Quantum

	Classical case	Quantum case
Model	Linear regression	General
	Nonlinear response	Cf. Helstrom(67)
Constraint	Additional	by default
Optimality	A, c, D, E, G, γ ,	A, c, D, E, γ
Equivalence Thm.	Kiefer-Wolfowitz (60)	qubit
	General (70s)	$D = A_G$
Adaptive design	Various schemes	Nagaoka (89)
Comparison	Not popular	A, D, E (qubit)
Information Geometry	Few	Petz, Nagaoka

Gazit, Ng, JS (2019), JS, Yang, Hayashi (2020), JS (2021)

Outline of Talk

- Introduction to DoE
- General formulation of DoE
- Analytically solvable examples (qubit)
- Comparison of different optimal designs
- Equivalence theorem
- Application to estimation of Pauli noise

What is Design of Experiments (DoE)?

A Toy Example: Laboratory assignment

- Students are asked to measure the positions of a particle on a linear air truck.
- In the ideal limit, it obeys the Newton's law without friction.

$$x(t) = v_0 t + x(0)$$

- The objective of the project is to determine the speed v_0 .
- Question: When and how many times should we measure positions?
- In the language of linear regression, this is to estimate θ_1, θ_2 :

$$Y_i = \theta_1 x_i + \theta_2 + \epsilon$$

where ϵ : Noise, error, uncertainty (Random variable!)

DoE: to choose the set of $\{x_i\}$ to minimize estimation error.

Simple Linear Regression: $Y_i = \theta_1 x_i + \theta_2 + \epsilon \ (\theta_1 = 1, \ \theta_2 = 1)$

Student A: $x_1 = 1, x_2 = 2, ..., x_{10} = 10$ (Equal space points)

Simple Linear Regression: $Y_i = \theta_1 x_i + \theta_2 + \epsilon \ (\theta_1 = 1, \ \theta_2 = 1)$

Student B: $x_1, \ldots, x_5 \sim 2$ and $x_6, \ldots, x_{10} \sim 8$

What can DoE do?

e.g., simple linear regression: $Y_i = \theta_1 x_i + \theta_2 + \epsilon$

- How should we choose the set of points x_i to minimize the error? (i = 1, 2, ..., N)
- How many points (samples) do we need to guarantee the aimed error? (N = ?)
- We need to identify the risk. (estimation error)

e.g., mean squared error, mean absolute error, Bayes error, maximum error, etc.

• $DoE = optimization over measurement variables x_i$

Goal: to design the best statistical model for good experimental data

Optimal Design of Experiments (DoE)

Classic books:

Fedorov, Theory of Optimal Experiments (1972) Pukelsheim, Optimal Design of Experiments (2006)

DoE for Nonlinear models

Fedorov&Hackl, Model-Oriented Design of Experiments (1997) Pronzato&Pázman, Design of Experiments in Nonlinear Models: Asymptotic Normality, Optimality Criteria and Small-Sample Properties (2013) Fedorov&Leonov, Optimal Design for Nonlinear Response Models (2014)

Point Estimation of Parametric Model

• In the standard setting, a parametric model is **fixed**.

$$\mathcal{M} = \{p_{\theta} \mid \theta = (\theta_1, \theta_2, \dots, \theta_n) \in \Theta\}$$

E.g.
$$p_{\theta}(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
 $(n = 2 \text{ with } \theta_1 = \mu, \theta_2 = \sigma^2)$

Objectives:

- Given a datum: $X^N = X_1 X_2 \dots X_N \stackrel{\text{i.i.d.}}{\sim} p_\theta$ (sample size N)
- 1) To find a good estimator $\hat{\theta}$: $\mathcal{X}^N \to \Theta$.
- 2) Estimation error bounds.
- 3) To analyze statistical properties of random variable $\hat{\theta}(X^N)$.

Basic Setting of DoE

In contrast, a parametric model is **not** fixed in DoE.

- ① **Model**: $s \in S \subset \mathbb{R}^d$ (parametrized model: s_θ with $\theta \in \Theta \subset \mathbb{R}^n$: Model parameter set)
- 2 **Design**: $e \in \mathcal{E}$: Design set (experiment setting)

 $\mathcal{P}(\mathcal{X}){:}$ Set of all probability distributions on \mathcal{X}

 $f:(s,e)\mapsto p_s(\cdot|e)$ conditional probability distribution on \mathcal{X} .

- E.g Linear model: $Y_{\theta}(e) = \sum_{i} \theta_{i} g_{i}(e) + \epsilon$. (g_i: polynominal, $\epsilon \sim \mathcal{N}(0, \sigma)$: noise)
 - A model parameter $\theta \in \Theta$, design $e \in \mathcal{E}$, and model function f

specify a parametric model: $\mathcal{M}[e] = \{ p_{\theta}(\cdot|e) \,|\, \theta \in \Theta \}$

Objective of DoE

- To find an optimal experimental setting $e_{\rm opt}$ that minimizes the risk.
- Parameter estimation: the standard risk = Mean-Square-Error (MSE) matrix.

$$V_{\theta}[\hat{\theta}|e] := \left[E_{\theta} \left[(\hat{\theta}_i(X) - \theta_i) (\hat{\theta}_j(X) - \theta_j) | e \right] \right]_{i,j \in \{1,2,\dots,n\}}$$

 $E_{\theta}[X|e]$: Conditional expectation value w.r.t. $p_{\theta}(x|e)$

- Cramér-Rao inequality: $V_{ heta}[\hat{ heta}|e] \geq \left(J_{ heta}[e]
ight)^{-1}$

for any locally unbiased estimators.

 $J_{\theta}[e]: \text{ Fisher information matrix about } \mathcal{M}[e] = \{p_{\theta}(\cdot|e) \,|\, \theta \in \Theta\}$

 $\mathsf{Optimization \ problem:} \ \min_{e \in \mathcal{E}} \left(J_\theta[e] \right)^{-1} \Leftrightarrow \mathsf{Optimal \ DoE}$

Optimality Criteria 1

• Minimization of $D_{\theta}(e) = (J_{\theta}[e])^{-1}$ (Design matrix)

Not uniquely defined in general! (Matrix quantity?)

- Popular optimality criteria in DoE:
 - Löwner optimality: as a matrix inequality $D(e_*) \leq D(e)$ ($\forall e \in \mathcal{E})$
 - A-optimality: $\operatorname{Tr} \{D(e)\}$ or weighted trace $\operatorname{Tr} \{WD(e)\}$ (W > 0)
 - D-optimality: $Det \{D(e)\}$
 - E-optimality: Maximum eigenvalue of $D(\boldsymbol{e})$
 - c-optimality: $c^t D(e)c$ (scalar) for a given vector $c \in \mathbb{R}^n$
 - Min-max optimality: $\max[D(e)]_{ii}$

In fact; A, c, D, E, G, γ , I, K, L, M, T, V, \mathcal{X} ,... (Alphabetic criteria!)

Optimality Criteria 2

• One-parameter family of optimality criteria (γ -optimal):

$$\Psi_{\gamma}(D) := \left(\frac{1}{n} \operatorname{Tr} \{D^{\gamma}\}\right)^{\frac{1}{\gamma}} \quad (\gamma \in \mathbb{R})$$

To minimize $\Psi_{\gamma}[e] := \Psi_{\gamma}(D(e)) = \left(\frac{1}{n} \operatorname{Tr} \left\{ J_{\theta}[e]^{-\gamma} \right\} \right)^{\gamma}$

<u>General formulation</u>

 Ψ -optimality: $\Psi(D)$ (Scalar function of the design matrix $D \ge 0$), $D_{ heta}(e) = \left(J_{ heta}[e]\right)^{-1}$

Remarks:

-
$$\gamma = 1 \Rightarrow \text{A-optimality: } \Psi_A(D) = \text{Tr} \{D\}$$

 $\gamma \to 0 \Rightarrow \text{D-optimality: } \Psi_D(D) = \text{Det} \{D\}$
 $\gamma \to \infty \Rightarrow \text{E-optimality: Maximum eigenvalue of } D(e)$

- An optimal design depends on θ in general. (Local optimality)

General Design Problem

• i.i.d. design: Sample size N

Additivity of Fisher information \Rightarrow Estimation error scales as $\frac{1}{N}$

- <u>Discrete design</u>: $e(m) = (\boldsymbol{\nu}, \boldsymbol{e}) = ((\nu_1, e_1), \dots, (\nu_m, e_m))$ (Combinatorial optimization) $J_{\theta}[e(m)] = \sum_{i=1}^{m} \nu_i J_{\theta}[e_i] \quad \text{with } \nu_i = \frac{N_i}{N} (N_i \in \mathbb{N}), \sum_{i=1}^{m} N_i = N$
- <u>Continuous design</u>: $e(m) = (p, e) = ((p_1, e_1), \dots, (p_m, e_m))$ (Good approx. $N \ge 1$) $J_{\theta}[e(m)] = \sum_{i=1}^{m} p_i J_{\theta}[e_i] \quad \text{with } p_i \in (0, 1), \sum_{i=1}^{m} p_i = 1$
- Randomized designs perform better in general. (Cf. Randomized measurement)

Incompatibility in DoE

- Löwner optimality: $D(e_*) \leq D(e)$ does not exist in general
- c-optimal design: $e_* = \arg\min c^t D(e)c$ depends on the choice of $c \in \mathbb{R}^n$

E.g.
$$c_1 = [1, 0, \dots, 0]^t$$
, $c_2 = [0, 1, 0, \dots, 0]^t$

Optimal designs for estimating θ_1 and θ_2 are incompatible!

They are compatible, iff $e_{*,i} = \arg \min c_i^t D(e)c_i$ are independent on *i*.

• Incompatibility of estimating multiple parameters is common phenomenon in classical estimation.

Parameter Estimation of Quantum States as DoE Problem

① model, ② design, and ③ model function

Terminology & Notation in Quantum System

- NND(d) := set of all positive semidefinite matrices on \mathbb{C}^d .
- Quantum system $\Leftrightarrow \mathcal{H} = \mathbb{C}^d$ (*d*-dim. vector space)
- Quantum state $\Leftrightarrow \rho \ge 0$: tr $(\rho) = 1$

• Measurement
$$\Leftrightarrow \Pi = {\Pi_x}_{x \in \mathcal{X}}: \sum_{x \in \mathcal{X}} \prod_x = I_d$$

 $\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow \qquad design(e) \qquad NND(d) \qquad \frac{1}{2}d(d+1) \text{ constraints}$

• Born's rule
$$\Leftrightarrow$$
 $(\rho, \Pi) \rightarrow p_{\rho}(\cdot | \Pi)$

 \uparrow model function $p_{\rho}(x|\Pi) = \operatorname{tr}(\rho \Pi_x)$

Optimal design problem on positive matrices with constrains

Analytically hard to solve \rightarrow numerical search

Parameter Estimation of Quantum State

- Given an *n*-parameter family of states: $\mathcal{M}^Q := \{ \rho_\theta \mid \theta = (\theta_1, \dots, \theta_n) \in \Theta \}$
- Objectives of a quantum-state estimation: - To find a "good" measurement (design Π) and estimator ($\hat{\theta}$). (Optimal DoE!)
- Estimation error \Leftrightarrow Mean square error (MSE): $V_{\theta}[(\Pi, \hat{\theta})] = \left[\sum_{x \in \mathcal{X}} (\hat{\theta}_i(x) - \theta_i)(\hat{\theta}_j(x) - \theta_j) \operatorname{tr} (\rho_{\theta} \Pi_x)\right]$
- Common choice for the figure of merit (A-optimality)
 - \Leftrightarrow Weighted trace of MSE (Weight matrix W > 0):

To find

$$C_{\theta}[W, \rho_{\theta}] := \min_{(\Pi, \hat{\theta}) : \text{l.u.at}\theta} \operatorname{Tr} \left\{ WV_{\theta}[(\Pi, \hat{\theta})] \right\}$$

Parameter Estimation of Quantum State as DoE

• A-optimality

 \Leftrightarrow Weighted trace of MSE (Weight matrix W > 0):

To find
$$C_{\theta}[W, \rho_{\theta}] = \min_{\Pi: \text{POVM}} \text{Tr} \left\{ W (J_{\theta}[\Pi])^{-1} \right\}.$$

 $J_{\theta}[\Pi]: \text{ Classical Fisher information matrix } \mathcal{M}[\Pi] = \{p_{\theta}(x|\Pi) = \operatorname{tr}(\rho_{\theta}\Pi_x) \mid \theta \in \Theta\}$

$$\begin{split} J_{\theta,jk}[\Pi] = \sum_{x \in \mathcal{X}} \frac{\mathrm{tr}\left((\partial_j \rho_\theta) \Pi_x\right) \mathrm{tr}\left((\partial_k \rho_\theta) \Pi_x\right)}{\mathrm{tr}\left(\rho_\theta \Pi_x\right)} \\ & \quad \mathsf{Nagaoka, \,\mathsf{IEICE \, Technical \, Report, \, IT \, 89-42, \, 9 \, (1989).} \\ & \quad \mathsf{Cf. \, Braunstein\&Caves, \, Phys. \, Rev. \, Lett. \, \mathbf{72}, \, 3439 \, (1994).} \end{split}$$

• This is a convex optimization with constrains.

Efficient algorithm: QestOptPOVM (Matlab code) (Zhang, JS, in preparation) https://github.com/ZHANGJianchao97/Qest.git

Analytically Solvable Cases

c-optimality and qubit-state estimation

c-optimality: To minimize $c^t D(e)c$

Theorem

Given an *n*-parameter model M^Q , for each *n*-dimensional (column) vector $c = (c_1, c_2, \ldots, c_n)^t \in \mathbb{R}^n$, the infimum of the MSE matrix in the direction of c is

$$\inf_{\Pi} c^t J_{\theta}[\Pi]^{-1} c = c^t (J_{\theta}^{\text{SLD}})^{-1} c.$$
(1)

An optimal measurement is given by a set of projectors about the operator:

$$L_{\theta,c} = \sum_{i,j=1}^{n} c_i \left(J_{\theta}^{\text{SLD}} \right)_{ij}^{-1} L_{\theta,j},$$
⁽²⁾

with J_{θ}^{SLD} the SLD Fisher information matrix and $L_{\theta,j}$ the SLD operator.

Operational meaning of the SLD Fisher information

Qubit-State Estimation 1

• When dim $\mathcal{H} = 2$, $\mathcal{M}^Q = \{ \rho_\theta \mid \theta \in \Theta \}$

Two- and three-parameter models \Rightarrow Nontrivial case

Recall:

Löwner optimality: as a matrix inequality $(J_{\theta}[e_*]^{-1} \leq J_{\theta}[e]^{-1})$ A-optimality: $\operatorname{Tr} \{J_{\theta}[e]^{-1}\}$ D-optimality: $\operatorname{Det} \{J_{\theta}[e]^{-1}\}$ E-optimality: Maximum eigenvalue of $J_{\theta}[e]^{-1}$

$$\gamma$$
-optimality: $\Psi_{\gamma}[e] := \left(rac{1}{n} \mathrm{Tr}\left\{J_{\theta}[e]^{-\gamma}
ight\}
ight)^{rac{1}{\gamma}} (\gamma \in \mathbb{R})$

Qubit-State Estimation 2

Lemma (Gill-Massar (00), Yamagata (11))

For a qubit model $\{\rho_{\theta}|\theta \in \Theta\}$, the Fisher information matrix about a measurement Π takes the form of $J_{\theta}[\Pi] = \sqrt{J_{\theta}^{\text{SLD}}} J \sqrt{J_{\theta}^{\text{SLD}}}$.

- J_{θ}^{SLD} : the SLD Fisher information matrix.
- J: a nonnegative matrix with $Tr{J} \leq 1$.

Known Bounds (A-optimality):

- Nagaoka bound (89) for two-parameter qubit-state model $\min_{\Pi} \operatorname{Tr} \left\{ W J_{\theta}[\Pi]^{-1} \right\} = \operatorname{Tr} \left\{ W (J_{\theta}^{\operatorname{SLD}})^{-1} \right\} + 2\sqrt{\operatorname{Det} \left\{ W (J_{\theta}^{\operatorname{SLD}})^{-1} \right\}}$
- Hayashi(97)-Gill-Massar(00) bound for three-parameter model $\min_{\Pi} \operatorname{Tr} \left\{ W J_{\theta}[\Pi]^{-1} \right\} = \left(\operatorname{Tr} \left\{ \sqrt{\sqrt{W}} (J_{\theta}^{\operatorname{SLD}})^{-1} \sqrt{W} \right\} \right)^{2}$

Qubit-State Estimation as DoE

• It suffices to look for $e(n) = ((p_1, \dots, p_n), (\Pi(u_1), \dots, \Pi(u_n)))$ n: Number of model parameters (n = 2, 3)

-
$$\boldsymbol{p} = (p_1, \dots, p_n) \in \mathcal{P}(n)$$

- $\Pi(u)$: PVM about $L_u = \sum_{i,j} u_i (J_{\theta}^{\text{SLD}})_{ij}^{-\frac{1}{2}} L_{\theta,j}$
- $\boldsymbol{u} := \{u_1, u_2, \dots, u_n\}$ are ONB for \mathbb{R}^n .

To find $\gamma\text{-optimal}$ design:

$$\begin{split} \min_{e(n)=(\boldsymbol{p},\boldsymbol{u})} \left(\frac{1}{n} \operatorname{Tr}\left\{ (J_{\theta}[\boldsymbol{p},\boldsymbol{u}])^{-\gamma} \right\} \right)^{\frac{1}{\gamma}} \\ J_{\theta}[\boldsymbol{p},\boldsymbol{u}]^{-1} &:= \sum_{i=1}^{n} \frac{1}{p_{i}} (J_{\theta}^{\mathrm{SLD}})^{-\frac{1}{2}} u_{i} u_{i}^{t} (J_{\theta}^{\mathrm{SLD}})^{-\frac{1}{2}} \end{split}$$

γ -Optimal Design ($\gamma \geq 1$)

Theorem (JS 17)

Given an *n*-parameter qubit model (n = 2, 3), an optimal design $e_*(n)$ and the minimum γ -optimality function ($\gamma \ge 1$) are given by

$$\begin{split} \min_{e(n)} \Psi_{\gamma} \Big[J_{\theta}[e(n)] \Big] &= \frac{1}{n^{\gamma}} \Big(\operatorname{Tr} \Big\{ \big(J_{\theta}^{\mathrm{SLD}} \big)^{-\frac{\gamma}{1+\gamma}} \Big\} \Big)^{\frac{1+\gamma}{\gamma}} \\ \boldsymbol{p}_{*} &= (p_{i}) \text{ with } p_{i} = \frac{(\lambda_{i}^{\mathrm{SLD}})^{-\frac{\gamma}{1+\gamma}}}{\sum_{j} (\lambda_{j}^{\mathrm{SLD}})^{-\frac{\gamma}{1+\gamma}}} \\ \boldsymbol{u}_{*} &= (u_{1}^{\mathrm{SLD}}, \dots, u_{n}^{\mathrm{SLD}}) \end{split}$$

where λ_i^{SLD} and u_j^{SLD} are the eigenvalues and eigenvectors of the SLD Fisher information matrix.

Proof for γ -Optimal Design ($\gamma \geq 1$)

Converse part:

$$\begin{split} \Psi_{\gamma}[J_{\theta}[e(n)]] \stackrel{(1)}{\geq} \Big(\frac{1}{n} \sum_{i=1}^{n} \frac{1}{p_{i}^{\gamma}} [\boldsymbol{u}^{t}(J_{\theta}^{\mathrm{SLD}})^{-1} \boldsymbol{u}]_{ii}^{\gamma} \Big)^{\frac{1}{\gamma}} \\ &= \Big(\frac{1}{n} \sum_{i=1}^{n} \frac{1}{p_{i}^{\gamma}} [\boldsymbol{u}_{i}^{t}(J_{\theta}^{\mathrm{SLD}})^{-1} \boldsymbol{u}_{i}]^{\gamma} \Big)^{\frac{1}{\gamma}} \\ \stackrel{(2)}{\geq} \frac{1}{n^{\gamma}} \Big(\sum_{i=1}^{n} [\boldsymbol{u}_{i}^{t}(J_{\theta}^{\mathrm{SLD}})^{-1} \boldsymbol{u}_{i}]^{\frac{\gamma}{1+\gamma}} \Big)^{\frac{1+\gamma}{\gamma}} \\ \stackrel{(3)}{\geq} \frac{1}{n^{\gamma}} \Big(\sum_{i=1}^{n} \{\lambda_{i}[(J_{\theta}^{\mathrm{SLD}})^{-1})]\}^{\frac{\gamma}{1+\gamma}} \Big)^{\frac{1+\gamma}{\gamma}} \\ &= \frac{1}{n^{\gamma}} \Big(\mathrm{Tr}\{(J_{\theta}^{\mathrm{SLD}})^{-\frac{\gamma}{1+\gamma}}\} \Big)^{\frac{1+\gamma}{\gamma}}, \end{split}$$

(1): Schur's theorem of majorization + Convexity of ℓ_p norm $(p \ge 1)$ (2): Jensen's inequality + Convexity of $f(x) = x^{1/(1+\gamma)}$ $(\gamma > 0)$

(3): Doubly stochastic matrix + concavity of $g(x_1, \ldots, x_n) = \sum_i x_i^{\gamma/(1+\gamma)}$ $(\gamma > 0)$

A-Optimal Design

• $\gamma \rightarrow 1 \Leftrightarrow \text{A-optimal design:}$ min Tr $\{J_{\theta}[e(n)]^{-1}\}$ - $p_* = (p_i)$ with $p_i = \frac{\lambda_i^{\text{SLD}-1/2}}{\sum_{j=1}^n \lambda_j^{\text{SLD}-1/2}},$

-
$$u_* = (u_1^{\text{SLD}}, \dots, u_n^{\text{SLD}})$$
 (eigenvectors of the SLD Fisher information matrix)
PVM about $L_u = \sum_{i,j} u_i (J_{\theta}^{\text{SLD}})_{ij}^{-1/2} L_{\theta,j}$
• $J_{\theta}[e_A^*] = \frac{1}{\text{Tr}\{(J_{\theta}^{\text{SLD}-1/2})\}} (J_{\theta}^{\text{SLD}})^{1/2}$

D-Optimal Design

• $\gamma \rightarrow 0 \Leftrightarrow$ D-optimal design:

min Det $\{J_{\theta}[e(n)]^{-1}\} \Leftrightarrow \max \operatorname{Det} \{J_{\theta}[e(n)]\}$

- D-optimal design:
 - $p_* = (\frac{1}{n}, \dots, \frac{1}{n})$ (uniform distribution)
 - $oldsymbol{u}_* = (u_1, \dots, u_n)$: any ONB for \mathbb{R}^n

PVM about $L_u = \sum_{i,j} u_i (J_{\theta}^{\mathrm{SLD}})_{ij}^{-1/2} L_{\theta,j}$

- $J_{\theta}[e_D^*] = \frac{1}{n} J_{\theta}^{\text{SLD}}$
- Large degrees of freedoms in optimal designs.

E-Optimal Design

• Min. of maximum eigenvalue of $J_{ heta}[(m{p},m{u})]^{-1}$

 \Leftrightarrow Max. of minimum eigenvalue of $J_{ heta}[(m{p},m{u})]$

• E-optimal design:

-
$$p_*=(p_i)$$
 with
$$p_i=\frac{\lambda_i^{\rm SLD^{-1}}}{\sum_{j=1}^n\lambda_j^{\rm SLD^{-1}}},$$

•
$$\boldsymbol{u}_* = (u_1^{\mathrm{SLD}}, \dots, u_n^{\mathrm{SLD}})$$

• $J_{\theta}[\boldsymbol{e}_E^*] = \frac{1}{\mathrm{Tr}\left\{(J_{\theta}^{\mathrm{SLD}-1})\right\}} \mathbb{I}_n$

Comparison of Optimal Designs

A-optimal design: min Tr $\{J^{-1}\}$ D-optimal design: min Det $\{J^{-1}\}$ E-optimal design: min $\lambda_{\max}(J^{-1})$

Efficiency 1

• Given two optimality functions Ψ_1, Ψ_2 (e.g., Ψ_1 : A-opt, Ψ_2 : D-opt)

 $egin{aligned} oldsymbol{e}_1^* &= rg\min \Psi_1(J(oldsymbol{e})) \ oldsymbol{e}_2^* &= rg\min \Psi_2(J(oldsymbol{e})) \end{aligned}$

- $oldsymbol{e}_1^*$ may not be optimal for $\Psi_2.$
- e_2^* may not be optimal for Ψ_1 .
- Efficiency of a design e with respect to Ψ optimality:

$$\eta_{\Psi}[oldsymbol{e}]:=rac{\Psiig(J(oldsymbol{e}^*)ig)}{\Psiig(J(oldsymbol{e})ig)} \quad ext{with} \; oldsymbol{e}^*=rg\min\Psi(J(oldsymbol{e})ig)$$

• Comparison of different optimal designs.

$$0 \leq \eta_{\Psi}[\boldsymbol{e}] \leq 1 \quad \left(\mathsf{Note} \ \eta_{\Psi} = 1 \neq J(\boldsymbol{e}) = J(\boldsymbol{e}^*) \right)$$

Comparison of Optimal Designs

General qubit model: $\rho_{\theta} = \frac{1}{2} \begin{pmatrix} 1 + s_{\theta,3} & s_{\theta,1} - is_{\theta,2} \\ s_{\theta,1} + is_{\theta,2} & 1 - s_{\theta,3} \end{pmatrix}$ Example (three parameter family):

$$\rho_{\theta} = \frac{1}{2} \begin{pmatrix} 1+\theta_3 & \theta_1 - \mathrm{i}\theta_2 \\ \theta_1 + \mathrm{i}\theta_2 & 1-\theta_3 \end{pmatrix}$$
$$\left(J_{\theta}^{\mathrm{SLD}}\right)^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} - \begin{pmatrix} \theta_1 \\ \theta_2 \\ \theta_3 \end{pmatrix} \begin{pmatrix} \theta_1 & \theta_2 & \theta_3 \end{pmatrix}$$
$$|\theta|^2 = \sum_k (\theta_k)^2 < 1$$

Comparison of Optimal Designs 2

• Optimal designs and their information matrices:

$$J_{\theta}[e_{A}^{*}] = \frac{1}{\operatorname{Tr}\left\{\left(J_{\theta}^{\mathrm{SLD}}\right)^{-1/2}\right\}} \left(J_{\theta}^{\mathrm{SLD}}\right)^{1/2}$$
$$J_{\theta}[e_{D}^{*}] = \frac{1}{n} J_{\theta}^{\mathrm{SLD}}$$
$$J_{\theta}[e_{E}^{*}] = \frac{1}{\operatorname{Tr}\left\{\left(J_{\theta}^{\mathrm{SLD}-1}\right)\right\}} \mathbb{I}_{n}$$
$$J_{\theta}[e_{ST}] = \left[\frac{1}{3} \sum_{k=1,2,3} \frac{1}{1-s_{\theta,k}^{2}} \frac{\partial s_{\theta,k}}{\partial \theta_{i}} \frac{\partial s_{\theta,k}}{\partial \theta_{j}}\right]$$

- $\mathit{n}:$ Number of parameters, $\mathbb{I}_n:\, n\times n$ identity matrix
- e_{ST} : Design for the standard quantum state tomography

Efficiency: E-optimality $(\eta_E(e_E^*) = 1)$

$$\eta_E(e_A^*) = \frac{3 - |\theta|^2}{2 + \sqrt{1 - |\theta|^2}}, \eta_E(e_D^*) = \frac{1}{3} (3 - |\theta|^2), \eta_E(e_{ST}) = \frac{3 - |\theta|^2}{3(1 - \min\{(\theta_i)^2\})}$$

Equivalence Theorem (1960)

Classical Equivalence Theorem 1

- Given an optimality function Ψ
- Directional (Gâteaux) derivative at *ξ*₀ in the direction *ξ*:

$$\begin{split} \Psi'(\xi_0;\xi) &= \lim_{\epsilon \to 0} \frac{1}{\epsilon} \Big[\Psi \big((1-\epsilon) J(\xi_0) + \epsilon J(\xi) \big) - J(\xi_0) \Big] \\ \text{assume} \quad \Psi'(\xi_0;\xi) &= \int \xi(de) \psi(e,\xi_0) \quad \text{"Sensitivity" function} \end{split}$$

- $\xi :$ Design measure on the design set ${\mathcal E}$
- General design:
 - ξ : probability measure on the design space \mathcal{E}
 - Fisher information: $J_{\theta}[\xi] = \int \xi(de) J_{\theta}[e]$
- Necessary and sufficient condition:

$$\xi_* = \arg\min_{\xi\in\Xi} \Psi(\xi) \iff \forall \, e \in \mathcal{E} \ \psi(e,\xi_*) \ge 0 \Leftrightarrow \ \min_{e \in \mathcal{E}} \psi(e,\xi_*) \ge 0$$

Classical Equivalence Theorem 2

• Sensitivity function φ for the optimality function Ψ :

 $\varphi(e,\xi) := -\psi(e,\xi) + C(\xi),$

• Kiefer-Wolfowitz theorem (1960):

D-opt = G-opt for linear regression models

Theorem (Fedorov)

The following design problems are equivalent.

1)
$$\min_{\xi\in\Xi}\Psi(\xi),$$

2)
$$\min_{\xi \in \Xi} \max_{e \in \mathcal{E}} \varphi(e, \xi),$$

3)
$$\max_{e \in \mathcal{E}} \varphi(e, \xi) = C(\xi).$$

Quantum Equivalence Theorem

Theorem (JS 19)

For qubit models, the following design problems are equivalent.

1)
$$\min_{\xi \in \Xi} \operatorname{Det} \left\{ J(\xi)^{-1} \right\}$$

2)
$$\min_{\xi \in \Xi} \operatorname{Tr} \left\{ J_{\theta}^{\operatorname{SLD}} J(\xi)^{-1} \right\}$$

• D-optimality = A-optimality with a specific weight matrix

$$\Psi_D(J) = \text{Det} \{J^{-1}\}$$
$$\Psi_A(J) = \text{Tr} \{J_{\theta}^{\text{SLD}} J^{-1}\}$$

Optimal design of experiments for quantum channel estimation - Detection of noise asymmetry in Pauli channel-

Gazit, Ng, JS, Quantum process tomography via optimal design of experiments (2019)

Quantum Process Tomography as DoE

- Quantum channel estimation problem can be phrased as DoE.
- 1 Model \Leftrightarrow Family of quantum channels $\mathcal{M}^Q = \{\mathcal{T}_ heta\}$
- $\textcircled{2} \text{ Design } e \Leftrightarrow \mathsf{Input+measurement} \ [e = (\rho, \Pi)]$
- ③ Model function $f \Leftrightarrow \text{Born's rule:} (\theta, e) \mapsto p_{\theta}(x|e) = \operatorname{tr} (\mathcal{T}_{\theta}(\rho) \Pi_x)$
- Optimization over input+meas. about $D(\rho, \Pi) = [J_{\theta}[\rho, \Pi]]^{-1}$ $J_{\theta}[\rho, \Pi] = J_{\theta}[p_{\theta}(\cdot|\Pi)]$: Fisher information matrix about $p_{\theta}(\cdot|\Pi)$ Channel parameter

Qubit Pauli Channel

•
$$\mathcal{T}_{\theta}(\rho) = (1 - \sum_{i=1}^{3} \theta_i)\rho + \sum_{i=1}^{3} \theta_i \sigma_i \rho \sigma_i$$

• To simplify, consider a two-parameter subfamily with $\theta_3 = 0$

- Noise asymmetry: $\vartheta_1 := \theta_1 \theta_2$ (Parameter of interest)
- Noise strength: $\vartheta_2 := 1 (\theta_1 + \theta_2)$ (Nuisance parameter)
- Objective: to find an optimal design e(m) = (ν, ρ, Π)
 m = 1, 2 designs to get analytical expressions.
- $e_{\text{PT}}(i) = (\rho(i), \Pi(i))$: Standard Pauli tomography (i = 1, 2, 3)

Optimal i.i.d. strategy (m = 1): fixed probe state)

Result:

$$\min_{s_1, s_2: \sum_i s_i^2 = 1} \left(J_{\vartheta}^{SLD}[e(1)]^{-1} \right)_{11} = \min\{f_1^2, f_2^2\} \text{ with } f_{1,2} = \frac{1}{2}\sqrt{1 - (\vartheta_1 \pm \vartheta_2)^2}$$

$$\label{eq:optimal design: e_* = } \begin{cases} e_{\rm PT}(1) & \quad \vartheta_1 > 0 \\ \\ e_{\rm PT}(2) & \quad \vartheta_1 \leq 0 \end{cases}$$

 $e_{\text{PT}}(i) = (\rho(i), \Pi(i))$: Standard Pauli tomography (i = 1, 2, 3)

- Optimal design e_* depends on $\vartheta_1!$
 - \Rightarrow Local optimal design and singular design problem

JS, IJQI (2021)

Optimal mixed strategy (m = 2: two probe states)

- Relative frequency: ν = (¹/₂(1 + λ), ¹/₂(1 − λ)), λ ∈ [−1, 1] Optimal frequency: λ* = ^{f₁-f₂}/_{f₁+f₂} ⇒ ν_{*} = (^{f₁}/_{f₁+f₂} (f₂)/_{f₁+f₂}), f_{1,2} = ¹/₂√(1 − (ϑ₁ ± ϑ₂)²)
 Optimal design e_{*}(2) = (ν_{*}, e_{*}) with e_{*} = (e_{PT}(1), e_{PT}(2)) e_{PT}(i) = (ρ(i), Π(i)): Standard Pauli tomography (i = 1, 2, 3)
- ν_* depends on ϑ_1 and ϑ_2 !!
- ϑ_1 is the parameter of interest.
- But, nuisance parameter ϑ_2 needs to be estimated as well.

Adaptive Design

• Adaptive (sequential) design:

A common remedy for the local optimal design problem.

- Is it useful for our problem in the presence of a nuisance parameter?
- To implement the next design based on the previous estimates.
- Various methods, mathematical proofs...
- E.g. Two-step (two-stage) method

(Hayashi-Matsumoto 1998, Barndorff-Nielsen-Gill 2000, Gill-Massar 2000)

Step-wise update: Nagaoka's method based on MLE (Nagaoka 1989, Fujiwara 2006)

An Algorithm: K-step Adaptation

1) Split N channel use into K adaptive steps. ($N = \sum_{k=1}^{N} N_k$)

- 2) Decide on the relative proportion of e_1 and e_2 at each step. $N_{k,1} \equiv \frac{1}{2}(1 + \lambda_k)N_k$ use for e_1 , $N_{k,2} \equiv \frac{1}{2}(1 - \lambda_k)N_k$ for e_2 .
- 3) Make estimate $\hat{\vartheta}_{1,2} \Leftrightarrow \hat{f}_{1,2} \Rightarrow$ To update λ_k

$$\widehat{f}_{k,i} = \left[rac{n_{1:k,i}}{N_{1:k,i}} \left(1 - rac{n_{1:k,i}}{N_{1:k,i}}
ight)
ight]^{1/2}$$
 $(n_{1:k,i}:$ Cumulative counts)

4) Update the knowledge on λ_k based on the all outcomes.

$$N_{k+1,1} = \left[\frac{\widehat{f}_{k,1}}{\widehat{f}_{k,1} + \widehat{f}_{k,2}} N_{1:k+1} - N_{1:k,1}\right]_{+}, ([x]_{+}: \text{ positive part}$$
$$\lambda_{k+1} = 2\left[\frac{\widehat{f}_{k,1} + \widehat{f}_{k,1} \frac{N_{1:k,1}}{N_{k+1}} - \widehat{f}_{k,2} \frac{N_{1:k,2}}{N_{k+1}}}{\widehat{f}_{k,1} + \widehat{f}_{k,2}}\right]_{+} - 1$$

Numerical Result (N = 200, K = 10)

Runway Method

- Modify our adaptive scheme to include an initial "runway": With fixed equal weight between the e₁ and e₂ designs.
- The MSE ratios for
- (a) K = 10, no runway
- (b) K = 10, a runway with N/2 = 100 + Adaptation for N/2 = 100
- (c) K = 5, no runway
- (d) K = 5, a runway with N/2 = 100 + Adaptation for N/2 = 100

Small noise is of interest. \Rightarrow Only the $1-\vartheta_2 \leq 0.5$ data

Observations

•
$$\frac{V_{\text{static}}}{V_{\text{adapt}}} > 1 \Leftrightarrow \text{Gain from adaptation}$$

- Benefit is visible only for high asymmetry.
- Different structures for strong and weak noise cases.
- Adaptation performs bad for low asymmetry...
- Runway method works!
- High asymmetry \Leftrightarrow Near boundaries $(\vartheta_2 \simeq 1 |\vartheta_1|)$ Low asymmetry \Leftrightarrow Interior regions $(\vartheta_1 \simeq 0)$

Recent Results

- The theory of DoE = optimization about the classical Fisher information
- An alternative approach: to minimize the MSE directly

Known lower bounds:

- 1967 Helstrom, SLD bound
- 1972 Yuen-Lax, RLD bound
- 1976 Holevo bound
- 1989 Nagaoka bound (two parameter only)
- 1996 Petz, monotone metric
- 2021 Generalized Nagaoka bound

(Tightest bound for A-optimal design so far)

Conlon, JS, Lam, Assad, npj QI (2021)

Cf. Bayesian setting: JS, 2302.14223 (2023)

Summary & Outlook

- General formulation optimal design of experiments in quantum system
- A systematic and powerful tool for designing quantum process & state tomography
 - 1. Popular optimal designs (A, c, D, E, γ)
 - 2. Quantum equivalence theorem (Qubit case only)
 - 3. Detection of noise asymmetry in the qubit Pauli channel
 - Nuisance parameter problem
 - Adaptation does not work well for small samples
- DoE also applies to collective POVM and entangled probe states.
- More on DoE for quantum systems? YES
- Information geometry, Bayesian design, numerical algorithm, etc